定积分的定义

合集下载

不定积分与定积分的概念

不定积分与定积分的概念

不定积分与定积分的概念一、引言在微积分中,不定积分和定积分是重要的概念。

它们分别可以用来描述函数和计算曲线下的面积。

本文将介绍不定积分与定积分的概念、符号表示以及它们的应用。

二、不定积分的概念不定积分,也称原函数,是指对于给定的函数f(x),在其定义域上存在一个函数F(x),满足F'(x) = f(x)。

不定积分通常用∫f(x)dx表示,其中∫表示积分号,f(x)表示要积分的函数,dx表示积分变量。

三、定积分的概念定积分是对函数在一个闭区间上的积分,表示曲线下的面积。

给定函数f(x)在闭区间[a, b]上,将[a, b]划分成n个小区间,每个小区间长度为Δx,选取每个小区间的一个代表点xi,根据极限的概念,可以将定积分定义为极限值:∫[a, b]f(x)dx = lim(n->∞)Σf(xi)Δx,其中Σ表示求和的意思。

四、不定积分与定积分的关系不定积分与定积分是紧密相关的。

对于它们来说,不定积分可以看作定积分的逆运算。

具体而言,如果F(x)是函数f(x)的一个原函数,则对于闭区间[a, b]上的函数f(x),有以下等式成立:∫[a, b]f(x)dx = F(b) - F(a),其中F(b)和F(a)表示F(x)在点b和点a处的值。

五、不定积分与定积分的性质1. 基本性质:如果F(x)是f(x)的一个原函数,则对于任意常数C,有∫f(x)dx = F(x) + C成立。

2. 线性性质:对于函数f(x)和g(x),以及常数c和d,有∫[a, b](cf(x) + dg(x))dx = c∫[a, b]f(x)dx + d∫[a, b]g(x)dx成立。

3. 区间可加性质:对于闭区间[a, b]和闭区间[b, c]上的函数f(x),有∫[a, c]f(x)dx = ∫[a, b]f(x)dx + ∫[b, c]f(x)dx成立。

六、不定积分与定积分的应用不定积分和定积分在各个科学领域都有广泛的应用。

定积分的性质

定积分的性质
黎曼和
定积分可以表示为黎曼和的形式,即将区间[a,b]分成若干小区间,每个小区间的长度为$\Delta x$,并取小区间 的左端点$x_{i-1}$和右端点$x_i$作为积分的下限和上限,然后对每个小区间上的函数值$f(x_i)$进行求和,最后 将所有小区间的和再乘以$\Delta x$得到定积分的值。
对于任意实数$k_1, k_2$,有$\int (k_1f(x) + k_2g(x)) dx = k_1 \int f(x) dx + k_2 \int g(x) dx$
常数倍
对于任意实数$k$,有$\int kf(x) dx = k \int f(x) dx$
区间可加性
区间可加
对于任意分割$a = x_0 < x_1 < \ldots < x_n = b$,有$\int_{a}^{b}f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}f(x) dx$
利用定积分的性质
如果$f(x) \geq g(x)$,则 $\int_{a}^{b}f(x)dx \geq
\int_{a}^{b}g(x)dx$。
利用定积分的性质
如果$f(x) = g(x)$,则$\int_{a}^{b}f(x)dx = \int_{a}^{b}g(x)dx$。
04
定积分的极限性质
定积分的性质
线性性质
定积分具有线性性质,即对于常数$c$和$d$,有$\int_{a}^{b} (c\varphi_1(x) + d\varphi_2(x)) dx = c\int_{a}^{b} \varphi_1(x) dx + d\int_{a}^{b} \varphi_2(x) dx$。

解释定积分的概念

解释定积分的概念

解释定积分的概念
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

具体来说,定积分定义如下:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子
区间[x₀,x₁], (x₁,x₂], (x₂,x₃], …, (xₙ-1,xₙ],其中x₀=a,xₙ=b。

a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x
叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。

同时,应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。

一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。

定积分的概念、性质

定积分的概念、性质
*
三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.

积分的定义求积分

积分的定义求积分

积分的定义求积分积分是微积分中的一个重要概念,它表示对函数在某个区间上的累积效果。

在数学中,积分可以通过不同的方法进行求解,常见的方法有定积分、不定积分和线积分等。

下面分别介绍这些方法的定义和求积分的方式:1. 定积分:定积分是对函数在一个区间上的积分,它可以用来计算函数曲线下的面积。

定积分的定义如下:设函数f(x)在闭区间[a, b]上连续,将[a, b]划分为n个小区间,每个小区间的长度为Δx,且Δx趋近于0。

在每个小区间上任取一点ξi,代入函数f(x)得到函数值f(ξi),将这些函数值相乘并求和,得到的极限就是函数f(x)在区间[a, b]上的定积分,记作∫[a, b]f(x)dx。

定积分的求解可以利用不同的数值方法,如矩形法、梯形法、辛普森法等。

2. 不定积分:不定积分是对函数的反导数运算,它可以用来求函数的原函数。

不定积分的定义如下:设函数f(x)在区间I上连续,且F(x)是它的一个原函数,即F'(x) = f(x),则称F(x)为f(x)的一个不定积分,记作∫f(x)dx。

不定积分的求解可以利用一些基本积分公式和积分的性质,如线性性质、换元法、分部积分法等。

3. 线积分:线积分是对向量场沿着曲线的积分,它可以用来计算向量场在曲线上的累积效果。

线积分的定义如下:设曲线C为参数方程r(t),t∈[a, b],向量场F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),其中P、Q、R是C上的连续函数,曲线C的切向量为r'(t)。

则线积分的定义为∫C F(r) · dr = ∫[a, b] F(r(t)) · r'(t) dt。

线积分的求解可以利用参数方程对曲线进行参数化,并按照定义计算积分。

根据不同的积分类型和具体函数形式,可以选择适合的积分方法进行求解。

在实际应用中,还可以利用数值积分方法,如数值逼近和数值积分公式等,来求解无法通过解析求解的积分。

定积分的基本概念

定积分的基本概念

方法与手段导入幻灯幻灯幻灯幻灯详讲详讲详讲幻灯下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。

事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。

好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。

解决步骤:大化小:在区间[a,b]中任意插入n −1个分点a =x 0<x 1<x 2<⋯<x n−1<x n−1=b ,用直线x =x i 将一个曲边梯形分成n 个小的曲边梯形;常带变:在第k 个窄边梯形上任取ξk ∈[x k−1,x k ]作以[x k−1,x k ]为底,f(ξk )为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积∆S k ,得∆S k ≈f (ξk )∆x k (∆x k =x k −x k−1,k =1,2,⋯n) 近似和:S =∑∆S k n k=1≈∑f(ξk )∆x k n k=1取极限:令λ=max {∆x 1,∆x 2⋯,∆x n } S =lim λ→0∑∆S k n k=1=lim λ→0∑f(ξk )∆x k n k=1这样我们就可以求出曲边梯形的面积,我们再看一个定积分问题例子。

(2)变速直线运动的路程:设某物体做直线运动,已知()v v t =在区间[1T ,2T ]上t 的连续函数,且()0v t ≥,求在这段时间内物体所经过的路程s 。

考虑:当()0y f x C ==≥,()0v v t C ==≥时(其中C 为常数),上面问题的求解。

在解决这个问题之前我们先分析一下这个问题与上个问题之间的关系,我们可以发现其实求路程和求面积本身是同一类问题,变化的无非是函数名,区间名称,本质上是一样的,我们其实只需做一个按照上面的思路做一个变量替换就可以了,具体的解决步骤是。

解决步骤: 详讲 总结λ→0是个障碍,我们能不能把λ→0替换掉?其实把[0,1]区间n 等分,λ=1n →0,其实就是n →+∞,lim n→+∞∑(k n )21n n k=1,要求这个极限我需要先求∑(k n )21n n k=1,化简一下可以得到1n 3∑k 2n k=1,∑k 2n k=1=?,∑k 2n k=1=16n(n +1)(2n +1),lim n→+∞∑(k n )21n n k=1=lim n→+∞n(n+1)(2n+1)6n 3=13。

定积分的基本概念

定积分的基本概念

定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。

也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。

2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。

(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。

(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。

(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。

二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。

2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。

三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。

定积分的定义

定积分的定义

定积分的定义定积分是微积分中的一种重要概念,它广泛应用于物理、计算机科学、经济学、统计学等领域。

在本文中,我们将探讨定积分的定义及其相关概念、定理和应用。

一、定积分的定义定积分的定义是通过限定积分上下限,计算函数在给定区间上的面积的方法。

具体地说,设函数f(x)在区间[a,b]上连续,则在[a,b]上关于x轴的面积为:∫<sub>b</sub><sup>a</sup>f(x)dx其中∫表示积分符号,f(x)dx表示微元,最终结果为面积。

二、交错积分的概念定积分有时会被定义为交错积分的形式,按照这样的定义,定积分是将区间[a,b]分成n等份后,将每等份映射到默区间[a,b],计算总面积面积的方法。

三、定积分的性质定积分具有一个重要的性质,即可加性。

也就是说,如果f(x)连续,则对于[a,b]和[b,c]的任意选取,有:∫<sub>c</sub><sup>b</sup>f(x)dx+∫<sub>b</sub><sup>a</sup>f (x)dx=∫<sub>c</sub><sup>a</sup>f(x)dx这个性质对于求复杂函数的面积非常有用,因为它允许我们将求和区间划分成更小的部分,并在不同部分上执行计算,从而得到总面积。

四、定积分的定理除了性质外,定积分还有一些定理,它们可以更简单地求出某些函数的积分。

其中最著名的是牛顿-莱布尼茨公式,它指出:∫<sub>b</sub><sup>a</sup>f(x)d x=F(b)-F(a)其中F(x)是f(x)的原函数。

另外两个常见的定理是平均值定理和拉格朗日中值定理。

平均值定理指出,如果f(x)在区间[a,b]上连续,则它在[a,b]上的平均值等于1/(b-a)∫<sub>b</sub><sup>a</sup>f(x)dx;拉格朗日中值定理指出,如果f(x)在[a,b]上连续,则在[a,b]上存在一个数c,使得:f(c)=(1/(b-a))∫<sub>b</sub><sup>a</sup>f(x)dx这两个定理为找出区间[a,b]上函数值的平均值或最大值提供了帮助。

定积分的概念及性质

定积分的概念及性质

一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。

牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。

要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。

被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。

定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。

二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。

在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。

定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。

尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。

例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。

可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。

但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。

在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。

后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。

定积分的含义和计算

定积分的含义和计算

定积分的含义和计算定积分是微积分中的一种运算方式,通过计算函数在一个区间上的面积来求解。

它是反应函数变化的量的一种数值特征,同时也是分析函数性质和解决实际问题中的重要工具之一。

在本文中,我们将详细介绍定积分的含义、计算方法及其应用。

首先,我们来探讨定积分的含义。

定积分可以理解为函数曲线与坐标轴之间的有向面积。

具体而言,对于一个函数$f(x)$,我们可以将其限定在一个区间$[a,b]$上,然后使用一根尺直角下压在曲线上,该尺的长度与曲线上相应点的纵坐标相关。

当我们将尺从$a$点移动到$b$点时,这根尺覆盖的面积就是定积分。

同时,定积分还可以表示曲线上方的面积减去曲线下方的面积,即上减下。

为了更形象地理解定积分的含义,我们可以以一个例子进行说明。

假设有一个自由落体运动,其运动方程为$s(t) = v_0t - \frac{1}{2}gt^2$,其中$v_0$是初始速度,$g$是重力加速度,$t$是时间。

现在我们想知道在给定的时间区间$[t_1,t_2]$内自由落体运动所覆盖的空间距离。

这时,我们可以使用定积分来解决这个问题。

根据定义,自由落体运动的空间距离可以表示为$s(t)$在区间$[t_1,t_2]$上的定积分:$$\int_{t_1}^{t_2}(v_0t - \frac{1}{2}gt^2)dt$$其中$\int$表示求和的符号,$(v_0t - \frac{1}{2}gt^2)dt$表示被积函数,$dt$表示积分变量。

这个定积分的结果就是自由落体运动在区间$[t_1,t_2]$内所覆盖的空间距离。

接下来,我们将介绍定积分的计算方法。

在实际计算中,定积分可以通过多种方式求解,例如几何法、牛顿-莱布尼茨公式和数值积分等。

几何法是一种直观易懂的计算方式,它利用几何图形的性质来求取定积分的值。

具体而言,对于一个函数$f(x)$,我们可以通过绘制函数曲线与坐标轴之间的图形,然后根据几何图形的性质来计算面积。

定积分的概念

定积分的概念

定积分与微积分定理1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b axn-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,ii n ξ=L ,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()baSf x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰(3)曲边图形面积:()baSf x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()b aWF r dr =⎰2.定积分的几何意义 说明:一般情况下,定积分()baf x dx⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。

考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆L L不妨设1(),(),,()0i i n f x f x f x +<L 于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆L L()baf x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)2.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx ba-=⎰1性质2 ⎰⎰=baba dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)性质31212[()()]()()bb baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰ (定积分的线性性质)性质4()()()()bcbaacf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中(定积分对积分区间的可加性)说明:①推广:1212[()()()]()()()bb b bm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰LL②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L③性质解释:PCN M BAab Oyxy=1yxOba2.微积分基本公式或牛顿—莱布尼兹公式定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则该式称之为微积分基本公式或牛顿—莱布尼兹公式。

详解定积分的定义

详解定积分的定义

详解定积分的定义
定积分是微积分中的一个重要概念,用于计算在某一区间上函数的面积、体积、平均值等问题。

定积分的定义是通过分割求和来逼近曲线下的面积。

具体的定义如下:
设函数f(x)在区间[a,b]上连续,将[a,b]区间分成n个小区间,每个小区间的宽度为Δx=(ba)/n。

在每个小区间上任意选择一个点xi,构成一个小矩形,其高度为f(xi)。

则每个小矩形的面积为f(xi)Δx。

将所有小矩形的面积相加,得到一个近似的总面积:
S=f(x1)Δx+f(x2)Δx+...+f(xn)Δx
当n趋向于无穷大时,将上面的和记作∑f(xi)Δx。

定义定积分:
若当n趋向于无穷大时,∑f(xi)Δx的极限存在,并且与f(x)的选取和分割方式无关,那么我们称这个极限值为函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx。

可以看出,定积分是通过将区间分割成无穷小的小矩形,再将每个小矩形的面积相加求得的。

当分割的越细致,得到的近似值越精确,最终得到的极限值就是定积分的准确值。

定积分的几何意义是曲线和坐标轴之间的有界区域的面积。

定积分还可以表示为反映函数f(x)在区间[a,b]上平均值的量,即∫[a,b]f(x)dx/(ba)。

定积分的定义和性质

定积分的定义和性质
单击此处添加标题
性质:区间可加性是定积分的一个重要性质,它表明定积分具有线性性质,可以像加法一样进行区间上的运算。
单击此处添加标题
积分中值定理
定理定义:若函数f在闭区间[a,b]上连续,则在开区间(a,b)上至少存在一点ξ,使得f(ξ)=(b-a)∫f(x)dx
定理证明:通过构造辅助函数和运用中值定理证明
方法步骤:选择适当的中间变量,进行变量替换,化简积分
适用范围:被积函数或积分区间具有特定形式时
分部积分法
定义:将两个函数的乘积进行积分的一种方法
注意事项:选择合适的u和v,以便简化计算过程
应用:解决某些复杂的不定积分问题
公式:∫udv=∫vdu+∫u'vdx
有理函数的积分法
计算步骤:首先将有理函数分解为简单分式之和或差,然后分别求各简单分式的积分,最后合并各简单分式的积分结果。
,a click to unlimited possibilities
定积分的定义和性质
目录
01
单击添加目录标题
02
定积分的定义
03
定积分的性质
04
定积分的计算方法
01
添加章节标题
02
定积分的定义
积分上限函数
积分上限函数的定义:定积分被定义为积分上限函数在某区间上的值。
积分上限函数的性质:积分上限函数在区间上单调递增或递减,取决于被积函数在区间上的符号。
应用场景:在求解定积分时,可以利用微积分基本定理将复杂的积分转化为简单的积分,从而简化计算过程。
定理证明:可以通过牛顿-莱布尼茨公式进行证明,该公式将定积分与不定积分联系起来。
04
定积分的计算方法
微积分基本定理的应用

定积分的概念

定积分的概念
T max Δxi i 1, 2, , n .
则当 T 0 时, 就能保证分割越来越细.
(2) 要刻画 f ( i )xi能无限逼近 S , 需要任意
i 1
n
给定的 0, 能够找到 0, 使得当
对任意 i [xi 1 , xi ], T max xi 时,
都有
f ( )Δx -S
i 1 i i
n
.
对于另外两个实际问题,也可类似地归结为黎曼和 的极限.
总结以上分析,下面给出定积分定义.
定义1
设 f 是定义在 [a , b] 上的函数, J R. 若 0, 0, 对任意分割 T : a0 x0 x1 xn b, 及任意 i [xi 1 , xi ] , i 1,2, , n,
( x ) , x [a , b] , 求线状物体的质量 m .
显然, 当 f ( x ) c 为常值函数时, S ( A) c(b a );
当 v( t ) v0 为匀速运动时, s v0 (b a ); 当质量为
均匀分布时, 即 x 为常数时, m (b a ).
数学分析 第九章 定积分
§1 定积分的概念
在很多数学和物理问题中,经常 需要求一类特殊和式的极限:
lim
T
0
f ( ) x ,
i 1 i i
n
这类特殊极限问题导出了定积分的概念.
三个典型问题
1. 设 y f ( x ) , x [a , b], 求曲边梯形 A 的面积 S (A), 其中
分变量, a , b 分别为积分下限和上限. 由定义, 曲边为 f ( x ) 的曲边梯形的面积为

3.4 定积分的概念和性质

3.4  定积分的概念和性质
间 [a, b]上连续,那么在区间 [a, b] 上至少存 在一点 x ,使下面等式成立:

的平均值,且
b
a
f ( x ) dx = f (x) (b - a).
其中 f (x ) 称为连续函数y=f (x)在[a, b]上
b 1 f (x ) f ( x )dx ba a

因为 b – a > 0,由估值定理得
y a b x
轴下方,此时该定积分为 负值,它在几何上表示 x 轴下方的曲边梯形面积的 负值,即 f ( x )dx A.
a b
O
A
y=f (x)
B
当 f (x) 在 [a, b] 上有正有负时, f ( x )dx a
b
在几何上表示 x 轴上方的曲边梯形面积减去
x 轴下方的曲边梯形面积:
a
b
三、定积分的性质
下面各性质中的函数都假设是可积的. 性质 1 (线性性质)
Af ( x ) Bg( x )dx A
b a
b
a
f ( x ) dx B g( x )dx
a
b
(其中A、B为常数) 性质1可推广到有限个函数代数和的情形,即
A f ( x ) A
b a 1 1
A
x1
x2
xi
x i- 1 x i
xn
x n= b x
O a = x 0 x1
(3) 求和(“积零为整”)
得 f (x i ) xi , 把 n 个小矩形面积相加,
i 1
n
它就是曲边梯形面积的近似值, 即
A Ai f (x i ) xi .
i 1 i 1 n n

用定积分定义求定积分

用定积分定义求定积分

用定积分定义求定积分定积分是微积分中的重要概念之一,它可以用来计算曲线下的面积、求解物理问题中的总量以及描述变化率等。

本文将通过用定积分定义来解释定积分的概念和应用。

定积分是微积分中的一个概念,它可以被看作是无穷小量的累加。

在数学中,定积分可以通过求和的方式来计算。

具体而言,定积分可以被定义为一个函数在一个区间上的无穷小划分之和的极限。

这个极限就是定积分的值。

为了更好地理解定积分的概念,让我们来考虑一个简单的例子。

假设我们有一个函数f(x),它在区间[a, b]上连续。

我们想要计算f(x)在该区间上的定积分。

首先,我们将区间[a, b]划分成n个小区间,每个小区间的宽度为Δx。

然后,我们在每个小区间上选择一个点xi,并计算出f(xi)乘以Δx的值。

最后,将所有这些乘积相加,即可得到定积分的近似值。

然而,这个近似值并不是准确的定积分值,因为我们仅仅考虑了有限个小区间。

为了得到准确的定积分值,我们需要让这个小区间的数量趋近于无穷大。

这就是求极限的过程,也是定积分的定义。

用定积分定义求定积分的过程可以用以下公式表示:∫(a→b) f(x)dx = lim(n→∞) Σ[f(xi)Δx]其中,∫表示定积分的符号,a和b表示积分的上下限,f(x)表示被积函数,dx表示自变量的微小变化量,lim表示极限运算,Σ表示求和符号,xi表示每个小区间的中点,Δx表示小区间的宽度,n表示小区间的数量。

通过用定积分定义来求解定积分,我们可以计算曲线下的面积、求解物理问题中的总量以及描述变化率等。

定积分在物理学、经济学、工程学等领域中都有广泛的应用。

例如,在物理学中,我们可以使用定积分来计算物体的质量、速度、加速度以及动能等。

在经济学中,我们可以使用定积分来计算市场的总需求、总供给以及总收益等。

在工程学中,我们可以使用定积分来计算电路的电流、功率以及能量等。

定积分是微积分中的重要概念,它可以通过用定积分定义来计算。

定积分可以用来计算曲线下的面积、求解物理问题中的总量以及描述变化率等。

定积分的概念

定积分的概念

f ( x) 在 [a, b] 上的平均值.
例如曲边梯形的平均高度、变速直线运动物体的平均速度等.
例1 解
设函数 f ( x) = x 2 在区间 [0, 1] 上可积,求 ∫ x 2 dx 的值.
0
1
将区间 [0, 1] 等分为 n 份,分点为 = xk
k = (k 0,1, , n) . n
2
y = f ( x) ,直线 x = a 和 x = b ,以及 x 轴所围成的曲边梯形面积的相反数 − A (见图1),


y
a
b a
f ( x)dx = − A .
y
b
x
O
y = f ( x)
a
A
O
A2
A1
b
y = f ( x)
A3
A3
x
图1
图2
若 y = f ( x) 在 [ a, b] 上连续,且既取正值又取负值时(见图2),此时

b a
f ( x)dx 的值就是由连续曲线
y = f ( x) ,直线 x = a 和 x = b ,以及 x 轴所围成的曲边梯形的面积 A ,即

b a
f ( x ) dx = A .
若 y = f ( x) 在 [a, b] 上连续且非正,即 f ( x) ≤ 0 ,此时

b a
f ( x)dx 的值就是由连续曲线
S = ∫ v(t )dt .
a
b
变力做的功是 F ( x) 在区间 [a, b] 上的定积 物体在变力 F ( x) 的作用下从点 a 运动到点 b , 分,即
W = ∫ F ( x)dx .
a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差更小
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取左端 点处的函数值
左端点型
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取右端 点处的函数值
右端点型
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为8个分点情形。
梯形公式
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为15个分点情 形。
v 可以看到,梯形公式 比矩形公式精确度高。
梯形,15个分点
定积分的定义
v 现在看看分成40份的 情形。
v 可以看到误差变小了。
v 有理由相信:随着分 点的增加,的定义
v 当然,小区间上的面 积也可以用其他容易 求出面积的图形的面 积来表示,比如梯形。
v 这就是定积分的梯形 算法。
v 右图是取5等分的情形, 就已经非常精确了。
相关文档
最新文档