基本放大电路及其分析方法
第二章 放大电路的基本原理和分析方法
' uCE iC RL
iC 0 4 4 (mA )
uCE (4 1.5) 6 (V )
交流负载线是放大电路动态工作点移动的轨迹
假设一个输入 电压uI, 在线性范 围内确定uBE、 iB、 iC、和uCE的波形。
估算电压 放大倍数
u0 uCE Au u I u BE
u
B 'E
iE I S e
iE I S e
rb'e uB' E iE
UT
u
B 'E
UT
u B ' E UT
UT 26 iE I CQ
uBE iB rbb' iE rb'e iB rbb' (1 )iB rb'e
rbe rbb ' 26 (1 ) I CQ
Q2
(c) Rc增大,Vcc、 Rb、β不变 直流负载线变平坦
工作点移近饱和区
Q2
(d) β增大,Vcc、 Rc、 Rb不变
IC增大,工作点移近饱和区
2.4.4 微变等效电路法 微变等效电路 在一个微小的工作范围内,用一 个等效的线性电路来代替三极管,使 得从线性电路的三个引出端看进去, 其电压、电流的变化关系和原来的三 极管基本一样。这样的线性电路称为 三极管的微变等效电路
6. 最大输出功率与效率 放大电路的最大输出功率,是指在输出信号不产 生明显失真的前提下,能够向负载提供的最大输出功 率,通常用符号Pom表示。
放大电路的效率η定义为输出功率P o 与直流电 源消耗的功率PV之比, 即 :
η =PO /PV
7. 非线性失真系数 所有的谐波总量与基波成分之比,定义为 非线性失真系数。符号为D
基本放大电路应该如何分析
基本放大电路是电路的一种,可以应用在电路施工中。
基本放大电路输入电阻很低,一般只有几欧到几十欧,但其输出电阻却很高。
基本直放大电路既可以放大交流信号,也可放大直流信号和变化非常缓慢的信号,且信号传输效率高,具有结构简单、便于集成化等优点,集成电路中多采用这种耦合方式。
放大的概念放大的前提是不失真,即只有在不失真的情况下放大才有意义。
晶体管和场效应管是放大电路的核心元件。
任何稳态信号都可以分解为若干频率正弦信号的叠加,所以放大电路以正弦波为测试信号。
基本共射放大电路的工作原理(1)设置静态工作点的必要性静态工作点——I 、I 、U原因不设置静态工作点会使输出电压严重失真,输出电压也毫无变化。
Q点不仅会影响电路是否会产生是真,还会影响着放大电路几乎所有的动态系数。
(2)工作原理及波形分析所以选择合适的静态工作点才不会使输出波形产生非线性失真。
基本共射放大电路的电压放大作用是利用晶体管的电流放大作用,并依靠Rc将电流的变化转化成电压的变化来实现。
放大电路的组成原则(1)组成原则必须根据所用放大管的类型提供直流电源,以便设置合适的静态工作点并做为输出的能源。
电阻取值适当,与电源配合,使放大管有合适的静态工作电流。
输入信号必须能够作用于放大管的输入回路。
当负载接入时,必须保证放大管输出回路的动态电流能够作用于负载,从而使负载获得比输入信号大得多的信号电流或信号电压。
(2)常见的两种共射放大电路直接耦合共射放大电路电路中信号源与放大电路,放大电路与负载电阻均直接相连,故称其为“直接耦合”。
阻容耦合共射放大电路由于C1用于连接信号源与放大电路,电容C2用于连接放大电路与负载,在电子电路中起连接作用的电容就称为耦合阻容。
放大电路的分析方法(1)直流通路与交流通路直流通路——研究静态工作点:电容视为开路;电感线圈视为短路;信号源视为短路,但要保留其内阻。
交流通路——研究动态参数:容量大的电容(如耦合电容)视为短路;无内阻的直流电源(如+Vcc)视为短路。
放大电路基本原理和分析方法
RL // RC)
交流负载线
iB=100μA
80
60
Q
40 20
0
0
直流负载线
VCC
UCE/V
Δui
ΔuBE
ΔiB
ΔiC
ΔiCRC
iC
ΔuCE
ΔuO
各点波形:
+ VCC
Cb 2
+
R b1 Cb 1
+
Rc
iB
+
+
ui
_
uEB
_
uCE
uo
_
_
uo比ui幅度放大且相位相反
(2) 交流放大工作情况 iB ib Q ui uBE
0
(mA)
iC/mA
iB=100μA 80
ic
60
40 20 0
ib
UCE/V
uce
假设在静态工作点的基 础上输入一微小的正弦信 号ui。
结论:
a) 放大电路中的信号是交直 流共存,可表示成:
ui
t uBE UBEQ
iB IBQ iC ICQ uCE UCEQ t uo t t
一般来说,Ri 越大越好。
五、输出电阻
ii
+
io
+
RS uS 信号源
放大电路 Ri
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
从放大电路的输出端看进去的等效电阻。
RO UO U S 0, RL IO
输出电阻表明放大电路带负载的能力。 Ro越小,放大电路带负载的能力越强,反 之则差。
3-4基本放大电路的分析方法
diC
iC iB
UCE
diB
iC uCE
IB
duCE
在低频正弦信号作用下,上式可写成复数形式:
Ube h11 Ib h12 Uce Ic h21 Ib h22 Uce
式中出现的四个系数,分别为: iB
h11
uBE iB
UCE
称为输入电阻rbe 量纲为Ω 。
信号在不失真的情况下所能达到的最大值,一般用Uommax 或Iommax表示。
ic
i C/mA
I CQ
I CQ 动
Q
I BQ
交流负载线 1
态
RL
范
围
O
tO
U CES
U CEQ
uCE /V
放大电路的最大不失真输出幅度
U o m m a x= m in U C E Q U C E S ,IC Q R L
IE Re
基极电流为: 对于硅管: 集电极电流为:
IB
V'CCUBE
R'b(1)Re
UBE 0.7V
IC IB
列输出回路方程:
IC R c U C EIE R eV C C
晶体管的管压降: U C EV C CIC (R cR e)
②估算法
当I1=(5~10)
IB时,可忽略IB,基极电位为:
R b1
C1 +
U i R b 2
V CC
Rc
R b1
+ C2
VT
RL Re +
Uo 直流通路 R b 2
Ce
V CC
Rc
VT Re
分压偏置共射放大电路
基本放大电路_共发射极放大电路的静态分析和动态分析
300
(1
)
26(mV) IE (mA )
第五章 基本放大电路
输出回路
IB
iC +
uCE
−
ic +c
βib
uce
−e
iC
IC IC
Q
共发射极放大电路
IB
UCE
uCE
ic ib 集电极和发射极之间可等效为
一个受ib控制的电流源。
第五章 基本放大电路
共发射极放大电路
ib +b ube
−
ic
c
+
e
三极管的小信号模型 放大电路的小信号模型 计算放大电路的性能指标
第五章 基本放大电路
共发射极放大电路
三极管的小信号模型 输入回路
iB
UCE
iB
+
+UCE
rbe
U BE IB
ube ib
IB
Q IB
u−BE
− 动态输入电阻
0
UBE uBE
b
ib +
ube
e−
rbe
低频小功率管输入电阻的估算公式
rbe
第五章 基本放大电路
共发射极放大电路
2. 用图解法确定静态工作点Q
图解步骤:
用估算法求出基极电流IB。 根据IB在输出特性曲线中找到对应曲线。
作直流负载线。
UCE=VCC – ICRC
M(VCC,0)
N(0,VCC) RC
MN称放大电路的直流负载
iC
N VCC
RC
IC
线,斜率为−1/RC。
0
确定静态工作点Q。
uce
−
基本放大电路其分析方法
二、基本放大电路及其分析方法一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。
从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。
分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。
对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。
.共射极基本放大电路的组成及放大作用在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习:图称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为左右,锗管约为左右,I B=/Rb这个电路的偏流I B决定于V BB和Rb的大小,V BB和Rb 一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的.如下图上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。
对于不同的用途的电路,其指标各有侧重。
初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。
主要方法有图解法和微变等效法。
.图解分析法静态工作情况分析当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。
解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-)/Rb(I C=βI B+I CEO )I C=βI B,V CE=V CC-I C R C如已知β,利用上式可近似估算放大电路的静态工作点。
放大电路的基本原理和分析方法ppt课件
IBQ
直流负载线
O
UBEQ UCC UBE
O
UCEQ UCC UCE
【例】 图 示 单 管 共 射 放 大 电 路 及 特 性 曲 线 中 , 已 知
Rb=280k,Rc=3k ,集电极直流电源VCC=12V,试用图 解法确定静态工作点。
解:首先估算 IBQ
IBQ
VCCUB Rb
E
Q
IB
(1 20.7)m A 4 0μA
饱和失真 Q 点过高,引起 iC、uCE的波形失真。
iC
iC / mA
Q
ib(不失真)
ICQ
O
tO
UCEQ
O
t
uo = uce
底部失真
IB = 0
uCE/V uCE/V
✓估算最大输出幅度
iC/mA
A
交流负载线
Q
OC
D
B iB=0
E uCE/V
Uom
minCD, DE 2 2
Q尽量设在线段AB的中点
uBE
iB
反相放大
iC
uCE
UBEQ ib
IBQ
ic ICQ
uce UCEQ
放大电路的组成原则
静态工作点合适:合适的直流电源、合适的电路 参数。
动态信号能够作用于晶体管的输入回路,在负载 上能够获得放大了的动态信号。
对实用放大电路的要求:共地、直流电源种类尽 可能少、负载上无直流分量。
VCC
4
出
回
路 IC Q
工
iC 2
作
情 况 分
0
t0
Au
ΔuO ΔuI
ΔuCE ΔuBE
0
析 = 4.5-7.5 =-75
放大电路分析方法、图解法分析放大电路
放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。
图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。
微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。
静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。
动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。
直流通路:电容所在路视为开路;电感所在路视为短路。
交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。
单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。
静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。
三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。
2.3 放大电路的分析方法
4. 图解法的特点
❖ 形象直观; ❖ 适应于Q点分析、失真分析、最大不失真输出
电压的分析; ❖ 能够用于大信号分析; ❖ 不易准确求解; ❖ 不能求解输入电阻、输出电阻、频带等参数。
例3:
已知ICQ=2mA,UCES=0.7V。 1. 在空载情况下,当输入信号 增大时,电路首先出现饱和失真还 是截止失真?若带负载的情况下呢?
22μA
ICQ IBQ 1.77mA
UCEQ VCC ICQ Rc 6.7V
rbe
rbb'
UT I CQ
1.33k
uO与uI反相,Au符号为“-”。
3. 失真分析
非线性失真系数THD(Total Harmonic Distortion ) 由晶体管输入、输出特性的非线性带来放大器输出波
形产生或大或小的非线性失真。
即当输入某一频率的正弦信号时,其输出电流波形中除基
波成分之外,还包含有一定数量的谐波。
放大器非线性失真系数定义为
根据P101 例2.3.2(无负载)修改
例四:如图基本共射放大电路,已知rbb’=200Ω, β=
80分析电路的静态工作点;并进行动态指标计算。
I BQ
VBB
U BEon Rb
30A
ICQ 2.4mA
UCEQ
V
' CC
ICQR'c
4.4V
动态分析
rbe
rbb'
UT I CQ
1K
Au
h12U ce h22U ce
无量纲
电导
h参数的物理意义
h11
uBE iB
U CE
rbe
b-e间的 动态电阻
h21
(完整版)第2章基本放大电路(2--放大电路的微变等效电路分析方法)
(2)输入电阻
第第2章2 章基基本本放放大大电电路
Ri Rb // rbe
对于共发射极低频电压放 大倍数,rbe约为1KΩ左右。
通常Rb》 rbe,所以Ri≈ rbe。 Ri越大,放大电路从信号源取得的信号也越大。
广东水利电力职业技术学院电力系WXH
第4页 4
第第2章2 章基基本本放放大大电电路 输出电阻
第第2章2 章基基本本放放大大电电路 微变等效电路分析法
微变等效电路法就是在小信号条件下,在给定的工作范围内,将晶体管看 成一个线性元件。把晶体管放大电路等效成一个线性电路来进行分析、计算。
1.晶体管的微变等效模型 (1)晶体管输入回路的等效电路
rbe为晶体管的交流输入电阻,
广东水利电力职业技术学院电力系WXH
RL Re // RL
AV
Vo Vi
(1 ) R'L rbe (1 )R&院电力系WXH
输入电压与输 出电压同相
电压跟随器
第 10 页 10
(3)输入电阻
第第2章2 章基基本本放放I•大T大电电路
Ri
VT IT
+
•
Rb // RL
VT
-
(4)输出电阻
Ro
RS
rbe
第 15 页 15
第第2章2 章基基本本放放大大电电路
放大电路的幅频特性和相频特性,称为频 率响应。因放大电路对不同频率成分信号的增 益不同,从而使输出波形产生失真,称为幅度 频率失真,简称幅频失真。放大电路对不同频 率成分信号的相移不同,从而使输出波形产生 失真,称为相位频率失真,简称相频失真。幅 频失真和相频失真是线性失真。
广东水利电力职业技术学院电力系WXH
放大电路的基本原理和分析方法
(一)、直流电路的画法 1.交直流共存的电路
Rb
C1
+ UI _
RC C2 T
+VCC
+ U0
_
2.静态电路的画法 (1)电容在直流通路中相当于开路 (电感在直流通路中相当于短路)
在画直流通路时,电容c1左边的部分相当于断开、c2右边 的部分也相当于断开,去掉断开的部分则直流通路就画出 来了如图
Rc
Rb
输出
VCC
回路
输入
VBB
回路
3.静态工作原理 电路中的电源VBB和VCC主要是使三极管工作在放大区 此时输入端在VBB的作用下基极有个电流,称为静态基流用IBQ表示 , 此时基极与发射极之间相应的电压为UBEQ,根据放大系数的定义得 到集电极电流ICQ,此电流流过集电极负载RC产生一个压降,则静态 时的集电极电压VCEQ =VCC-ICQ*RC
3.为了最终在电路的输出端能够得到放大了的信号在输出回路中,,即在输出回路中 要有电阻Rc。
五、电路的改进
1.改进的原因:(1)原来的电路不经济不实用
(2)交流,直流电路混杂不便分析。
2.改进措施:(1)将输入电压UI通过一个电容C1接到三极管的基极, 的
Rs=∞
3.试验测试:(1)测试方法:在输入端加上一个正弦信号电压Us,首先测出 负载开路时的输出电压U0’,接上阻值已知的负载电阻,测出此时的输出电压 U0则得到
U0=
四、最大输出幅度 1.定义:放大电路输出的电压(或电流)的幅值能够达到的最大限度一
般用电压的有效值表示。
五、最大输出功率与效率 1.最大输出功率:表示在输出波形基本不失真的情况下,能够向负
第2章放大电路原理分析方法(16学时)
图解法的应用
(一)用图解法分析非线性失真 1. 静态工作点 过低,引起 iB、iC、 uCE 的波形失真 —— 截止失真 结论:iB 波形失真
IBQ
O
iB / µ A
iB / µ A
ib Q t O
O
uBE/V uBE/V
t
ui
iC 、 uCE (uo )波形失真
iC / mA iC
NPN 管截止失真时 的输出 uo 波形。
Q
iB
输入回路 工作情况:
0
20
uBE/V t
0 0
0.68 0.7 0.72
可见在UBEQ从0.68到0.72变化 时,基极电流以40微安为中心,从 20微安变化到60微安。
uBE
uBE/V UBEQ
t
iC / mA iC / mA
4
交流负载线 80 60
IC
Q
iC 2
Q
IB = 4 0 µA
输出不失真的最大输出功率。用符号 Pom表示。
Pom PV
:效率
PV:直流电源消耗的功率
六、通频带
Aum fL:下限频率
1 2
Aum
BW fL fH
fH:上限频率
由于放大电路中存在电抗性元件,所以放大倍数会随 信号频率的变化而变化,通常将放大倍数在低频和高频段下 降至 1 Aum 时所包括的频率范围定义为放大电路的通频带 。 理论上希望通频带的宽度越大越好
要求:会画放大电路的直流通路和交流通路
共射放大电路
直流通路
+
交流通路
注意:实际的放大电路其直流和交流通路是叠加在一起的。 根据放大电路的直流通路和交流通路,即可分别进行静态分析和动态分 析,进行静态分析时,有时也采用一些简单实用的近似估算法。
基本共射极放大电路电路分析
基本共射极放大电路电路分析基本共射极放大电路是一种常用的放大电路,它由一个NPN型晶体管的基极接入输入信号,发射极接入负载电阻,集电极接入电源电压,同时通过一个偶联电容和输入电容与输入信号源相连。
在这种电路中,输出信号时相反的输入信号。
下面我们将详细介绍基本共射极放大电路的电路分析。
1.静态工作点分析首先,我们需要确定晶体管的静态工作点,也就是集电极电流和集电极电压的值。
为了简化分析,我们可以假设晶体管为理想墙形器件,即基极电流很小,基极电压为0V。
根据基尔霍夫电流定律,我们可以写出输入回路的方程:Ib = (Vcc - Vbe) / Rb其中,Ib是基极电流,Vcc是电源电压,Vbe是基极-发射极电压(约为0.6V),Rb是基极电阻。
然后,我们可以根据晶体管的静态放大倍数β值,计算集电极电流Ic:Ic=β*Ib接下来,根据集电极-发射极电压和集电极电流的关系,可以求出集电极电压Vce:Vce = Vcc - Ic * Rc其中,Rc是负载电阻。
2.动态工作点分析除了静态工作点,我们还需要分析动态工作点,即在输入信号存在时晶体管的工作状态。
基本共射极放大电路的输入电容是很小的,可以忽略。
因此,我们可以将输入信号直接加到基极上,即vb = Vb + vb',其中vb是基极电压,Vb为静态基极电压,vb'为输入信号。
根据晶体管的放大特性,可以写出输出电流Ie和输入电流Ib之间的关系:Ie=β*Ib+(β+1)*Ic'其中,Ic'是交流集电极电流的变化部分。
接下来,我们可以通过Ohm定律和基尔霍夫电流定律,写出发射极电流Ie、集电极电流Ic和负载电阻Rc之间的关系:Ie=Ic+IbIc = Ic' + (Vce + Vrc) / Rc将以上两个方程联立,我们可以解得Ic'。
进一步,我们可以通过欧姆定律和基尔霍夫电压定律,计算集电极电压Vce的变化值:Vce = Vce' + Ic' * Rc其中,Vce'和Vrc是交流工作点的变化值。
3.基本放大电路的两种分析方法
基本放大电路的两种分析方法1.图解法:主要功能:分析静态工作点,动态范围和波形失真。
分析步骤:①画出三极管的输出特性,根据电路参数求出I BQ ; ②作直流负载线,确定静态工作点;③通过静态工作点作交流负载线;④根据输入信号引起的i b 变化,由交流负载线确定i C 和u CE 的变化范围; ⑤检查是否有失真,确定输出波形。
2.微变等效电路法:主要功能:分析动态参数,计算放大倍数、输入和输出电阻。
分析步骤:①利用估算法或图解法求静态工作点;②根据放大电路的交流通路画出微变等效电路; ③根据三极管参数,利用公式()EQ bb be I 261r r 'β++=求出r be ;④按照线性电路的分析方法求A u 、R i 、R 0 。
对于共射极基本放大电路电压放大倍数A u 、输入电阻R i 、输出电阻R o 的计算公式分别为:A u = -βbe L C r R R // 考虑了信号源内阻R S 的电压放大倍为A uSA uS =Sbe L C R r R R +-//β R i =R b //r beR o = R C3.例题分析右图所示电路中,设三极管的β值为100,U BE =0.7V ,r bb ’=200Ω,C 1和C 2足够大,又知U CC =10V ,R b =490k Ω,R C =RL=3k Ω。
试求:(1)静态时I BQ 、I CQ 、U CEQ ;(2)计算r be ;(3)求电压放大倍数A u ;(4)求输入电阻R i 和输出电阻R o 。
解:(1)根据估算公式可求出静态工作点,其中: I BQ =mA 02.04907.010R U U b BEQ CC =-=- I CQ =βI BQ =100×0.02=2mAU CEQ =U CC -I CQ R C =10-2×3=4V(2)根据公式可求出r be ,即:()()Ω=++=β++=k 5.12261001200I 261r r CQ 'bb be (3)根据已知公式可求放大倍数为:()1005.13333100r R //R A be L C u -=+⨯⨯-=β-= (4)电路的输入和输出电阻分别为:R i =R b //r be =1.5k ΩR o =R c =3k Ω主讲老师建议:✧阅读文字主教材3。
(整理)基本放大电路的分析方法
3.2 基本放大电路的分析方法3.2.1 放大电路的静态分析放大电路的静态分析有计算法和图解分析法两种。
(1)静态工作状态的计算分析法根据直流通路可对放大电路的静态进行计算(03.08)I= I B (03.09)CV=V CC-I C R c (03.10)CEI、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。
B在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。
(2)静态工作状态的图解分析法放大电路静态工作状态的图解分析如图03.08所示。
图03.08 放大电路静态工作状态的图解分析直流负载线的确定方法:1. 由直流负载列出方程式V CE=V CC-I C R c2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。
3. 在输入回路列方程式V BE =V CC-I B R b4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。
5. 得到Q点的参数I BQ、I CQ和V CEQ。
例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。
图03.09 三极管工作状态判断例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C =8V,试判断三极管的工作状态。
电路如图03.10所示图03.10 例3.2电路图3.2.2 放大电路的动态图解分析(1) 交流负载线交流负载线确定方法:1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。
2.R L'= R L∥R c,是交流负载电阻。
3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。
4.交流负载线与直流负载线相交,通过Q点。
图03.11 放大电路的动态工作状态的图解分析(2) 交流工作状态的图解分析动画图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论:1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑;2. v o与v i相位相反;3.可以测量出放大电路的电压放大倍数;4.可以确定最大不失真输出幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、基本放大电路及其分析方法一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。
从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。
分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。
对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。
2.1.共射极基本放大电路的组成及放大作用在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习:图2.1称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为0.7V左右,锗管约为0.2V左右,I B=(V BB-0.7)/Rb这个电路的偏流I B决定于V BB 和Rb的大小,V BB和Rb一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的.上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。
对于不同的用途的电路,其指标各有侧重。
初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。
主要方法有图解法和微变等效法。
2.2.图解分析法2.2.1.静态工作情况分析当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。
解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-0.7)/Rb(I C=βI B+I CEO )I C=βI B,V CE=V CC-I C R C如已知β,利用上式可近似估算放大电路的静态工作点。
2.2.2.用图解法确定静态工作点在分析静态工作情况时,只需研究由V CC、R C、V BB、Rb及半导体三极管所组成的直流通路就可以了。
图解步骤如下:a.把放大电路分成非线性和线性两个部分;b.作出电路非线性部分的伏安特性——三极管的输出特性;ic=f(Vce)/ib=40uAc.作出线性部分的伏安特性——直流负载线;作直流负载线由V CE=V CC-i C R C,找出二个特殊坐标点连接M、N两点就是部分的伏安特性。
d.由电路的线性与非线性两部分伏安特性的交点确定静态工作点Q。
1.3.动态工作情况分析当接入正弦信号,电路将处在动态工作情况,我们可以根据输入信号电压Vi,通过图解确定输出电压V0,从而可以得出V0与V I之间的相位关系和动态范围,图解的步骤是先根据输入信号电压V I,在输入特性上画出IB的波形,然后根据I B的变化在输出特性上画出IC 和VCE的波形,如下图:a:根据VI在输入特性上求I B,设V I=0.02SINNTb:根据IB在输出特性上求I C和V CE1.4.交流负载线放大器在工作时,输出端总要按上一定的负载,如下图所示这时同于负载电阻RL=4K的接入而受到影响,下面将要讲这种影响的。
静态时由于CB2的隔直作用,RL的接入没有影响,在动态情况,情况就不同了,RL的接入,动态工作情况发生了变化,画出交流通路如图5的右图,画交流通路的原则是:图中的隔直电容看成短路,VCC电源的内阻很小,也看成短路,从图中可以看成iC电流不仅流RC 也流过RL这样在输出回路中RC和RL是并联的,它们的并联值叫做放大器的交流负载电阻即:RL 1 =RC//RL=RCRL/(RC+RL)根据作直流负载线的步骤,作出交流负载线,它的斜率为-1/RL1,由于直流负载线与交流负载线必定交于Q点,过Q点作一斜率为-1/RL1的直线就是交流负载线。
1.5.三极管的三个工作区域半导体三极管的基本特点是通过电汉控制实现放大作用,放大作用并不是在任何情况下都能实现的,Q点过高,从放大转为饱和,Q点过低时,三极管从放大转为截止这时三极管的工作性质也就发生了变化,饱和、放大、截止称为三极管的三种工作状态,可把三极管的输出特性分成三个区域,即:饱和区、放大区、和截止区。
例题:共射极单管放大电路,如下图所示B=30,其输出特性如下图所示图求画出直流负载线和决定静态工作点画出交流负载线,该放大电路在信号不失真的条件下,能获得的最大输出电压V om是多少?解:IB=VCC/Rb=12V/200K=60uA,由vce=VCC-icRc=12V-ic *4K 得M(12V,0mA),N(0V,3mA)两点,MN线与IB=60uA 的输出特性的交点即为静态工作点Q,Q点对应的电压,电流为:Ic=1.5mA,Vce=6V,IB=60uA 画出交流负载线根据ic/ vce= -1/RL1的关系,取ic = IC=1.5mA,相应地有vce=ICRL=1.5mA*2.4K=3.6V,其中RL=RC//RL=2.4K,于是得到A点的坐标为(9.6,0mA),连QA并延长至B,则AB为所求的交流负载线。
由交流负载线与输出特性的交点可知,在输入电压的正半周,三极管由Q点工作到Q1点(IB降到0uA),输出电压vce从1.6V到9V,变化范围为3V,在输入电压的负半周,三极管由Q点工作到Q2点(IB上升到120uA),输出电压Vce从6V到2.5V。
变化的范围为3.5V,综合考虑,在信号不失真的条件下,能获得的最大输出的电压为V om为3V。
图解分析法的特点是可以直观、全面了解放大器的工作情况,能在特性曲线上合理地安排工作点,并能帮助我们理解电路参数对工作点的影响,从而正确地选择电路参数。
3.微变等效电路分析法如果放大电路的输入信号电压很小,就可以设想把三极管小范围内的特性曲线近似用直线来代替,从而可以把三极管这个非线性的元件所组成的电路作为线性来处理,这就是微变等效电路的指导思想。
三极管的线性电路模型很多,这里讨论的是适用于低频放大电路h参数的微变等效电路,在工程计算中,三极管的线性电路模型是采用简化微变等效,即输入、输出各用一个h参数表示,如下图顾名思义,微变等效电路法分析的对象是微小的变化量即交流量,因此,只能用这种方法来分析放大电路的各项动态性能,而不能用来分析放大电路的静态,即不能用来计算直流量,但动态与静态是有联系的,微变等效电路中的参数是在Q点求出是与IB,IE,VCE等静态值有关系的例题:1 . H参数的确定应用H参数等效电路分析放大器时,首先必须得到三极管在静态工作点处的H参数,由于半导体本身参数的分散性以及参数会随工作点而变化,实际上在计算时不能直接采用手册上提供的数据,因此计算电路之前,首先,必须确定所用三极管在给定的工作点上的H参数。
获得H参数的方法可采用H参数测试仪,或利用晶体管特性图示仪测量和rbe。
rbe也可以借助下面的公式进行估算:rbe=rb+(1+β)re式中rb为基区体电阻,对于低频小功率rb约为200 OHM左右。
Re为发射结电阻,(1+ β)re是折算到基极回路的等效电阻,根据PN结的伏安特性表达式,可以导出re的值为26(mv)/IE(mA),这样上式可改写为rbe=200 OHM +(1+ β)26mV/IE(mA)1.用H 参数等效电路分析共射基本放大电路因此它们都可从电路中除去,其他元件都是按照原来相对位置画出,这样就可得到整个放大电路的微变等效电路,如上图左图所示。
第三步:由于分析和测试时经常采用正弦波作为输入信号电压,所以等交电路中采用复数符号标出各电压和电流3.求电压放大倍数画出微变等效电路后,就可用解线性电路的方法求解。
同图解法一样,我们也是先从放大电路的输入回路入手,在已知输入电压Vi的条件下求出基极电流Ib,然后又落实到输出回路上。
利用Ib求出Ic及V o,从而最后求出电压放大倍数Av:Ib=Vi/rbeIc= βIbV o= - Ic RL1式中RL1 = Rc//RL由此可得放大电压倍数为Av=V o/Vi= -IcRL1/ Ib rbe = - βIbRL1/Ib rbe=- βRL1/rbe例题:如上图所示已知在工作点处的β=40,计算放大倍数Av(假设信号源内阻Rs=0)。
解:a. 确定静态工作点Q因已知β,故可用简单计算法确定Q点IB=Vcc/Rb=12V/300K=40uAIC= βIB=40*40uA=1.6mA= IEVCE=VCC- IC RC= 12V-1.6mA*4K=5.6Vb .求rbe,利用上面所用的式子,得rbe=200 OHM + (1+β)26(mV)/ IE(mA)=200 OHM+(1+40)26 (mV)/1.6(mA)=866 OHMC.求Av,利用上式,得Av=-βRL1/rbe= - βRc//RL/rbe= - 40*2/0.866= - 924.计算输入电阻及输出电阻放大电路总是和其他电路联系在一起的,例如它的输入端一定要连接信号源,而它的输出端常与下级电路连在一起或是接上负载,这样就要考虑它们之间的相互影响了。
提出放大器的输入电阻和输出电阻的概念,可以帮助我们解决放大器同信号源之间,放大器同负载之间以及放大器级与级之间的连接问题。
a。
输入电阻和输出电阻的概念当输入信号电压加到放大器的输入端时,放大器就相当于信号源一个负载电阻。
这个负载电阻也就是放大器本身的输入电阻,如下图所示:它相当于从放大器输入端1、1 ’二点向右边看进去的等效电阻,即Ri = Vi/ IiRi的大小影响到实际加于放大器输入端信号的大小。
上图中,把一信号源内阻为Rs,大小为Vs的正弦电压加到放器的输入端,由于输入电阻Ri的存在,致使用实际加到放大器的信号Vi的幅度比Vs要小,即:Vi=Ri Vs/(Rs+Ri)输入电压受到一定的衰减。
因此,输入电阻Ri是衡量放大器对输入电压的衰减程度的重要指标。
另一方面,放大器的输出端在空载和带负载RL时,其输出的电压将有所改变,放大器带负载时的输出电压将比空载时的输出电压有所下降,如空载时的输出电压为V o’,而带负载时的输出电压为V o,则有V o= RL V o’/(Ro+RL)因此从放大器的输出端2,2’往左看,整个放大器可看成是一个内阻为Ro,大小为V o’的电压源,如上图所示,这个等效电源的内阻Ro就是放大器的输出电阻。