中考数学专题初中几何辅助线几种常见添法培优试题.doc

合集下载

中考数学压轴题常见辅助线

中考数学压轴题常见辅助线

一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)xx斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

中考总复习—全等三角形中辅助线的添加(最经典最全面)-有答案

中考总复习—全等三角形中辅助线的添加(最经典最全面)-有答案

DC B AEDFCBA全等三角形及其辅助线作法常见辅助线的作法有以下几种:1) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”(或构造平行线的X 型全等).2) 遇到角平分线,一是可以自角平分线上的某一点向角的两边作垂线,二是在角的两边上截取相同的线段,构成全等。

利用的思维模式是三角形全等变换中的“对折”,也是运用了角的对称性。

3) 截长法与补短法,具体做法是在较长线段上截取一条线段与特定线段相等,使剩下的线段与另一条线段相等;或者是将两条较短线段中的一条延长,使这两条线段的和等于较长的线段。

这种作法,适合于证明线段的和、差、倍、分等题目.4) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.也可以将两腰分拆到两个三角形中,证明这两个三角形全等。

特殊的应用有等边三角形与等腰直角三角形。

5) 此外,还有旋转、折叠等情况。

(一)、中点线段倍长问题(中线倍长或者倍长中线):1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.2、如图△ABC 中,点D 是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、F 。

当AE=AF 时,求证BE=CF 。

3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.4、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CB AA BC D E F5 如图,AB=AC ,AD=AE ,M 为BE 中点,∠BAC=∠DAE=90°。

求证:AM ⊥DC 。

应用:1、以△ABC 以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 和等腰Rt △ACE ,且∠BAD=∠CAE-90°,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ° (0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.(二)角平分线与轴对称1、如图,已知AD 为△ABC 的角平分线,∠C=2∠B ,求证:AB=AC+CD.2、 如图,直线l 1∥l 2,直线m 与直线l 1 、l 2交于A 、B 两点。

初二数学辅助线常用做法及例题(含答案)

初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:初中数学几何辅助线经典100题一、几何辅助线的概念和作用1.几何辅助线的定义2.几何辅助线在解题中的作用二、几何辅助线的常见类型及应用1.角平分线2.线段和差3.中点定理4.倍长中线5.相似三角形6.判定条件7.证明定理三、初中数学几何辅助线经典100题1.题目1-102.题目11-203.题目21-304.题目31-405.题目41-506.题目51-607.题目61-708.题目71-809.题目81-9010.题目91-100正文:初中数学几何辅助线经典100题一、几何辅助线的概念和作用几何辅助线是在解决几何问题时,通过在图形上添加一些特殊的线段,来帮助我们更好地理解和解题的一种工具。

它可以将复杂的几何问题简化为更简单的形式,使问题更容易解决。

几何辅助线在解题中的作用主要体现在以下几个方面:1.揭示图形中隐含的性质:通过添加辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。

2.聚拢集中原则:通过添置适当的辅助线,将图形中分散、远离的元素相对集中、聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。

3.化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,通过添加辅助线,将复杂图形转化为简单图形,从而简化问题,使解题更加顺利。

二、几何辅助线的常见类型及应用几何辅助线有很多种,这里我们列举几种常见的类型及其应用:1.角平分线:角平分线是将一个角平分成两个相等的角的线段。

在解题中,我们常常利用角平分线的性质来证明两个角相等或求解某个角的度数。

2.线段和差:线段和差是指通过两个线段的和与差来求解几何问题。

在解题过程中,我们通常利用线段和差的性质来证明线段相等或求解线段的长度。

3.中点定理:中点定理是指在一个线段上,如果有一个点是线段中点,那么这个点到线段两端的距离相等。

在解题中,我们常常利用中点定理来证明线段相等或求解线段的长度。

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题初中数学:几何题型,辅助线的画法和典型例题1.倍长中线法已知在△ABC中,D是BC中点,DE⊥DF,需要判断BE+CF与EF的大小关系,并证明结论。

思路点拨:利用倍长中线法,倍长过中点的线段DF使DG=DF,再证明△XXX≌△EDF,△FDC≌△GDB,将BE、CF与EF线段转化到△BEG中,利用两边之和大于第三边证明。

解析:连接BG、EG,因为D是BC中点,所以BD=CD。

又因为DE⊥DF,在△XXX和△EDF中,ED=ED,∠XXX∠EDF,DG=DF,因此△XXX≌△EDF(SAS),所以EG=EF。

在△XXX与△GDB中,CD=BD,∠1=∠2,DF=DG,因此△FDC≌△GDB(SAS),所以CF=BG。

因为BG+BE>EG,所以BE+CF>EF。

结论得证。

总结升华:有中点的时候作辅助线可以考虑倍长中线法(或倍长过中点的线段)。

变式:已知CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,需要证明CD=2CE。

解析:连接BF,延长CE至F使EF=CE。

因为EC为中线,所以AE=BE。

在△AEC与△BEF中,AE=BE,∠AEC =∠BEF,CE=EF,因此△AEC≌△BEF(SAS)。

所以AC =BF,∠A=∠FBE。

又因为∠ACB=∠ABC,∠XXX∠ACB+∠A,∠XXX∠ABC+∠A,所以AC=AB,∠XXX∠XXX。

因此AB=BF,BC为△ADC的中线,所以AB=BD,即BF=BD。

在△FCB与△DCB中,∠XXX∠DBC,BC=BC,因此△FCB≌△DCB(SAS),所以CF=CD。

结论得证。

2.以角平分线为对称轴的翻折变换构造全等三角形已知在△ABC中,∠C=2∠B,∠1=∠2,需要证明XXX。

解析:在AB上截取AE=AC,连接CE,作角ACE的平分线交AB于D,连接CD。

因为∠C=2∠B,所以∠ACE=∠XXX∠B,∠XXX∠A=∠1=∠2,所以△AED≌△ACD (SAS),因此ED=CD。

初中几何经典培优题型(三角形)

初中几何经典培优题型(三角形)

全等三角形辅助线找全等三角形的方法:〔1〕可以从结论出发,看要证明相等的两条线段〔或角〕分别在哪两个可能全等的三角形中;〔2〕可以从已知条件出发,看已知条件可以确定哪两个三角形相等;〔3〕从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;〔4〕若上述方法均不行,可考虑添加辅助线,构造全等三角形.三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形.常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用"三线合一"的性质解题,思维模式是全等变换中的"对折".2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的"旋转".3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的"对折",所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的"平移"或"翻转折叠"5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.常见辅助线写法:⑴过点A作BC的平行线AF交DE于F⑵过点A作BC的垂线,垂足为D⑶延长AB至C,使BC=AC⑷在AB上截取AC,使AC=DE⑸作∠ABC的平分线,交AC于D⑹取AB中点C,连接CD交EF于G点例1如图,AB=CD=1,∠AOC=60°,证明:AC+BD≥1.例2<2007年中考〕如图,已知△ABC⑴请你在BC边上分别取两点D、E〔BC的中点除外〕,连接AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE.例3已知线段OA、OB、OC、OD、OE、OF.∠AOB=∠BOC=∠COD=∠DOE=∠EOF=60°.且AD=BE=CF=2.求证:S△OAB+S△OCD+S△OEF3.例4如图1,在四边形ABCD中,连接对角线AC、BD,如果∠1=∠2,那么∠3=∠4.仔细阅读以上材料,完成下面的问题.如图2,设P为□ABCD内一点,∠P AB=∠PCB,求证:∠PBA=∠PDA.图1图2⑴集散思想:有些几何题,条件与结论比较分散,通过添加适当的辅助线,将图形中分散,远离了的元素聚集到有关的图形上,使它们相对集中,便于比较,建立关系,从而找出问题的解决途径.⑵平移只能用来作为作辅助线的思路,具体做辅助线的时候不能直接说将△ABC 平移至△DEF .1.在正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的点,且EG ⊥FH ,求 证:EG =FH .2.如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .3.如图,已知△ABC 的面积为16,BC =8,现将△ABC 沿直线BC 向右平移a 个单位到△DEF 的位置.⑴当a =4时,求△ABC 所扫过的面积;⑵连接AE 、AD ,设AB =5,当△ADE 是以DE 为一腰的等腰三角形时,求a 的值.4.如图,AA ′=BB ′=CC ′=1,∠AOB ′=∠BOC ′=∠COA ′=60°,求证:34AOB BOC COA SS S '''++<.例1 如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且∠EAF =45°,AH ⊥EF ,H 为垂足,求证:AH =AB .例2△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且AP =3,CP =2,BP =1,求∠BPC 的度数.例3已知在△ABC 中,AB =AC ,P 为三角形内一点,且∠APB >∠APC ,求证:PB <PC .有边相等或者有角度拼起来为特殊角的时候可以用旋转⑴边相等时常见图形为正方形,等腰三角形和等边三角形等等 ⑵角度能拼成的特殊角指的是180°,90°等等例4已知△ABC ,∠1=∠2,AB =2AC ,AD =BD .求证:DC ⊥AC .例5△ABC 为等腰直角三角形,∠ABC =90°,AB =AE ,∠BAE =30°,求证:BE =CE .例6在△ABC 中,E 、F 为BC 边上的点,已知∠CAE =∠BAF ,CE =BF ,求证:AC =AB .出现轴对称的时候可以考虑翻折,尤其注意有角平分线,有角相等或者出现特殊角的一半的时候,翻折是常用添加辅助线的思想.强调:旋转和翻折只能是一种作辅助线的思路,具体做辅助线的时候不能直接说将△ABC旋转或翻折至△DEF.1.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心方在O点处,并将纸板绕O点旋转,其半径分别交AB、AD于点M、N,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.2.〔2008##〕在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点,试判断EC与EB的位置关系,并写出推理过程.3.如图,P是等边△ABC内一点,若AP=3,PB=4,PC=5,求∠APB的度数.4.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,∠DAE=45°.⑴猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵当动点E在线段BC上,动点D运动在线段CB延长线上时,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.5.如图,已知等腰直角三角线ABC,BD平分∠ABC,CE⊥BD,垂足为E,求证:BD=2CE.6.如图,折叠长方形的一边AD,使点D落在BC边的点F处,如果AB=8,BC=10,求EC的长.中点的妙用一、倍长中线法例1<文汇中学2009-2010期中测试题>,AD是△ABC中BC边上的中线,若AB=2,AC=4,则AD的取值范围是___________.例2已知在△ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AF=EF,求证:AC=BE.例3⑴如图1,△ABC与△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC中点F,连接AF,DF,猜测AF,DF的数量关系和位置关系,并加以证明.图1⑵如图2,将△BDE旋转至如图位置,使E在AB延长线上,D在CB延长线上,其他条件不变,则⑴中AF,DF的数量关系和位置关系是否发生变化,并加以证明.图2例4已知四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,求证EFGH为平行四边形.例5如图,已知四边形ABCD中,AB=CD,M、N分别为BC、AD中点,延长MN与AB、CD延长线交于E、F,求证∠BEM=∠CFM例6已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°,连接DE,设M为DE的中点.⑴求证:MB =MC ;⑵设∠BAD =∠CAE ,固定Rt △ABD ,让Rt △ACE 移至图示位置,此时MB =MC 是否成立?请证明你的结论.出现中点的时候一般有以下作辅助线的方法⑴倍长中线法⑵构造中位线⑶如果是直角三角形,经常还会构造斜边上的中线例7如图,已知△ABC 和△ADE 都是等腰直角三角形,点M 为EC 中点,求证△BMD 为等腰直角三角形.1.在△ABC 中,AB =12,AC =30,求BC 边上的中线AD 的范围.2.在△ABC 中,D 为BC 边上的点,已知∠BAD =∠CAD ,BD =CD ,求证:AB =AC .3.如图,在△ABC 中,AD ⊥BC ,M 是BC 中点,∠B =2∠C ,如图,求证:DM =12AB 4.已知△ABC 中,AC =7,BC =4,D 为AB 中点,E 为边AC 上一点,且102AED C ∠=︒+∠9,求CE 的长.5.在任意五边形ABCDE 中,M,N,P,Q 分别为AB 、CD 、BC 、DE 的中点,K 、L 、分别为MN 、PQ 的中点,求证:KL 平行且等于14AE . 6.如图,已知△ABC 中,AB =AC ,CE 是AB 边上的中线,延长AB 到D ,使BD =AB ,那么CE 是CD 的几分之几?7.四边形ABCD 四边中点分别为E 、F 、G 、H ,当四边形ABCD 满足时,EFGH 为菱形;当四边形ABCD 满足时,EFGH 为矩形;当四边形ABCD 满足时,EFGH 为正方形.例1在△ABC 中,∠B =2∠C ,∠BAC 的平分线AD 交BC 与D .求证:AB +BD =AC .例2 ABCD 是正方形,P 为BC 上任意一点,∠P AD 的平分线交CD 于Q ,求证:DQ =AP -BP . 例3已知△ABC ,∠ABC =90°,以AB 、AC 为边向外做正方形ABDE 和ACFG ,延长BA 交EG 于H ,则BC =2AH .例4 AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于E ,EF //AC 交AB 于F .求证:AF =FB .截长补短法补形法例5如图,六边形ABCDEF的六个内角都相等,已知BC+CD=11,DE-AB=3,求DC+EF的值. 例6如图所示:BC>AB,AD=AC,BD平分∠ABC,求证:∠A+∠C=180°.1.如图,在△ABC中,AB+BD=AC,∠BAC的平分线AD交BC与D,求证:∠B=2∠CAB CD已知△ABC,以AB、AC为边向外作正方形ABGF、ACDE,M是BC中点,连接AM求证:EF=2AM且AM⊥EF.3.在△ABC中,AB=AC,∠A=100°,BE评分∠B交AC与E,如图,求证:AE+BE=BC 4.在△ABC中,D、E为AB、AC中点,DE与∠B的平分线交与F,如图所示.求证:AF⊥BF5.在△ABC中,MB、NC分别是三角形的外角∠ABE、∠ACF的角平分线,AM⊥BM,AN⊥CN,垂足分别是M,N.求证:MN∥BC,MN=12<AB+AC+BC>6.在△ABC中,MB、NC分别是三角形的内角∠ABC、∠ACB的角平分线,AM⊥BM,AN⊥CN,垂足分别是M,N.求证:MN∥BC,MN=12<AB+AC-BC>例1在四边形ABCD中,已知AB=BC=CD,∠ABC=70°,∠BCD=170°,求∠BAD的度数.例2如图,△ABC中,AB=AC,AD=BC,∠A=20°,求∠DCA的度数.例3任意△ABC,试在△ABC内找一点P,使得P A+PB+PC的值最小例4<2000 初二数学竞赛〕,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连接DE, 恰有AD=BC=CE=DE.求证:∠BAC=100°.例5如图所示,在△ABC中,∠B=60°∠A=100°,E为AC的中点,∠DEC=80°,D是BC边上的点,BC=1,求△ABC的面积与△CDE的面积的两倍的和.例6如图所示,在△ABC中,∠ACB=2∠ABC,P为三角形内一点,AP=AC,PB=PC,求证:∠BAC=3∠BAP.1.如图所示,在四边形ABCD中,BC CD=,60BCA ACD∠-∠=︒,求证:AD CD AB+≥.2.在ABC∆中,AB AC=,60120A︒<∠<︒,P为ABC∆内部一点,PC AC=,120PCA A∠=︒-∠,求CBP∠的度数.巧构等边3.在等边△ABC内有一点P,它到三个顶点A、B、C的距离分别为1求∠APB的度数.4.在凸四边形ABCD中,∠DAC=30°,∠CAB=20°,∠ADB=50°,∠BDC=30°,四边形的对角线交于点P,求证:PB=PC5.在等腰△ABC中,∠B=∠C=40°,延长AB至点D,使AD=BC,求∠BCD的度数. 6.如图,D是△ABC外一点,AB=AC=BD+CD,∠ABD=60°.求∠ACD的度数.。

初中数学巧添辅助线解证几何题

初中数学巧添辅助线解证几何题

初中数学巧添辅助线解证几何题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-巧添辅助线 解证几何题[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。

倍角问题分两种情形:1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=12∠α,然后证明∠1=∠β;或把∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一)2、∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。

倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1,在△ABC 中,AB=AC,BD⊥AC 于D。

求证:∠DBC=12∠BAC.分析:∠DBC、∠BAC 所在的两个三角形有公共角∠C,可利用三角形内角和来沟通∠DBC、∠BAC 和∠C 的关系。

证法一:∵在△ABC 中,AB=AC,∴∠ABC=∠C=12(180°-∠BAC)=90°-12∠BAC。

∵BD⊥AC 于D ∴∠BDC=90°CAB D ECABD21β α 图一αβ图二∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC即∠DBC= 12∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ∠BAC”中含有角的倍、半关系,因此,可以做∠A的平分线,利用等腰三角形三线合一的性质,把∠A放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。

初中数学几何辅助线作法大全及专题训练(含答案)

初中数学几何辅助线作法大全及专题训练(含答案)

图1 2 C
(法二:)如图 1-2, 延长 BD 交 AC 于 F,延长 CE 交 BF 于 G,
在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1) GF+FC>GE+CE(同上)………………………………(2) DG+GE>DE(同上)……………………………………(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。
DF DF(公共边)
∴△EDF≌△MDF (SAS) ∴EF=MF (全等三角形对应边相等) ∵在△CMF 中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF 注:上题也可加倍 FD,证法同上。 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形, 使题中分散的条件集中。
五、有三角形中线时,常延长加倍中线,构造全等三角形。
例如:如图 5-1:AD 为 △ABC 的中线,求证:AB+AC>2AD。
A
分析:要证 AB+AC>2AD,由图想到: AB+BD>AD,AC+CD >AD,所以有 AB+AC+ BD+CD>AD+AD=2AD,左边比要证
B
D
C
E
结论多 BD+CD,故不能直接证出此题,而由 2AD 想到要构造 2AD,即加倍中线,把所要证的 线段转移到同一个三角形中去。
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
G
E
D
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接 AD,并延长交 BC 于 F
B
F

初二数学辅助线常用做法及例题含答案

初二数学辅助线常用做法及例题含答案

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(完整版)初中数学辅助线大全-详细例题付答案

(完整版)初中数学辅助线大全-详细例题付答案

初中数学辅助线大全 详细例题付答案[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

下面我们分别举例加以说明。

[例题解析]一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。

求证:∠DBC=12∠BAC 。

分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C三角形内角和来沟通∠DBC 、∠BAC 和∠C 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°—12∠BAC∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°—∠C=90°-(90°-12∠BAC )= 12∠BAC即∠DBC= 12∠BAC分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC"中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=12∠BAC 。

证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC∴BD 是线段CE 的垂直平分线∴BC=BE ∴∠BEC=∠C ∴∠EBC=2∠DBC=180°—2∠C ∵AB=AC ∴∠ABC=∠C∴∠BAC=180°-2∠C ∴∠EBC=∠BAC∴∠DBC= 12∠BAC说明:例1也可以取BC 中点为E,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰三例2、如图4,在△ABC 中,∠A=2∠B求证:BC 2=AC 2+AC •AB分析:由BC 2=AC 2+AC •AB= AC (AC+AB ),启发我们构建两个相似的三角形,且含有边BC 、AC 、AC+AB 。

中考数学压轴题常见辅助线

中考数学压轴题常见辅助线

一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

中考数学压轴题常见辅助线

中考数学压轴题常见辅助线

一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年中考数学专题初中几何辅助线的几种常见添法培优试题
一、由角平分线想到的辅助线
1、截取构全等
例1:如图 1, AB∥ CD, BE 平分∠ ABC, CE平分∠ BCD,点 E 在 AD上。

求证: BC=AB+CD。

例2:已知,如图 2,AB=2AC,∠ BAD=∠ CAD, DA=DB。

求证: DC⊥ AC。

例 3:如图 3,在△ ABC中,∠ C=2∠ B, AD平分∠ BAC。

求证: AB-AC=CD。

2、角平分钱上的点向角两边作垂线构全等
例1:如图 4,已知 AB>AD,∠ BAC=∠ FAC, CD=BC。

求证:∠ ADC+∠ B=180°
例 2:已知,如图5,△ ABC的角平分线BM、 CN相交于点P,求证:∠ BAC的平分线也经过点P。

3、作角平分线的垂线构造等腰三角形
例1:已知,如图 6,∠ BAD=∠ DAC, AB>AC, CD⊥ AD于 D,H 是 BC的中点。

1
求证: DH( AB AC)
例 2:如图 7, AB=AC,∠ BAC=90°, BD平分∠ ABC, CE⊥ BE。

求证: BD=2CE。

例 3:已知,如图8,在△ ABC中, AD、 AE分别是△ BAC的内、外角平分线,过顶点B作 BF⊥ AD,交AD的延长线于 F,连结 FC 并延长交 AE于 M。

求证: AM=ME。

例 4:已知,如图9,在△ ABC中, AD平分∠ BAC,AD=AB,CM⊥ AD交 AD延长线于 M。

求证: AM 1 ( AB AC) 。

2
二、截长补短法
例 1:如图 10,正方形 ABCD中, E 为 BC上的一点, F 为 CD上的一点, BE+DF=EF。

求∠ EAF的度数。

例 2:如图 11,△ ABC是边长为 1 的正三角形,△BDC是顶角为
一个角 MDN=60°,点 M、 N 分别在 AB、 AC上,求△ AMN的周
长。

120°的等腰三角形,以D为顶点作
例 3:已知,如图12,△ ABC中, AD 是
角三角。

求证:EF=2AD。

BC边上的中线,分别

AB边, AC为直角边各向外作等腰直
例4:如图 13,已知在△ ABC中,∠ BAC=60°,∠ C=40°, P、 Q分别在 BC、 CA上,且 AP、 BQ分别平分∠ BAC、∠ ABC。

求证: BQ+AQ=AB+BP
三、由中点联想到的辅助线
1、由中点应联想到利用三角形的中位线
例:如图 14,在四边形 ABCD中, AB=CD,E、 F 分别是 BC、 AD 的中点, BA、 CD 的延长线分别交 EF 的延长线于 G、 H。

求证:∠ BGE=∠ CHE。

2、由中线联想到中线倍长
例 1:如图15,已知△ ABC中, AD 平分∠ BAC, AD 又是 BC边上的中线。

求证:△ ABC是等腰三角形。

例2:如图 16,已知△ ABC中, AB=5, AC=3,连 BC上的中线 AD=2。

求 BC的长。

3、直角三角形斜边上的中点联想到斜边上的中线的性质
例 1:如图 17,已知梯形ABCD中, AB∥ CD, AC⊥ BC, AD⊥ BD。

求证: AC=BD。

四、构造平行线,利用平行线分线段成比例定理求线段的比值
例1:如图 18,在△ ABC中, BD: DC=1:3, AE:ED=2: 3,求 AF:FC的值。

例2:如图 19, BC=CD, AF=FC,求 EF: FD的值。

例 3:如图 20, BD: DC=1: 3, AE: EB=2:3。

求 AF:FD的值。

外角等于它不相邻的两个内五、利用三角形中西边之和大于第三边,两边之差小于第三边,及一个
角和,通过添加辅助线构造三角形,从而证明有些不相等关系。

例1:如图 21,点 D、E 为△ ABC内两点。

求证: AB+AC>BD+DE+CE。

例 2:如图 22,已知 D是△ ABC内的任一点。

求证:∠BDC > ∠ BAC。

例 3:如图 23,已知 AD是△ ABC的中线,且∠1=∠ 2,∠ 3=∠ 4。

求证: BE+CF>EF.。

相关文档
最新文档