积分第二中值定理证明_139202166

积分第二中值定理证明_139202166
积分第二中值定理证明_139202166

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

积分第二中值定理证明

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。 首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。 证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到 Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt = Φ(x) + ∫f(t)dt 即 Φ(x+Δx) - Φ(x) = ∫f(t)dt 应用积分中值定理,可以得到 Φ(x+Δx) - Φ(x) = μΔx 其中m<=μ<=M,m、M分别为f(x)在[x,x+Δx]上的最小值和最大值,则当Δx->0 时,Φ(x+Δx) - Φ(x)->0,即 lim Φ(x+Δx) - Φ(x) = 0(当Δx->0) 因此Φ(x)为连续函数 其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为 Φ'(x) = f(x) 证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|<δ时,对于一切的t属于[x,x+Δx],|f(t)-f(x)|<ε恒成立(根据函数连续的ε-δ定义得到),得f(x)-ε0时, Φ'(x) = lim [Φ(x+Δx) - Φ(x)]/Δx = lim μ = f(x) 命题得证。 由以上可得,Φ(x)就是f(x)的一个原函数。设F(x)为f(x)的任意一个原函数,得到 Φ(x)=F(x)+C 当x=a时,Φ(a)=0(由定义可以得到),此时 Φ(a)=0=F(a)+C 即C=-F(a) 得到 Φ(x)=F(x)-F(a) 则当x=b时,Φ(b)=∫f(x)dx,得到 Φ(b)=∫f(x)dx = F(b)-F(a)

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

积分平均值定理、积分第二中值定理

定积分不有等式、积分平均值定理、积分第二中值定理(连续可微情形)的证明 简单不等式 定理1、设)(x f 在[]b a ,上可积,且0)(≥x f ,([]b a x ,∈),则有?≥b a dx x f 0)(。 定理2、设)(x f 在[]b a ,上连续且非负,(即0)(≥x f ,[]b a x ,∈),如果)(x f 不恒等于0,则有?>b a dx x f 0)(。 证明:由条件得,存在一点[]b a x ,0∈使0)(0>x f 。由连续函数的性质,存在一个子区间[]βα,,适合[][]b a x ,,0?∈βα,使得对一切[]βα,∈x ,有 )(21)(0x f x f ≥ 由积分对区间的可加性,知????++=b a a b dx x f dx x f dx x f dx x f αβ βα)()()()( ?≥β αdx x f )( ? ≥βαdx x f )(210 0))((2 10>-=αβx f 。 推论1、设[]0,,≥∈f b a f ,如果有?=b a dx x f 0)(,则有0)(=x f ,[] b a x ,∈。 推论2、设[]b a f ,∈,如果对任意[]b a g ,∈都有?=b a dx x g x f 0)()(,则必有0)(=x f , []b a x ,∈。 积分平均值定理 定理3、设[],f C a b ∈,则存在),(b a ∈ξ,使得?-=b a a b f dx x f ))(()(ξ 证明:设m M ,分别是f 在[]b a ,上的最大值和最小值,显然[]b a x M x f m ,,)(∈≤≤ 于是 ???≤≤b a b a b a Mdx dx x f mdx )( )()()(a b M dx x f a b m b a -≤≤-? 从而有 M dx x f a b m b a ≤-≤?)()(1。 如果M m =,则)(x f 常数,则对任意),(b a ∈ξ, 有?-=b a a b f dx x f ))(()(ξ。

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

(新)积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数, ()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

积分中值定理

编号 2010011202 毕业论文(设计) ( 2014 届本科) 论文题目:积分中值定理 学院:数学与统计学院 专业:数学与应用数学 班级: 2010级本科(2)班 作者姓名:曹强 指导教师:完巧玲职称:副教授 完成日期: 2014 年 5 月 5 日

目录 诚信声明-------------------------------------------------------------------------------------------------- 错误!未定义书签。摘要 ---------------------------------------------------------------------------------------------------------------------------------- 2 1积分中值定理 ------------------------------------------------------------------------------------------------------------------- 2 1.1定积分中值定理及推广 ---------------------------------------------------------------------------------------------- 2 1.1.1定积分中值定理----------------------------------------------------------------------------------------------- 2 1.1.2定积分中值定理的推广 ------------------------------------------------------------------------------------- 2 1.2定积分第一中值定理及推广---------------------------------------------------------------------------------------- 3 1.2.1定积分第一中值定理----------------------------------------------------------------------------------------- 3 1.2.2定积分第一中值定理的推广 ------------------------------------------------------------------------------- 3 1.3定积分第二中值定理及推广---------------------------------------------------------------------------------------- 4 1.3.1定积分第二中值定理----------------------------------------------------------------------------------------- 4 1.3.2积分第二中值定理的推广 ---------------------------------------------------------------------------------- 6 1.4 重积分的中值定理 --------------------------------------------------------------------------------------------------- 7 1.4.1二重积分的中值定理----------------------------------------------------------------------------------------- 7 1.4.2三重积分的中值定理----------------------------------------------------------------------------------------- 8 1.5曲线积分中值定理 ---------------------------------------------------------------------------------------------------- 8 1.5.1第一曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.5.2第二曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.6 曲面积分中值定理 -------------------------------------------------------------------------------------------------- 10 1.6.1第一曲面积分中值定理 ------------------------------------------------------------------------------------ 10 1.6.2第二曲面积分中值定理 ------------------------------------------------------------------------------------ 10 2中值点的渐进性 --------------------------------------------------------------------------------------------------------------- 10 2.1第一积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 10 2.2第二积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 13 3积分中值定理的应用--------------------------------------------------------------------------------------------------------- 14 3.1估计积分值------------------------------------------------------------------------------------------------------------- 14 3.2求含定积分的极限 --------------------------------------------------------------------------------------------------- 15 3.3确定积分值符号 ------------------------------------------------------------------------------------------------------ 15 3.4比较积分大小---------------------------------------------------------------------------------------------------------- 16 3.5证明函数的单调性 --------------------------------------------------------------------------------------------------- 16 3.6证明定理---------------------------------------------------------------------------------------------------------------- 16 结论 ------------------------------------------------------------------------------------------------------------------------------- 18 参考文献--------------------------------------------------------------------------------------------------------------------------- 19 英文摘要-------------------------------------------------------------------------------------------------- 错误!未定义书签。致谢 ------------------------------------------------------------------------------------------------------------------------------- 21

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

积分第一中值定理及其推广证明备课讲稿

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

二、三重积分中值定理的证明与应用

《数学分析》自主研究课题: 二、三重积分中值定理的证明和应用 摘要:本报告探究的是由积分第一中值定理和推广的积分第一中值定理引伸出的推广形式的二重积分中值定理和二、三重积分中值定理的证明及其相关应用。 关键词:积分第一中值定理,推广形式的二重积分中值定理,二、三重积分中值定理 一、引言 在《数学分析》的学习过程中我们已经详细了解了的积分第一中值定理(一重积分中值定理)及其证明和应用,而对二、三重积分中值定理并没有给出详细的证明和应用,所以本报告将详细的对其作出证明和说明其简单的应用. 二、积分第一中值定理(一重积分中值定理) (积分第一中值定理)若f 在[a,b]上连续,则至少存在一点ε∈[a,b],使得 )()()(a b f dx x f b a -=? ε.

??=D D S f d y x f ),(),(ηεσ和(推广形式的积分第一中值定理)若f 和g 都在[a,b]上连续,且)(x g 在[a,b]上不变号,则至少存在一点b][a,∈ε,使得 ? ?=b a b a dx x g f dx x g x f )()()()(ε (明显当1g ≡) (x 时,即为积分第一中值定理) 三、推导二、三重积分中值定理及证明 由积分第一中值定理我们类似的推导出 二重积分中值定理:若),(y x f 在有界闭区域D 上连续,则存 在D ∈) ηε,(,使得 ??=D D S f d y x f ),(),(ηεσ, 这里S D 是区域D 的面积. 证明:由于),(y x f 在有界闭区域D 上连续,S D 为这个区域的面积.存在最大值M 和最小值m ,得 m ≤),(y x f ≤M,D y x ∈),(, 使用积分不等式性质得 mS D ≤??D d y x f σ),(≤MS D , 即 m ≤ ??D D d y x f S σ),(1 ≤M. 再由连续函数的介值性,至少存在一点D ∈) ηε,(,使 ??= D D d y x f S f ,),(1 ),(σηε 即

积分第二中值定理的证明

上一篇文章讲了积分第一中值定理的证明,并给出了积分第一中值定理更一般的形式,这篇主要讲积分第二中值定理的证明。 积分第二中值定理: ()f x 在区间[,]a b 上可积,()x ?在区间[,]a b 上单调,那么在[,] a b 上存在内点ξ,使得: ()()(0)()(0)()b b a a f x x dx a f x dx b f x dx ξξ ???=++-? ?? 特别的,当()x ?在区间[,]a b 两端连续时,有 ()()()()()()b b a a f x x dx a f x dx b f x dx ξ ξ ???=+? ? ? 积分第二中值定理是一个更为精确的分析工具,在证明这个定理之前,先介绍Abel 引理。 Abel 引理:数列{}n a 和{}n b ,对于任意的2 10 n n >>,有 2 2 22111 1 1111()()n n n n n n n n n n n n n n n n a b b b a a a b a b -++-==-= -+-∑∑ 实际上: 2 1111112221 1111111122222 1111111122111111111211111121()()()...() ()()...()()()...(n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a b b a b b a b b a b b a b b a a b a a b a a a b a b b a a b a a b a --++-=-++++---++++---=-+-++-=-+-+-++-+=-+-+-++∑222222 2 22111 111111 )()()n n n n n n n n n n n n n n n n a b a a a b b a a a b a b ++++-=-+-+-+-∑ 下面给出Abel 引理的一个理解方式,便于记忆。众所周知,积分与求和,微分与差分有许多相似之处,一个是对连续函数而言,一

微分中值定理的证明题[1](1)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ?∈ (,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 证:将上等式变形得:1111 111111 (1)()b a e e e b a b a ξξ-=-- 作辅助函数1 ()x f x xe =,则()f x 在11[,]b a 上连续,在11 (,)b a 内可导, 由拉格朗日定理得: 11()()1()11f f b a f b a ξ-'=- 1ξ11(,)b a ∈ , 即 1111(1)11b a e e b a e b a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ?∈,使得0()0F x '= 又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈?(0,1),即证

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

相关文档
最新文档