高一数学人教版A版必修二课件:1.1.1 多面体的结构特征

合集下载

高中数学人教a版必修二课件:1.1.1《柱、锥、台、球的结构特征》

高中数学人教a版必修二课件:1.1.1《柱、锥、台、球的结构特征》
第一章 空间几何体
1.1 空间几何体的结构
1.1.1 柱、锥、台、球的结构特征
本节课以学生探究为主,通过呈现大量的简单几何体图片说明空间几 何体分多面体和旋转体两种类型,运用影片演示棱柱、棱锥,动画演示棱 柱、棱锥的分类、棱柱的结构特征、微课讲解棱柱的结构特征 ,几何画 板演示从左到右拖动相互转化按钮演示由棱锥---棱台---棱柱的转化。几 何画板演示圆柱的形成过程,几何画板上下拖动上方的控制点演示圆柱、 圆锥、圆台的形成过程及它们之间的转化。动画演示球的形成。
有两个面互相平行,其余各面都是四边形, 每相邻两个四边形的公共边都互相平行, 由这些面围成的多面体叫做棱柱.
问题2:棱柱中两个互相平行的面叫做棱柱的 底面 ,其余各面叫做棱柱的
,相侧邻侧面面的公共边叫做棱柱的
,侧面侧与棱底面的公共顶点
叫做棱柱的 顶点 .你能指出下面棱柱的底面、侧面、侧棱、顶点吗?
何?
动画演示棱柱的结构特征
/edu/ppt/ppt_playVideo.actio n?mediaVo.resId=5424d3b25aa8a9cc1dd72060
动画演示棱柱的结构特征
/edu/ppt/ppt_playVideo.acti on?mediaVo.resId=5424d39b5aa8a9cc1dd7205e
讲解棱柱的结构特征
/edu/ppt/ppt_playVideo.action ?mediaVo.resId=5424d3b55aa8a9cc1dd72062
两底面是全等的多边形,各侧面都是平行四边形
棱锥的结构特征
什么叫棱锥1?
什么叫棱锥2?
/edu/ppt/ppt_playVide o.action?mediaVo.resId=55c2b1a6af508f009 9b1c24f

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

高中数学人教A版必修二第一章1.1.1柱、锥、台、球的结构特征精品课件

高中数学人教A版必修二第一章1.1.1柱、锥、台、球的结构特征精品课件

棱柱的分类
1. 侧棱不垂直于底的棱柱叫做斜棱柱。 2.侧棱垂直于底的棱柱叫做直棱柱。 3. 底面是正多边形的直棱柱叫做正棱柱。
棱柱的底面可以是三角形、四边形、五边形……我们 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……
棱柱的表示
用底面各顶点的字母表示棱柱, 如图所示的六棱柱表示为: “棱柱ABCDEF—A'B'C'D'E'F'”
B 圆锥的侧面展开图为扇形,这个扇形所在 圆的半径等于圆锥底面圆的半径
C两个面平行且相似,其余各面都是梯形的多 面体是棱台 。
D各侧面都是正方形的四棱柱一定是正方体
提高: 长方体AC1中,AB=3,BC=2,BB1=1, 由A到C1在长方体表面上的最短距离是多少?
D1 A1
C1 B1
D
C
A
B
D1
C1
的边旋转而成的曲面。
(4)圆柱侧面的母线——无论 旋转到什么位置,不垂直于轴的
A
边。
O B
底面
圆柱的表示方法:用表示它的轴的字母表
示,如:“圆柱OO'”
5.圆锥的结构特征
定义:以直角三角形的
一条直角边所在直线为

旋转轴,其余两边旋转形 线
成的曲面所围成的几何
体叫做圆锥。 A
顶点 S

侧 面
O B
底面
S
如果一个棱锥的底面是正多边 形,并且顶点在底面的射影是底 面的中心,这样的棱锥是正棱锥.
D
正棱锥的基本性质
E
O
C
各侧棱相等,各侧面 是全等 A
B
的等腰三角形,各等腰 三角形底
边上的高相等(它叫做正棱锥的

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征预习课本P2~4,思考并完成以下问题[新知初探] 1.空间几何体2.空间几何体的分类3.棱柱、棱锥、棱台的结构特征[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台()(2)棱柱中两个互相平行的面一定是棱柱的底面()(3)棱台的底面是两个相似的正方形()(4)棱台的侧棱延长后必交于一点()答案:(1)×(2)×(3)×(4)√2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的有________(填序号).(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱;(2)棱柱的侧棱长相等,侧面都是平行四边形;(3)各侧面都是正方形的四棱柱一定是正方体.解析:(1)不正确,反例如图所示.(2)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.答案:(2)[典例]下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形[解析] 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,所以C错误;D正确,所以选C.[答案] C[活学活用]下列说法错误的是()A.多面体至少有四个面B.棱柱的两个底面是全等的多边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析:选D三棱柱的底面是三角形,其侧面一定是平行四边形,故D错误.棱锥、棱台的结构特征[典例](1)①由五个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥.②正棱锥的侧面是等边三角形.③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.[解析](1)由五个面围成的多面体还可能是三棱台、三棱柱等,故①错;三棱柱是只有两个面平行的五面体,故②错.如图,可知③④错误.(2)①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.[答案](1)A(2)0判断棱锥、棱台的2个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).[典例] 如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.[活学活用]1.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是()解析:选C将四个选项中的平面图形折叠,看哪一个可以围成正方体.2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1 B.7C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与7相对,0与快相对,所以下面是7.层级一学业水平达标1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB=B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥解析:选D 由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5698.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:129.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.如图,已知三棱台ABC-A′B′C′.(1)把它分成一个三棱柱和一个多面体,并用字母表示;(2)把它分成三个三棱锥,并用字母表示.解:(1)作B′E∥AA′交AB于点E,C′D∥AA′交AC于点D,如图,连接ED,则分成一个三棱柱AED-A′B′C′和一个多面体C′B′EBCD.(2)如图,平面AB′C′和平面AB′C能把三棱台分成三个三棱锥,分别为三棱锥B′-AA′C′,三棱锥B′-ACC′,三棱锥B′-ABC.层级二应试能力达标1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:选B根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.2.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.3.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.4. 五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.解析:将平面图形翻折,折成空间图形,可得∠ABC=60°.答案:60°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,故填①③④⑤.答案:①③④⑤7.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2.8.如图,已知长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF 把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB 1F -CC 1E 和棱柱ABFA 1-DCED 1.。

高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征

高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征

探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究四
探究一棱柱、棱锥、棱台的结构特征
棱柱、棱锥、棱台的定义是识别和区分多面体结构特征的关键.因此,在涉
及多面体的结构特征问题时,先看是否满足定义,再看它们是否具备各自的
第一章
空间几何体
-1-
1.1
空间几何体的结构
-2-
第1课时
棱柱、棱锥、棱台的结构特征
-3-
首 页
学习目标
1.了解空间几何体的分类及其相关
概念.
2.了解棱柱、棱锥、棱台的定义,知道这
三种几何体的结构特征,能够识别和区
分这些几何体.
J 基础知识 Z 重点难点
ICHU ZHISHI
思维脉络
HONGDIAN NANDIAN
解析:当截得棱台的棱锥的侧棱不相等时,棱台的侧棱不相等.
答案:C
3
S 随堂练习
UITANG LIANXI
4
5
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
2
3
S 随堂练习
UITANG LIANXI
4
5
3.如果一个棱锥的侧面都是正三角形,则该棱锥最多是
棱锥.
度最短为多少?
首 页
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI

新课标高中数学人教A版必修二全册课件1.1.1柱、锥、台、球的结构特征

新课标高中数学人教A版必修二全册课件1.1.1柱、锥、台、球的结构特征
构成?灯管呢?
②定义:
第二十五页,编辑于星期日:十三点 十五分。
3.简单组合体的结构特征: ①讨论: 矿泉水塑料瓶由哪些几何体
构成?灯管呢?
②定义: 由柱、锥、台、球等简单几何
体组合而成的几何体叫简单组 合体.
第二十六页,编辑于星期日:十三点 十五分。
3.简单组合体的结构特征: ①讨论: 矿泉水塑料瓶由哪些几何体
讲授新课
1. 棱台与圆台的结构特征: ①讨论:用一个平行于底面的平面去截 柱体和锥体,所得几何体有何特征? ②定义:
第五页,编辑于星期日:十三点 十五分。
讲授新课
1. 棱台与圆台的结构特征:
①讨论:用一个平行于底面的平面去截
柱体和锥体,所得几何体有何特征?
②定义:用一个平行于棱锥底面的平面 去截棱锥,截面和底面之间的部分叫做 棱台;
用一个平行于棱锥底面的平面去截
棱锥,截面和底面之间的部分叫做棱台.
O
E'
A'
D'
B'
C'
ELeabharlann ADBC
第八页,编辑于星期日:十三点 十五分。
用一个平行于棱锥底面的平面去截 棱锥,截面和底面之间的部分叫做棱台.
O
A' B'
A
E'
D'
C'
E
B
C
上底面
侧棱 侧面 D
下底面
第九页,编辑于星期日:十三点 十五分。
母线长都相等.
第十六页,编辑于星期日:十三点 十五分。
④讨论: 棱台与棱柱、棱锥有什么关系? 圆台与圆柱、圆锥有什么关系?
第十七页,编辑于星期日:十三点 十五分。

人教高中数学A版必修2 空间几何体的结构 精讲精析

人教高中数学A版必修2 空间几何体的结构 精讲精析

第一章空间几何体1·1 空间几何体的结构1·1·1 柱、锥、台、球的结构特征多面体的结构特征由平面多边形(包括它们内部的平面部分)围成的几何体称为多面体.其中,各个额多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫做多面体的对角线.把多面体的任一个平面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.一个多面体至少四个面.多面体按照它的面数分别叫做四面体.五面体.六面体等.1.柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.棱柱主要从下面几点把握:(1)组成元素:底面、侧面、侧棱、顶点.(2)本质特征:①有两个面相互平行;②其余各面的两面的公共边相互平行.(3)结构特征:①侧棱都相等,侧面是平行四边形;②两个底面相互平行;③过不相邻的两条侧棱的截面是平行四边形.(4)分类:棱柱的分类方法有两种:①按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等;②按侧棱与底面是否垂直分为直棱柱、斜棱柱.(5)表示方法:以底面个顶点的字母表示.圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆柱主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的矩形.(3)表示方法:用表示轴的字母表示.棱柱与圆柱统称为柱体.2.锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.棱锥主要从下面几点把握:(1)组成元素:底面、侧面、侧棱、顶点.(2)结构特征:①有一个面是多边形;②其余各面是有一个公共点的三角形.(3)分类:①棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.②按底面多边形的边数分为三棱锥、四棱锥、五棱锥等.(4)表示方法:用表示顶点和底面各顶点的字母表示.圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面.棱锥主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰三角形.(3)表示方法:用表示轴的字母表示.棱锥与圆锥统称为锥体.3.台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点.棱台主要从下面几点把握:(1)组成元素:上、下底面、侧面、侧棱、顶点.(2)结构特征:各侧棱延长后相交于一点,两底面是平行的相似多边形.(3)分类:棱台是由棱锥用平行于底面的平面截得的,故其分类和棱锥的分类方法一样.(4)表示方法:用上、下底面个顶点的字母表示.圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴.圆台主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰梯形;③母线长都相等,且其母线延长后,都与轴的延长线相交与同一点.(3)表示方法:用表示轴的字母表示.圆台和棱台统称为台体.4.球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球主要从下面几点把握:(1)结构特征:由半圆绕直径旋转一周得到的几何体.(2)表示方法:用表示球心的字母表示.棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的示意图如下:几种常凸多面体间的关系例1.图9—12表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对.(例1题图)解析:相互异面的线段有AB与CD,EF与GH,AB与GH3对.评析:解决此类题目的关键是将平面图形恢复成空间图形,较强的考察了空间想象能力.例2. 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:B.因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C正确,且在它的高上必能找到一点到各个顶点的距离相等,故D正确,B不正确,如底面是一个等腰梯形时结论就不成立.故选B评析:抓住本质的东西来进行判断,对于信息要进行加工再利用.1·1·2 简单组合体的结构特征由柱、锥、台、球等基本的几何体组合而成的几何体叫做组合体.现实生活中的物体大部分都是组合体.例1.如下图几何体是由哪些简单几何体构成的?解析:正四棱台上面放置一个球.(例1图)例2.请描述下列几何体的结构特征,并说出它的名称.(1)由7 个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°.解析:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.(例2图)。

高一数学人教版A版必修二课件:第1章1-1空间几何体的结构

高一数学人教版A版必修二课件:第1章1-1空间几何体的结构

棱锥的侧面:有公共顶点 的各个三角形面
棱锥的侧棱:相邻侧面的公共边
棱锥的顶点:各侧面的公共顶点
分类:①依据:底面多边形的边数
②举例: 三棱锥 (底面是三角形)、 四棱锥 (底面是 四边形)……
答案
知识点四 棱台的结构特征
思考 观察下列多面体,分析其与棱锥有何区别与联系?
答案 (1)区别:有两个面相互平行. (2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即 为该几何体.
1 23 45
解析答案
1 23 45
4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则 倾斜后水槽中的水形成的几何体是( A )
A.棱柱
B.棱台
C.棱柱与棱锥的组合体
D.不能确定
解析 形成的几何体前后两个面互相平行,其余各面
都是四边形,并且每相邻两个四边形的公共边都互相
平行,符合棱柱的定义.
解析答案
1 23 45
5.对棱柱而言,下列说法正确的序号是__①__③____. ①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等. ③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱. 解析 ①正确,根据棱柱的定义可知; ②错误,因为侧棱与底面上棱长不一定相等; ③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱 中至少有两个面的形状完全相同; ④错误,因为底面和侧面的交线不是侧棱.
分类:①依据:由几棱锥截得 ②举例: 三棱台 (由三棱锥截得)、四棱台(由四棱锥截得)……
答案
返回
题型探究
重点难点 个个击破
类型一 棱柱的结构特征 例1 试判断下列说法是否正确:
(1)棱柱中互相平行的两个面叫做棱柱的底面;

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开


底面:两个互相平行的面

侧面:底面以外的其余各面

侧棱:相邻侧面的公共边

顶点:侧面与底面的公共顶



记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,

人教A版高中数学必修二第一章1.1.1 柱、锥、台、球的结构特征---棱柱的结构特征教学课件 (共25张PPT)

人教A版高中数学必修二第一章1.1.1 柱、锥、台、球的结构特征---棱柱的结构特征教学课件 (共25张PPT)
4) 一个棱柱至少有5个面 ( )
习题精炼
观察分类

1

2
3



4
5
6
7

习题精炼
观察分类
正面 侧面 底面
习题精炼
观察思考
有 多 少 对 平 行 平
面 能作为棱柱的底面的有多少对?

习题精炼
观察思考
有 多 少 对 平 行 平
面 能作为棱柱的底面的有多少对?

习题精炼
观察思考
截去一角后所得的两部分还是棱柱吗?
面 围成多面体的各个多边形叫多面体的面
棱 相邻的两个面的公共边叫多面体的棱 顶点 棱与棱的公共点叫多面体的顶点
旋转体:由一个平面图形绕它所在的平面的一条定直线旋转
所形成的封闭几何体
轴 这条定直线叫旋转体的轴
讲授新知
基本定义
1
2
3
棱柱的定义:
4
有两个面互相平行,其余各面都是四边形,并且 每相邻两个四边形的公共边都互相平行,由这些 面所围成的多面体叫棱柱。
讲授新知
棱柱的有关概念
E'
A'
D'
棱柱的底面(底): 两个互相平行的面
棱柱的侧面:
其余各面
棱柱的侧棱:
相邻侧面的公共边
棱柱的顶点: 棱柱的表示:
侧面与底面的公共顶点 A
用顶点各字母表示 如:棱柱ABCDE-A’B’C’D’E’
B
B' C'
E D
C
讲授新知
棱柱的分类
讲授新知
棱柱的分类
以底面多边形的 边数 作为分类的标准分为
D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形

人教A版高中数学必修二.1空间几何体的结构PPT课件

人教A版高中数学必修二.1空间几何体的结构PPT课件
棱柱的底面可以是三角形、 四边形、 五边形、……
我们把这样的棱柱分别叫做 三棱柱、四棱柱、五棱柱、……
三棱柱
人 教 A 版 高中 数学必 修二. 1空间几 何体的 结构P PT课件
四棱柱
五棱柱
人 教 A 版 高中 数学必 修二. 1空间几 何体的 结构P PT课件
1. 侧棱不垂直于底的棱柱叫做斜棱柱.
底面
旋转轴
A′
O′
A
O
母线
侧面
圆柱的表示方法:用表示它 的轴的字母表示,如:“圆柱 OO'” 圆柱的结构特征: 1.平行于底面的截面都是圆 2.过轴的截面都是全等的矩 形
圆柱与棱柱统称为 柱体。
底面
旋转轴
A′
O′
A
O
母线
侧面
思考:将一个直角三角形以它的一条直角边 为轴旋转一周,那么其余两边旋转形成的面 所围成的旋转体是一个什么样的空间图形?
C
几何体叫做棱柱.
A 侧面 B 顶点
2.要素: 底面,顶点,侧面,侧棱
3.分类: 三棱柱,四棱柱,五棱柱等
4.记法: 棱柱ABCDEF-A’B’C’D’E’F’
人 教 A 版 高中 数学必 修二. 1空间几 何体的 结构P PT课件
人 教 A 版 高中 数学必 修二. 1空间几 何体的 结构P PT课件
(二)旋转体
2.旋转体:我们把由一个平面图形 绕它所在平面内的一条定直线旋转 所形成的封闭几何体叫做旋转体.
A’
O’ B’

AO B
这条定直线叫做旋转体的轴.
人 教 A 版 高中 数学必 修二. 1空间几 何体的 结构P PT课件
一.棱柱的结构特征
我们常见的一些物体,例如三棱 镜,方砖以及螺杆的头部,它们都呈 棱柱形状,如图:

高一数学人教A版必修2第一章1.1.1柱、锥、台、球的结构特征课件

高一数学人教A版必修2第一章1.1.1柱、锥、台、球的结构特征课件
其中正确说法的序号是____②_③__.④
4、下列命题中,正确的命题是_①__②___③___④_
① 棱柱的侧面都是平行四边形; ② 棱锥的侧面为三角形,且所有侧面都有一个公共顶点; ③ 多面体至少有四个面; ④ 棱台的侧棱所在直线均相交于同一点.
5、如图,关于几何体的说法不正确的是_②___
①这是一个六面体 ②这是一个四棱台 ③这是一个四棱柱; ④此几何体可由三棱柱截去一个三棱柱得到; ⑤此几何体可由四棱柱截去一个三棱柱得到.
棱台的分类
由三棱锥、四棱锥、五棱锥...截得 的棱,分别叫做三棱台,四棱台,五 棱台...
D1
A1
D
C1
B1
C
A
B
棱台的表示:棱台ABCD A1B1C1D1.
判断以下几何体是棱台吗?为什么?
探究 棱柱、棱锥、棱台有什么联系?
几何画板演示
思考:既然棱柱、棱锥、棱台都是多面 体,那么它们之间有怎样的关系?当底 面产生变化时,它们能否相互转化?
侧 面
ED
C
B
顶点 下底面
棱柱的分类
A
C
B
A
C
B
三棱柱
四棱柱
五棱柱
棱柱的表示:棱柱ABC ABC
1.判断下列命题是否正确?不正确的说明理由.
有两个面平行,其余各面都是四边形的几何体
叫棱柱。×
有两个面平行,其余各面都是平行四边形的几
何体叫棱柱。×
有两个面平行,其余各面都是四边形,并且每 相邻两个四边形的公共边都互相平行的几何体
叫棱柱。√
2.下列几何体中是棱柱的有( 的请说出理由。
),不是
√1
2
√3
4
√5

高中数学新课标人教A版必修2:空间几何体的结构特征、表面积及体积 课件

高中数学新课标人教A版必修2:空间几何体的结构特征、表面积及体积 课件

用过相邻三条棱的中点的平面截出一个棱锥,则该
棱锥的体积与剩下的几何体体积的比为

解析:设长方体的相邻三条棱长分别为 a,b,c,它截出棱锥 的体积为 V1=13×12×12a×12b×12c=418abc,剩下的几何体的体 积 V2=abc-418abc=4478abc,所以 V1∶V2=1∶47. 答案:1∶47
[记结论·提速度]
[记结论]
1.按照斜二测画法得到的平面图形的直观图,其面积与原图
形的面积的关系为
S
= 直观图
2 4S
原图形,S
原图形=2
2S 直观图.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为 a,球的半径为 R:
①若球为正方体的外接球,则 2R= 3a;
②若球为正方体的内切球,则 2R=a;
和体积的计算公式(不要求记 的体积.
1.直观想象. 2.数学建模. 3.数学运算
忆).
4.与球有关的
3.会用斜二侧法画出简单空间图 切、接问题
形(长方体、球、圆柱、圆锥、
棱柱等的简易组合)的直观图
目录
01 知 识 逐 点 夯 实 重点准 逐点清 结论要牢记
02 考 点 分 类 突 破 理解透 规律明 变化究其本
③若球与正方体的各棱相切,则 2R= 2a.
(2)若长方体的同一顶点的三条棱长分别为 a,b,c, 外接球的半径为 R,则 2R= a2+b2+c2;
(3)正四面体内切球半径是高的14,外接球半径是高的34, 两半径之比为 1∶3.
[提速度]
1.如图所示的直观图中,O′A′=O′B′=
2,则其平面图形的面积是
4.(必修 2 第 27 页练习 1 题改编)已知圆锥的表面积等于 12π cm2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析答案
规律与方法
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义 判断几何体的形状. 2.各种棱柱之间的关系 (1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
平行且全等的
斜棱柱
平行四边形 平行且相等
思考 观察下面两组物体,你能说出各组物体的共同点吗?
答案 几何体的表面由若干个平面多边形围成.
答案
答案 几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.
答案
1.空间几何体的定义及分类 (1)定义:如果只考虑物体的 形状 和 大小 ,而不考虑其他因素,那么 由这些物体抽象出来的空间图形 叫做空间几何体. (2)分类:常见的空间几何体有 多面体 与 旋转体 两类. 2.多面体与旋转体
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
这些面所围成的几何体是棱锥 B.棱柱的底面一定是平行四边形 C.棱锥的底面一定是三角形 D.棱柱的侧棱都相等,侧面都是全等的平行四边形
答案
3.下列说法错误的是( D ) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析 由于三棱柱的侧面为平行四边形,故选项D错.
1 23 45
解析答案
1 23 45
4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则 倾斜后水槽中的水形成的几何体是( A )
A.棱柱
B.棱台
C.棱柱与棱锥的组合体
D.不能确定
解析 形成的几何体前后两个面互相平行,其余各面
都是四边形,并且每相邻两个四边形的公共边都互相
平行,符合棱柱的定义.
有一个公共 三角形
顶点
与底面相似
平行且相似的 全等的等腰相等且延长
正棱台

两个正多边形 梯形 后交于一点
与底面相似

平行且相似的
其他棱台
两个多边形
延长后交于 梯形
一点
与底面相似
返回
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
解析答案
返回
达标检测
1 23 45
1.下列说法中正确的是( ) A.棱柱的面中,至少有两个面互相平行 B.棱柱中两个互相平行的平面一定是棱柱的底面 C.棱柱中一条侧棱就是棱柱的高 D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形
解析答案
1 23 45
2.下列说法中,正确的是( A ) A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由
其中正确的有( )
A.0个
B.1个
C.2个
D.3个
反思与感悟
解析答案
跟踪训练3 已知四棱台的上底面、下底面分别是边长为4、8的正方形, 各侧棱长均相等,且侧棱长为 17,求四棱台的高. 解 如图,在截面ACC1A1中,A1A=CC1= 17,A1C1=4 2 ,AC=8 2 , 过A1作A1E⊥AC交AC于点E. 在Rt△A1EA中,AE=12 (8 2 -4 2 )=2 2 A1A= 17 , ∴A1E= A1A2-AE2 = ( 17 ) 2 - ( 2 2 ) 2 =3 , 即四棱台的高为3.
类别
多面体
旋转体
定义
由若干个 平面多边形 围 成的几何体
由一个平面图形绕它所在 平面内的一条 定直线 旋转 所形成的封闭几何体
答案
图形
面:围成多面体的各个 多边形 相关概念 棱:相邻两个面的 公共边
顶点:棱与棱的公共点
轴:形成旋转体所绕的 定直线
答案
知识点二 棱柱的结构特征
思考 观察下列多面体,有什么共同特点?
答案
棱台的定义、分类、图形及表示
棱台
图形及表示
定义:用一个 平行于棱锥底面 的平面去截棱锥,底面与截 如图棱台可记
面之间的部分叫做棱台
作:
相关概念:上底面:原棱锥的 截面 下底面:原棱锥的 底面
棱台ABCDA′B′C′D′
侧面:其余各面
侧棱:相邻侧面的 公共边 顶点: 侧面与上(下)底面 的公共顶点
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3组就可以了,记忆效率也会大大提高。
A′B′C′D′E′F′
相关概念:
底面(底):两个互相 平行 的面
侧面:其余各面
侧棱:相邻侧面的公共边
顶点: 侧面与底面 的公共顶点
答案
分类: ①依据:底面多边形的 边数 ②类例:三棱柱 (底面是三角形)、 四棱柱 (底面是四边形)……
如图棱柱可记作: 棱柱 ABCDEF— A′B′C′D′E′F′
分类:①依据:由几棱锥截得 ②举例: 三棱台 (由三棱锥截得)、四棱台(由四棱锥截得)……
答案
返回
题型探究
重点难点 个个击破
类型一 棱柱的结构特征 例1 试判断下列说法是否正确:
(1)棱柱中互相平行的两个面叫做棱柱的底面;
解 错误.
如长方体中相对侧面互相平行.
(2)棱柱的侧棱都相等,侧面是平行四边形.
棱锥的侧面:有公共顶点 的各个三角形面
棱锥的侧棱:相邻侧面的公共边
棱锥的顶点:各侧面的公共顶点
分类:①依据:底面多边形的边数
②举例: 三棱锥 (底面是三角形)、 四棱锥 (底面是 四边形)……
答案
知识点四 棱台的结构特征
思考 观察下列多面体,分析其与棱锥有何区别与联系?
答案 (1)区别:有两个面相互平行. (2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即 为该几何体.
反思与感悟
解析答案
跟踪训练2 试从如图正方体ABCD-A1B1C1D1的八个顶点中任取若干, 连接后构成以下空间几何体,并且用适当的符号表示出来. (1)只有一个面是等边三角形的三棱锥; 解 如图所示,三棱锥A1-AB1D1(答案不唯一).
解析答案
(2)四个面都是等边三角形的三棱锥; 解 如图所示,三棱锥B1-ACD1(答案不唯一).
解析答案
类型二 棱锥的结构特征 例2 如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2, CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱, 指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余 部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体 图中画出截面.
பைடு நூலகம்解析答案
1 23 45
5.对棱柱而言,下列说法正确的序号是__①__③____. ①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等. ③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱. 解析 ①正确,根据棱柱的定义可知; ②错误,因为侧棱与底面上棱长不一定相等; ③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱 中至少有两个面的形状完全相同; ④错误,因为底面和侧面的交线不是侧棱.
两个多边形
平行于底面 高
的截面 与底面全等

平行且全等的
直棱柱

两个多边形
矩形
平行、相等且 等于侧棱 与底面全等
垂直于底面
平行且全等的
平行、相等且
正棱柱
全等的矩形
等于侧棱 与底面全等
两个正多边形
垂直于底面
全等的等腰有一个公共 过底面
正棱锥 一个正多边形
与底面相似

三角形 顶点且相等 中心
锥 其他棱锥 一个多边形
方向
资料
筛选
认知
高效学习模型-学习的完整过程
消化
固化
模式
拓展
小思考
TIP1:听懂看到≈认知获取; TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大概可以用来解决什么问题,而这些东西过去你都不知道; TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期是30分钟 第三个记忆周期是12小时 这三个记忆周期属于短期记忆的范畴。
相关文档
最新文档