小学奥数计算专题之等差数列
小学奥数计算专题--等差数列(六年级)竞赛测试.doc
![小学奥数计算专题--等差数列(六年级)竞赛测试.doc](https://img.taocdn.com/s3/m/9364bc3383d049649a66582e.png)
小学奥数计算专题--等差数列(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?【答案】1470【解析】由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
【题文】文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?【答案】120【解析】文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数=(21-3)÷2+1=10。
所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。
【题文】李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?【答案】880【解析】(25+63)×20÷2=880(个)【题文】建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
【答案】52【解析】求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
评卷人得分答:这堆钢管一共有52根。
【题文】用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按下图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边能放10根火柴棒,那么这个大的等边三角形中一共要放多少根火柴棒?【答案】165【解析】如果把图中最上端的一个三角形看做第一层,与第一层紧相连的3个三角形(2个向上的三角形,一个向下的三角形)看做第二层,那么这个图中一共有10层三角形。
小学奥数等差数列(新颖)
![小学奥数等差数列(新颖)](https://img.taocdn.com/s3/m/83ae2463182e453610661ed9ad51f01dc281579b.png)
小学奥数等差数列(新颖)
简介
本文档将介绍小学奥数中的等差数列,并提供一些新颖的思路和方法来解决相关问题。
等差数列的定义
等差数列是指一个数列中的任意两个相邻项之差相等的数列。
通常用字母a表示首项,d表示公差,n表示项数,第n项表示为an,等差数列的通项公式为:
an = a + (n - 1)d
求等差数列的和
常见的等差数列求和方法包括以下几种:
- 公式法:根据等差数列的求和公式,直接计算出和的值。
- 递归法:通过不断累加前面的项来求和。
- 等差数列性质法:利用等差数列的性质和规律,简化求和运算。
等差数列的特殊性质
等差数列具有一些特殊的性质,可以帮助我们更好地理解和解题:
- 首项和末项之和等于中间任意两项之和。
- 等差数列的前n项和等于首项与最后一项的和乘以项数的一半。
等差数列的应用举例
以下是一些新颖的等差数列应用示例:
1. 题目:某个等差数列的首项是3,公差是5,项数是10,请
问这个数列的前10项和是多少?
解析:根据等差数列求和公式,代入a=3,d=5,n=10,可以
得出该数列的和。
2. 题目:某个等差数列的前n项和是125,首项是2,公差是6,请问这个数列的项数是多少?
解析:利用等差数列的性质,可以得出项数n满足条件125 = (2 + an) * n / 2,通过简单的计算可以得到n的值。
总结
等差数列在小学奥数中是一个重要的概念,掌握等差数列的定义、求和方法和特殊性质,能够更好地解决相关问题。
该文档介绍了等差数列的基本知识和应用举例,希望对您有所帮助。
小学奥数等差数列资料讲解
![小学奥数等差数列资料讲解](https://img.taocdn.com/s3/m/b6b8d2bd0722192e4436f64f.png)
一、 等差数列的定义定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如: 2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列关键词:首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、 三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()拓展公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1 等差数列的基本概念及公式11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).③ 求和公式:和=(首项+末项)⨯项数÷2 (思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LL L和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=三、 一个重要定理:中项定理1、项数为奇数的等差数列,和=中间项×项数.譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.2、项数是偶数的等差数列,中间一项等于中间两项的平均数。
(完整word版)六年级奥数等差数列
![(完整word版)六年级奥数等差数列](https://img.taocdn.com/s3/m/5db2d2d5ccbff121dc368300.png)
等差数列知识点:等差数列的和= (首项+末项)×项数÷2项数= (末项-首项)÷公差+1公差= 第二项-首项等差数列的第n项= 首项+(n-1)×公差首项= 末项-公差×(项数-1)例1、计算。
1+3+5+7+……+95+97+99解:1+3+5+7+……+95+97+99=(1+99)×50÷2=2500例2、(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)解:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=-=1000例3、计算1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999解:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999 ==例4、求首项为5,末项为155,项数是51的等差数列的和。
解:(5+155)×51÷2=160×51÷2=80×51=4080例5、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数我4 。
求这60个数的和。
解:(1)末项为: 7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=7500例6、数列3、8、13、18、……的第80项是多少?例7、求3+7+11+……+99=?例8、一个15项的等差数列,末项为110,公差为7,这个等差数列的和是多少?例9、一个大礼堂,第一排有28个座位,以后每排比前排多一个座位,第35排是最后一排,这个大礼堂共有多少个座位?练一练一、计算1、2+4+6+……+96+982、68+65+……+11+83、2+3+4+……+2000+2001+2002+2003二、列式计算1、8、15、22……这列数的第100项是多少?2、一个有20项的等差数列,公差为5,末项是104,这个数列的首项是几?3、一个公差为4的等差数列,首项为7,末项为155.这个数列共有多少项?4、有一列数,已知第1个数为11,从第二个数起每个数都比前一个数多3,这列数的前100个数的和是多少?三、解答下列各题1、王师傅每天工作8小时,第1小时加工零件50个,从第二小时起每小时比前一小时多加工零件3个,求王师傅一天加工多少个零件?2、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下,时钟一昼夜敲打多少次?3、一个剧院设置了30排座位,第一排有38个座位,往后每排都比前一排多1个座位,这个剧院共有多少个座位?4、一个物体从空中自由落下,第一秒下落4.9米,以后每秒多下落9.8米,经过20秒落到地面,物体原来离地面多高?。
小学奥数等差数列公式
![小学奥数等差数列公式](https://img.taocdn.com/s3/m/f9b3f14301f69e31433294e3.png)
小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
小学奥数等差数列(经典)
![小学奥数等差数列(经典)](https://img.taocdn.com/s3/m/2a893fd50912a216157929dd.png)
八分之七(打一成语)??(答案在最后一页做完题就看见了)若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
通项公式:第n项=首项+(n-1)×公差项数公式:项数=(末项-首项)÷公差+1随堂学案一.巧解应用题1.3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?2.买3个篮球和5个足球共、用去480元,买同样的6个篮球和3个足球共用去519元。
篮球和足球的单价各是多少元?3.育才小学体育组第一次买了4个篮球和3个排球,共用去了141元;第二次买了5个篮球和4个排球,共用去180元。
每个篮球和每个排球各多少元?二.高斯行,我更行!!(1)1+2+3+…+49+50 (2)6+7+8+…+74+75(3)100+99+98+…+61+60 (4)2+6+10+14+18+22(5)5+10+15+20+…+195+200 (6)9+18+27+36+…+261+2701、等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2、有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3、已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?家庭作业1、一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。
3、求等差数列2,6,10,14……的第100项。
4、数列4,7,10,……295,298中,198是第几项?5、蜗牛每小时都比前一小时多爬0.1米,第10小时蜗牛爬了1.9米,第一小时蜗牛爬多少米?6、在树立俄,10,13,16,…中,907是第几个数?第907个数是多少?7、求自然数中所有三位数的和。
8、在等差数列1,5,9,13,17,…,401中401是第几项?9、100个小朋友排成一排报数,每后一个同学报的数都比前一个同学报的数多3,小明站在第一个位置,小宏站在最后一个位置。
(完整版)小学奥数--等差数列
![(完整版)小学奥数--等差数列](https://img.taocdn.com/s3/m/ab124e753186bceb18e8bb7e.png)
等差数列专题解析典型例题例1、求等差数列3,8,13,18,…的第38项和第69项。
例2、36个小学生排成一排玩报数游戏,后一个同学报的数部比前一个同学多报8,已知最后一个同学报的数是286,则第一个同学报的数是几?像(1)1,2,3,4,5,…(2)10,20,30,40,50,… (3)4111432141,,,,,…这种从第二项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示。
在等差数列1a ,n a a a ...,32,它的公差是d ,那么d a a 12d a d d a d a a 2)(1123da d d a d a a 3)2(1234…由此可见,等差数列从第二项起,每一项等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,所以:d n a a n )1(1。
这个公式我们称它为等差数列的通项公式,利用它可以求出等差数列中的任何一项。
例3、等差数列4,12,20,…中,580是第几项?例4,一批货箱,上面标的号是按等差数列排列的,第一项是 3.6,第五项是12,求它的第二项.例5、游戏园的智慧梯最高一级宽60厘米,最低一级宽150厘米,中间还有13级,各级的宽度成等差数列,求正中一级的宽。
随堂巩固1、求3+10+17+24+31+…+94的和2、求100至200之间被7除余2的所有三位数的和是多少?3、一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?4、有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。
5、在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的五个数.6、从广州到北京的某次快车中途要依靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?7、学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?8、7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18棵树,种树最少的小队至少种了多少棵树?。
小学奥数计算专题之等差数列
![小学奥数计算专题之等差数列](https://img.taocdn.com/s3/m/87e72a5d3186bceb19e8bbab.png)
小学奥数计算专题之等差数列习题一、下面一列数是按照下列规律排列的:3,12,21,30,39,48,...(1)第23个数是多少?(2)912是第几个数?二、数列3,6,9,12,15,18,...,300,303是一个等差数列,153是第几个数?这个等差数列中所有数的和是?三、1到100各数,所有不能被6整除的自然数的和是?四、求2+3+7+9+12+15+17+21+22+27+27+33+32+39+37+45为多少?五、一串数按下述规律排列:1,2,3,2,3,4,3,4,5,4,5,6,... 从左边第一个数起到第180个数,这180个数的和是多少?参考答案一、(1)3+(23-1)×9=201(2)(912-3)÷9+1=102二、(1)(153-3)÷3+1=51(2)项数:(303-3)÷3+1=151和:(3+303)×151 ÷2=23103三、1+2+3+...+100=(1+100)×100÷2=5050 能被6整除:6+12+...+96项数:(96-6)÷6+1=166+12+...+96=(6+96)×16÷2=816不能被6整除的:5050-816=4234四、分成两个数列:2+7+12+17+22+27+32+37=(2+37)×8÷2=156 3+9+15+21+27+33+39+45=(3+45)×8÷2=192 所以结果为156+192=348五、每三个数为一组,称为一个等差数列180÷3=60,所以最后一组三个数为:60,61,62 新的等差数列为:6,9,12,...,183和为:(6+183)×60÷2=5670。
小学奥数等差数列
![小学奥数等差数列](https://img.taocdn.com/s3/m/59af005724c52cc58bd63186bceb19e8b9f6ec40.png)
小学奥数等差数列等差数列是数学中重要的概念之一,也是小学奥数中的常见考点。
本文将介绍等差数列的定义、性质以及解题方法。
1. 等差数列的定义等差数列是指一个数列中的每个数都与它的前一个数之差相等。
通常用字母 a 表示数列的首项,d 表示公差,那么数列中的第 n 项可以表示为:a + (n - 1) * d。
2. 等差数列的性质等差数列具有以下性质:- 公差相等:数列中任意两项之间的差值都相等。
- 递推公式:数列中每一项可以通过前一项加上公差得到。
- 首项与末项:数列中的首项为 a,末项为 a + (n - 1) * d。
- 数列长度:数列中的项数为 n = (末项 - 首项) / 公差 + 1。
3. 等差数列的解题方法解决等差数列的问题通常可采用以下方法:- 求某一项:使用递推公式即可求得数列中任意一项的值。
- 求和:等差数列的前n 项和可以通过求平均数乘以项数得到,即和 = (首项 + 末项) * 项数 / 2。
4. 解题示例假设有一个等差数列,其中首项为 2,公差为 3,求该等差数列的第 5 项和前 5 项的和。
根据等差数列的递推公式,第 5 项可以通过前一项加上公差得到:a5 = a4 + d = 2 + 3 = 5。
根据等差数列的求和公式,前 5 项的和可以计算如下:和 = (首项 + 末项) * 项数 / 2 = (2 + 5) * 5 / 2 = 35。
综上所述,该等差数列的第 5 项为 5,前 5 项的和为 35。
5. 总结等差数列是一个重要的数学概念,在小学奥数中常见。
通过掌握等差数列的定义、性质和解题方法,可以更好地应对相关的考试题目。
小学奥数等差数列公式
![小学奥数等差数列公式](https://img.taocdn.com/s3/m/f9b3f14301f69e31433294e3.png)
小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
小学奥数培优-等差数列(含答案)
![小学奥数培优-等差数列(含答案)](https://img.taocdn.com/s3/m/e4144a4da26925c52cc5bfd9.png)
第四讲等差数列(一)解题方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项【提示】仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
引申1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答:这个数列共有27项2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?答:这个数列共有19项3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?答:这个等差数列共有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
四年级奥数 等差数列进阶
![四年级奥数 等差数列进阶](https://img.taocdn.com/s3/m/e7eab81811661ed9ad51f01dc281e53a580251a2.png)
第12讲第一天1.计算:3+6+9+12+…+57+60=()。
A.600B.630C.680D.720【答案】B【解析】共20项,(3+60)×20÷2=630。
2.计算:2+12+22+32+…+82+92=()。
A.470B.517C.423D.500【答案】A【解析】共10项,(2+92)×10÷2=470。
第二天1.一个等差数列的首项是12,末项是87,公差是3,这个数列一共有()项。
A.24B.25C.26D.27【答案】C【解析】(87-12)÷3+1=26。
2.一个等差数列的首项是3,末项是115,公差是7,这个数列一共有()项。
A.17B.18C.16D.15【答案】A【解析】(115-3)÷7+1=17。
第三天1.已知等差数列2,7,12,17,…,302,这个等差数列共有()项。
A.58B.59C.60D.61【答案】D【解析】公差为7-2=5,则项数为(302-2)÷5+1=61。
2.已知等差数列5,8,11,14,…,899,这个等差数列共有()项。
A.301B.300C.299D.298【答案】C【解析】公差为8-5=3,则项数为(899-5)÷3+1=299。
第四天1.已知一个等差数列共有17项,每一项都比前一项大4,第一项是5,那么末项是()。
A.73B.69C.84D.77【答案】B【解析】5+4×(17-1)=69。
2.已知一个等差数列共有13项,每一项都比前一项大7,第一项是3,那么末项是()。
A.90B.94C.84D.87【答案】D【解析】3+7×(13-1)=87。
第五天1.一个等差数列的首项是1,第28项是109,那么这个等差数列的公差是()。
A.4B.3C.6D.5【答案】A【解析】(109-1)÷(28-1)=4。
2.一个等差数列的首项是6,第32项是223,那么这个等差数列的公差是()。
小学奥数-等差数列
![小学奥数-等差数列](https://img.taocdn.com/s3/m/49d52944783e0912a3162a19.png)
=125000
求 公 差 :
在19和91之间插入5个数,使这7个数构成一个
等差数列。写出插入的5个数。
(91-19) ÷(7-1)=12 依次为31、43、55、67、79
• 下面这组数是按一定规律排列的,你能求 出这组数列的第48个数是几吗? • 54、58、62、66、70、74、78、82、 86…
=(1+99)×99÷2
= 9900÷2
= 4950
求下列方阵中所有各数的和:
1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52; ……
解:
每一横行数列之和: 第一行:(1+50) ×50 ÷ 2=1275 第二行:(2+51) × 50 ÷ 2=1325 第三行:(3+51) × 50 ÷ 2=1375
), 16, 19, … ),13,…
(3) 1, 3, 5, 7, 9, (
等差数列:一个数列,从第
个2数开始,依次与前一个
数的差相同,这样的数列叫 等差数列
一套书有5本,每隔5年出版一本,第三本是1998年 出版的。其他几本书分别是哪年出版的?
1986 1992 1998 2004 2010
这个数列有几个数
……
第四十九行:(49+98) × 50 ÷ 2=36
第五十行:(50+99) × 50 ÷ 2=3725 方阵所有数之和: 1275+1325+1375+……+3675+3725 =(1275+3725) × 50 ÷ 2
49、50、51、52、……97、98; 50、51、52、53、……98、99。
小学奥数等差数列
![小学奥数等差数列](https://img.taocdn.com/s3/m/8cba104e33687e21af45a9fa.png)
小学奥数等差数列1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项 以此类推,最后一个数叫做这个数列的末项(我们将用 n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8, ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用 d 来表示),即: 1122312----=-==-=-=n n n n a a a a a a a a d例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么?)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、 计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ⨯-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:)21321÷⨯+=+++n a a a a a a n n在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7, 的第 10 项,第 100 项,并求出前 100 项的和。
练习2:1、求出你已经写出的等差数列的各项和。
2、有一个数列,4、10、16、22……52,这个数列有多少项?3、一个等差数列,首项是3,公差是2,项数是10。
它的末项是多少?4、求等差数列1、4、7、10……,这个等差数列的第30项是多少?例2:在211、212两数之间插入一个数,使其成为一个等差数列。
拓展:1、在12 与 60 之间插入3个数,使这5个数成为一个等差数列。
六年级奥数-等差数列
![六年级奥数-等差数列](https://img.taocdn.com/s3/m/5bc0f6ddb9f3f90f76c61bcd.png)
六年级奥数-等差数列
1、求首项是5,末项是93,公差是4的等差数列的和。
2、求首项是13,公差是5的等差数列的前30项的和。
3、某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有______个座位。
4、某建筑工地堆放着一些钢管,最上面一层有3根,最下面一层有29根,而且下面的每一层比上面的一层多2根,这些钢管一共多少根?
5.巧算下列各题:
①5000-2-4-6-…-98-100
②103+99+103+96+105+102+98+98+101+102
6、在所有的两位数中,十位数比个位数大的数共有多少个?
7、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下。
问:时钟一昼夜打多少?
8、已知:a=1+3+5+……+99+101,b=2+4+6+……+98+100,则a、b两个数中,较大的数比较小的数大_________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数计算专题之等差数列习题
一、下面一列数是按照下列规律排列的:3,12,21,30,39,48,...
(1)第23个数是多少?(2)912是第几个数?
二、数列3,6,9,12,15,18,...,300,303是一个等差数列,153是第几个数?这个等差数列中所有数的和是?
三、1到100各数,所有不能被6整除的自然数的和是?
四、求2+3+7+9+12+15+17+21+22+27+27+33+32+39+37+45为多少?
五、一串数按下述规律排列:1,2,3,2,3,4,3,4,5,4,5,6,... 从左边第一个数起到第180个数,这180个数的和是多少?
参考答案
一、(1)3+(23-1)×9=201
(2)(912-3)÷9+1=102
二、(1)(153-3)÷3+1=51
(2)项数:(303-3)÷3+1=151
和:(3+303)×151 ÷2=23103
三、1+2+3+...+100=(1+100)×100÷2=5050 能被6整除:6+12+...+96
项数:(96-6)÷6+1=16
6+12+...+96=(6+96)×16÷2=816
不能被6整除的:5050-816=4234
四、分成两个数列:
2+7+12+17+22+27+32+37=(2+37)×8÷2=156 3+9+15+21+27+33+39+45=(3+45)×8÷2=192 所以结果为156+192=348
五、每三个数为一组,称为一个等差数列
180÷3=60,所以最后一组三个数为:60,61,62 新的等差数列为:6,9,12,...,183
和为:(6+183)×60÷2=5670。