(完整版)煤油冷却器毕业课程设计
煤油冷却器的设计 化工原理课程设计
课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级食品营养与检测学生姓名学号指导教师二O O年12 月31 日目录1.设计任务 ----------------- 12. 设计计算 ----------------- 2(1)确定设计方案 ---------------------- 2(2)确定物性系数-------------------------- 2(3)计算总传热系数 ------------------- 3 (4)计算传热面积--------------------------- 4(5)工艺结构尺寸--------------------------- 4(6)换热器核算 ------------------------ 53. 换热器主要结构尺寸和计算结果表1 9煤油冷却器的设计列管式换热器【设计任务】一、设计题目列管式换热器的设计二、设计任务及操作条件(1)处理能力: M*103 t/Y(其中:M=30+学号后两位)煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度110℃,出口温度60℃。
②冷却介质:循环水,入口温度29℃,出口温度39℃。
③允许压降:不大于105 Pa。
④煤油定性温度下的物性数据:定压比热容=3.297kJ/(kg.℃)导热系数=0.0279 W/(m.0C)⑤每年按330天计,每天24小时连续运行。
(4)建厂地址蚌埠地区三、设计要求试设计一台适宜的列管式换热器完成该生产任务。
【设计计算】一、确定设计方案1.选择换热器的类型两流体温度变化情况:热流体进口为温度110℃,出口温度60℃;冷流体(循环水)进口温度29℃,出口温度39℃。
该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用带膨胀节的固定管板式换热器。
2.流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
煤油冷却器课程设计
煤油冷却器课程设计煤油冷却器课程设计简介煤油冷却器是一种能够将热能转化为机械能的装置,主要用于农业、交通运输、建筑等行业,起到降温、润滑、提高效率的作用。
本文将介绍煤油冷却器的课程设计,主要包括课程设计的目的、内容、教学方法和评估标准。
目的通过本次课程设计,学生将能够:1.了解煤油冷却器的结构和原理,掌握其工作原理和应用场景;2.完成一个小型煤油冷却器的制作,掌握实验操作技能;3.通过分析实验结果,加深对煤油冷却器原理的理解,提高解决实际问题的能力。
内容本次课程设计将分为以下四个部分:1.课程理论讲授首先,将介绍煤油冷却器的结构特点和工作原理,对于煤油冷却器的实际应用场景进行分析和解释。
其中包括:(1)冷却器的原理和种类(2)煤油冷却器的特点和设计原则(3)冷却器的使用和维护2.实验器材准备根据所需器材、器件以及材料进行规划购买,同时并准备实验前的各种开展实验所需的仪器,如多用表、温度计、热枪等,另外仪器准备后还须复核检查是否齐全、检验所准备的器材是否正常,确保器材完整,准备工作得当。
3.实验操作在实验讲解和演示的基础上,学生将根据所提供的样品进行实际操作,测定煤油冷却器的性能参数,调整气口数量或位置、重组插片、筛网等,从而达到最佳性能。
4.结果分析和评价在实验完成后,学生需要进行数据处理和分析,通过整理实验结果,并各自自然地描述各项数据的变化表现。
在综合分析之后,画出实验数据的数据曲线,比较实验结果,识别出具体差异。
教学方法本次课程设计采用以下教学方法:1.小组合作学习会将学生分为小组,每个小组将负责实验器材的准备、实验操作、数据收集和结果分析。
此方法将鼓励学生积极参与和合作,促进团队互助合作。
2.实验操作演示老师将根据规定的操作演示其理当的操作步骤,帮助学生更快速地学习理论和品味实践。
同时还需对关键操作环节进行一些具体分析和口头指导。
3.互动讨论在学生完成了实验操作之后,将进行整个实验过程的讨论,对实际操作和数据误差进行分析和讨论。
煤油冷却器毕业设计
煤油冷却器毕业设计毕业设计:煤油冷却器设计摘要:本文介绍了一种基于煤油的冷却器设计,该设计主要用于冷却热水器、发动机等设备。
本设计中采用了顶盖螺丝、底座、热管、铝鳍片等部件。
通过改变顶盖螺丝的材料、直径,底座的形状、尺寸,铝鳍片的数量、厚度,优化了冷却器的导热、换热性能。
最终实验结果表明,该煤油冷却器的性能稳定可靠,可广泛应用于不同领域的冷却需求。
关键词:煤油冷却器、热管、铝鳍片、导热、换热1. 引言随着科技的发展和工业的进步,越来越多的设备需要进行降温或冷却。
冷却器作为一种实用的降温设备,广泛应用于发动机、热水器、空调等各类设备中。
本文介绍了一种基于煤油的冷却器设计,旨在提高冷却器的效率和稳定性。
2. 冷却器设计本设计采用了顶盖螺丝、底座、热管、铝鳍片等部件。
其中,热管是冷却器的核心部件,其内部填充着煤油等导热介质。
铝鳍片的作用是增大冷却器的散热面积,提高散热效率。
在设计中,我们改变了顶盖螺丝的材料、直径,底座的形状、尺寸,铝鳍片的数量、厚度等因素,通过优化这些因素,提高了冷却器的导热、换热性能。
3. 实验结果本设计的煤油冷却器经过多组实验测试,其性能稳定可靠。
在实验中,我们将冷却器接入发动机冷却回路进行测试,测试结果表明,冷却器的降温效果明显,能够使发动机工作温度下降10℃左右,并能够稳定工作长达100小时以上。
4. 结论本文介绍了一种基于煤油的冷却器设计,优化了冷却器的导热、换热性能,通过实验验证了该设计的可靠性和稳定性。
该煤油冷却器的技术应用前景广阔,可以应用于不同领域的冷却需求。
煤油冷却器的课程设计1
煤油冷却器的课程设计1板式换热器设计任务书一、设计题目:煤油冷却器的设计二、设计任务1 、处理能力:19.8 X 104 t年煤油2 、设备型号:列管式换热器3 、操作条件:煤油:入口温度140C,出口温度40C冷却介质:循环水,入口温度30C,出口温度38C允许压降:不大于105Pa每年按330 天计建厂地址:广西三、设计要求1 、选择适宜的列管式换热器并进行核算2 、要进行工艺计算3 、要进行主体设备的设计(主要设备尺寸、横算结果等)4 、编写设计任务书5 、进行设备结构图的绘制(用420*594 图纸绘制装置图一张:一主视图,一俯视图。
一剖面图,两个局部放大图。
设备技术要求、主要参数、接管表、部件明细表、标题栏。
)化工原理课程设计说明书题目:列管式换热器的设计系别:班级:学号:姓名:指导教师:日期:2019 年1 月5 日目录、设计方案............................................ (5)1.换热器的选择..... 5 2.流动空间及流速的确定.................... 5二、物性数据.......... 5三、计算总传热系数: (6)1.热流量......... 6 2.平均传热温差..... 63.冷却水用量..6 4.总传热系数K......... 6四、计算换热面积... 7五、工艺结构尺寸... 71.管径和管内流速..7 2.管程数和传热管数............................. 73.平均传热温差校正及壳程数............. 8 4.传热管排列和分程方法..................... 8 5.壳体内径..... 8 6.折流.................. 8 7.接板管........................... 8六、换热器核算..... (9)1.热量核算.............. 9 2.热量重新核算......... 1 0 3.换热器内流体的流动阻力.............. 1 1 4.换热器主要结构尺寸和计算结果.................................................... 13 七、设计的评述..................... ................................................. 14 八、参考文献 ..................................................... 14 九、主要符号说明 ............................................. 15 十、主体设备条件图及生产工艺流程图........................................... (15)1 换热器类型的选择在本次设计任务中,两流体温度变化情况:热流体进口温度140C,出口温度40C;冷流体(循环水)进口温度30C,出口温度38C。
化工设计-煤油冷却器
化工设计说明书设计题目:煤油冷却器的设计专业班级:设计人:学号:指导老师:时间:前言化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。
通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。
化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。
其基本内容为:(1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。
(2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。
(3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。
(4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。
(5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。
(6)设计说明书的编写。
设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。
整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且是上述这些行业的通用设备,占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。
完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。
课程设计——煤油冷却器
化工原理课程设计题目煤油冷却器学院名称化学化工学院指导教师职称教授班级学号学生姓名2015年9月8日目录目录目录 (I)前言.............................................................. I I 概述 (1)第二章设计任务与条件 (2)第三章工艺设计 (3)3、1生产条件的确定 (3)3、2换热器的设计计算 (3)3、2、1确定设计方案 (3)3、2、2确定物性数据 (3)3、2、3计算总传热系数 (4)3、2、4计算传热面积 (5)3、2、5工艺结构尺寸 (5)3、2、6换热器核算 (7)第四章设计结果列表 (11)4、1换热器主要结构尺寸与计算结果 (11)4、2设计结果的讨论 (12)结束语 (12)参考文献 (13)符号说明 (13)附录 (14)前言煤油一般就是通过对石油进行分馏而制得,刚刚分馏得到的煤油温度会比较高,不利于保存与运输等,需要进行冷却。
在工业大生产过程中自然冷却远远达不到煤油冷却的时间要求,选用低温水进行冷却就是比较好的冷却方式。
设计性能优良的冷却器就十分的必要了,本文通过大量数据运算得到的理论冷却器比较接近现实生产要求,有待于进一步的实践证实与运用。
关键词:煤油;水;换热器概述在化工、石油、能源、制冷、食品等行业中广泛使用各种换热器,它们也就是这些行业的通用设备,并占有十分重要的地位。
随着换热器在工业生产中的地位与作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器就是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
列管式换热器有以下几种:1、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完佺消除了温差应力。
特点:结构复杂、造价高,便于清洗与检修,消除温差应力,应用普遍。
设计评述:1、在换热器选型的时候,考虑各种常用的换热器优缺点:⑴固定板式换热器:结构简单,在相同的壳体直径内,排管最多,比较紧凑,使壳侧清洗困难。
煤油冷却器的设计
西北大学化工原理课程设计任务书设计题目煤油冷却器院系化工学院专业化学工程与工艺指导教师赵彬侠姓名张洪姣学号2008115023目录(一)设计题目(二)流程和方案的说明和论证(三)计算过程(四)流程图(五)设计感想(六)参考文献一、设计题目:根据条件设计合适的换热器(煤油冷却器的设计)设计任务及操作条件:1.煤油:入口温度150℃,出口温度50℃;运行表压1bar。
2.冷却介质:凉水塔中处理过的补给水,入口温度30℃,出口温度50℃;运行表压3bar。
二、流程和方案的说明和论证1.传热过程易采用逆流传热方式,因为逆流平均推动力大于并流;选用单壳程四管程固定式列管换热器;2.流体空间的选择:由于煤油流量为14T/h,且由于水的定性温度t=1/2(50+30)=40℃,煤油定性温T=1/2(150+50)=100℃,煤油的定性温度查得相应的物性值:煤油的粘度:μ油=0.81×10-3Pa.S 密度:ρ油=818kg/m3 C油=2.26kJ/(kg. ℃)λ油=0.135W/(m. ℃)水的粘度:μ水=0.656×10-3Pa.S 密度:ρ水=992.2kg/m3C水=4.174kJ/(kg. ℃)λ水=0.6333W/(m. ℃)高温流体一般走管程,因为高温会降低材料的许用应力,高温流体走管程可节省保温层和减少壳体厚度;腐蚀性较强的流体应该走管程,可以节省耐腐蚀材料;较脏和易结垢的流体走管程,以便于清洗和控制结垢,如必须走管程,则可采用正方形排列,并采用可拆式换热器。
且煤油为热物体,易放在管壳。
流体空间的选择还与粘度、压力降、流速、传热膜系数等因素有关。
根据上述原则及水和煤油的物性参数,最终设计煤油走管壳,水走管程。
结构与结构参数的选择a) 直径小的换热器不仅便宜,而且可以获得较好的传热膜系数与阻力系数的比值。
但管径愈小则换热器的压降愈大,在满足允许压力的前提下,一般推荐用外径为19mm ,对于易结垢的流体,为方便清洗,采用外径为25mm 的管子b) 管长 无相变的换热器时,管子较长则传热系数也增大,在相同的传热面积的情况下,采用长管流动截面积小,流速大,管程数小,从而减小了回弯次数,因而压降也较小;但是罐子过长会带来制造的麻烦,因此一般选用4—6米,对于传热面积大的,若无相变的可用8—9米。
管式换热器(煤油冷却器)的设计
课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级09级生物工程(2)班学生姓名学号指导教师孙兰萍二O一一年十二月二十日1 设计任务书1.1 设计题目煤油冷却器的设计1.2 设计任务及操作条件(1)处理能力: M ⨯104 t/Y 煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度140℃,出口温度40℃。
②冷却介质:循环水,入口温度30℃,出口温度40℃。
③允许压降:不大于105 Pa 。
④煤油定性温度下的物性数据:3/825m kg C =ρ;s Pa C ⋅⨯=-41015.7μ;pC c =2.22kJ/(kg.℃);C λ=0.14 W/(m.℃)⑤每年按330天计,每天24小时连续运行。
(4)建厂地址 天津地区1.3 设计要求试设计一台适宜的列管式换热器完成该生产任务。
1.4 工作计划1、领取设计任务书,查阅相关资料(1天);2、确定设计方案,进行相关的设计计算(2天);3、校核验算,获取最终的设计结果(1天);4、编写课程设计说明书(论文),绘制草图等(1天)。
1.5 设计成果要求1、通过查阅资料、设计计算等最终提供课程设计说明书(论文)电子稿及打印稿1份,并附简单的设备草图。
2、课程设计结束时,将按以下顺序装订的设计成果材料装订后交给指导教师:(1)封面(具体格式见附件1)(2)目录(3)课程设计任务书(4)课程设计说明书(论文)(具体格式见附件2)(5)参考文献(6)课程设计图纸(程序)1.6 几点说明1、本设计任务适用班级:09生物工程(本)2班(其中:学号1-15号,M=15;学号16-30号,M=25;学号31-46号,M=40);2、课程设计说明书(论文)格式也可参阅《蚌埠学院本科生毕业设计(论文)成果撰写规范》中的相关内容。
指导教师:教研室主任:系主任:2 确定设计方案2.1 选择换热器的类型两流体的温度变化情况:热流体即煤油的进口温度140℃,出口温度40℃;冷流体即循环水进口温度30℃,出口温度40℃。
课程设计——煤油冷却器
化工原理课程设计题目煤油冷却器学院名称化学化工学院指导教师职称教授班级学号学生姓名2015年9月8日目录目录目录 (I)前言.............................................................. I I 概述 (1)第二章设计任务与条件 (2)第三章工艺设计 (3)3、1生产条件的确定 (3)3、2换热器的设计计算 (3)3、2、1确定设计方案 (3)3、2、2确定物性数据 (3)3、2、3计算总传热系数 (4)3、2、4计算传热面积 (5)3、2、5工艺结构尺寸 (5)3、2、6换热器核算 (7)第四章设计结果列表 (11)4、1换热器主要结构尺寸与计算结果 (11)4、2设计结果的讨论 (12)结束语 (12)参考文献 (13)符号说明 (13)附录 (14)前言煤油一般就是通过对石油进行分馏而制得,刚刚分馏得到的煤油温度会比较高,不利于保存与运输等,需要进行冷却。
在工业大生产过程中自然冷却远远达不到煤油冷却的时间要求,选用低温水进行冷却就是比较好的冷却方式。
设计性能优良的冷却器就十分的必要了,本文通过大量数据运算得到的理论冷却器比较接近现实生产要求,有待于进一步的实践证实与运用。
关键词:煤油;水;换热器概述在化工、石油、能源、制冷、食品等行业中广泛使用各种换热器,它们也就是这些行业的通用设备,并占有十分重要的地位。
随着换热器在工业生产中的地位与作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器就是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
列管式换热器有以下几种:1、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完佺消除了温差应力。
特点:结构复杂、造价高,便于清洗与检修,消除温差应力,应用普遍。
设计评述:1、在换热器选型的时候,考虑各种常用的换热器优缺点:⑴固定板式换热器:结构简单,在相同的壳体直径内,排管最多,比较紧凑,使壳侧清洗困难。
煤油冷却器的设计换热器毕业设计
摘要这篇论文主要介绍的是换热器机械计算等相关的设计过程。
本文引用这三年学过的书本知识及相关的技术标准,对换热器的结构、强度进行了系统的阐述。
换热器是目前许多工业部门广泛应用的通用工艺设备。
其中,换热器是目前应用较为广泛的换热设备。
优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。
缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。
我设计的换热器内部以换热管和折流板做为基本构件,冷介质、余热介质分别在管程与壳程之间流动,以达到降温或升温的效果。
换热器由筒体、管箱、封头、支座、换热管、折流板、管板及接管、法兰等组成。
通过强度计算合理选择材料,确保安全运行,提高设备的生产效率,降低设备的制造成本,实现化工单元操作的最佳化。
关键词: 换热器管箱壳体管板封头目录1 毕业设计任务书.............................................. - 1 -1.1 题目 ...................................................................................................................................... - 1 - 1.2 任务及操作条件 .................................................................................................................. - 1 -1.3 列管式换热器的选择与核算............................................................................................... - 1 -2 概述........................................................ - 2 -2.1 换热器概述 .......................................................................................................................... - 2 - 2.2 固定管板式 .......................................................................................................................... -3 - 2.3设计背景及设计要求............................................................................................................ -4 - 2.3.1 设计背景 ....................................................................................................................... - 4 -2.3.2 设计要求 ....................................................................................................................... - 4 -3 热量设计.................................................... - 6 -3.1 初选换热器的类型............................................................................................................... - 6 - 3.2 管程安排(流动空间的选择)及流速确定............................................................................ - 6 - 3.3 确定物性数据 ...................................................................................................................... - 7 - 3.4 计算总传热系数 .................................................................................................................. - 7 - 3.4.1 煤油的流量.................................................................................................................... - 7 - 3.4.2 热流量 ........................................................................................................................... - 7 - 3.4.3 平均传热温差................................................................................................................ - 7 - 3.4.4 冷却水用量.................................................................................................................... - 8 - 3.4.5 总传热系数K................................................................................................................ - 8 -3.5计算传热面积 ..................................................................................................................... - 11 -4 机械结构设计............................................... - 12 -4.1 管径和管内流速 ................................................................................................................ - 12 -4.2 管程数和传热管数............................................................................................................. - 12 - 4.3 平均传热温差校正及壳程数............................................................................................. - 12 - 4.4 壳程内径及换热管选型汇总............................................................................................. - 13 - 4.4.1 壳体内径 ..................................................................................................................... - 13 - 4.4.2 换热管的选型汇总...................................................................................................... - 14 - 4.5 折流板 ................................................................................................................................ - 15 - 4.6 接管 .................................................................................................................................... - 18 - 4.6.1 壳程流体进出口时接管.............................................................................................. - 18 - 4.6.2 管程流体进出口时的接管.......................................................................................... - 18 - 4.6.3 接管最小位置.............................................................................................................. - 18 - 4.7 壁厚的确定、封头........................................................................................................... - 19 - 4.7.1 壁厚 ............................................................................................................................. - 19 - 4.7.2 椭圆形封头.................................................................................................................. - 19 - 4.8管板 ..................................................................................................................................... - 20 - 4.8.1 管板结构尺寸.............................................................................................................. - 20 - 4.8.2 管板与壳体的连接...................................................................................................... - 20 - 4.8.3 管板厚度 ..................................................................................................................... - 21 - 4.9 换热管 ................................................................................................................................ - 21 - 4.9.1 换热管的规格及尺寸偏差.......................................................................................... - 21 - 4.9.2 传热管排列和分程方法.............................................................................................. - 21 - 4.9.3 横过管束中心线的管数.............................................................................................. - 22 - 4.9.4 布管限定圆.................................................................................................................. - 22 - 4.10 分程隔板 .......................................................................................................................... - 23 - 4.10.1 分程隔板尺寸............................................................................................................ - 23 -4.10.2 管子和分程隔板的连接............................................................................................ - 23 - 4.11拉杆.................................................................................................................................... - 23 - 4.11.1 拉杆的直径与数量.................................................................................................... - 23 - 4.11.2 连接与尺寸................................................................................................................ - 24 - 4.12换热管与管板的连接........................................................................................................ - 25 - 4.13. 防冲板或导流筒的选择、鞍式支座的示意图(BI型) .................................................. - 26 - 4.13.1 防冲板或导流筒的选择.......................................................................................... - 26 - 4.14.膨胀节的设定讨论............................................................................................................ - 26 - 4.14.1 管壁温度的估算........................................................................................................ - 26 -4.14.2 管子拉脱力................................................................................................................ - 26 -5、换热器核算................................................ - 28 -5.1热量核算 ............................................................................................................................. - 28 - 5.1.1 壳程对流传热系数...................................................................................................... - 28 - 5.1.2 管程对流传热系数...................................................................................................... - 29 - 5.1.3 传热系数K.................................................................................................................. - 29 - 5.1.4 传热面积S .................................................................................................................. - 30 - 5.2流动阻力的计算 ................................................................................................................. - 30 - 5.2.1管程流动阻力............................................................................................................... - 30 -5.2.2 壳程流动阻力.............................................................................................................. - 31 -6、管束振动的计算............................................ - 33 -6.1换热器的振动 ..................................................................................................................... - 33 - 6.1.1 撞击破坏 ..................................................................................................................... - 33 - 6.1.2 挡板损伤 ..................................................................................................................... - 33 - 6.1.3 接头泄漏 ..................................................................................................................... - 33 -6.1.4 应力疲劳 ..................................................................................................................... - 33 - 6.1.5 冶金失效 ..................................................................................................................... - 34 - 6.1.6 材料缺陷扩展.............................................................................................................. - 34 - 6.2流体诱发换热器管束振动机理.......................................................................................... - 34 - 6.2.1 漩涡脱落诱导振动...................................................................................................... - 34 - 6.2.2 紊流抖振 ..................................................................................................................... - 35 - 6.2.3 流体弹性激振.............................................................................................................. - 36 -6.3管束振动的计算 ................................................................................................................. - 36 -7、设计结果表汇.............................................. - 38 -谢词....................................................... - 40 -参考文献..................................................... - 42 -1 毕业设计任务书1.1 题目煤油冷却器的设计1.2 任务及操作条件1.2.1 处理能力:10万吨/年煤油1.2.2 设备形式:列管式换热器1.2.3 操作条件(1).煤油:入口温度140℃,出口温度40℃(2).冷却介质:自来水,入口温度30℃,出口温度40℃(3).允许压强降:不大于100kPa(4).煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃)(5).每年按330天计,每天24小时连续运行1.3 列管式换热器的选择与核算1.3.1 传热计算1.3.2 管、壳程流体阻力计算1.3.3 管板厚度计算1.3.4 U形膨胀节计算(浮头式换热器除外)1.3.5 管束振动1.3.6 管壳式换热器零部件结构2 概述2.1 换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。
煤油冷却器课程设计
课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级)姓名学号指导教师起止日期化工原理课程设计任务书系主任___________ 指导教师____________ 学生__ _____编号:2.2.7一、设计题目名称:煤油冷却器的设计 二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水(P 为0.3MPa ,进口温度28℃,出口温度40℃) 3.允许压强降,不超过105Pa ;4.每年按300天计;每天24 h 连续运转。
5.处理能力65000吨/年; 6.设备型式:列管式换热器。
7.煤油定性温度下的物性数据:34c c p,c c 825kg /m ,7.1510Pa s, c 2.22kJ/kg C 0.14W /m C -==⨯⋅=⋅︒=⋅︒(),()ρμλ三、设计内容1.热量衡算及初步估算换热面积; 2. 冷却器的选型及流动空间的选择; 3. 冷却器的校核计算; 4. 结构及附件设计计算;5.绘制带控制点的工艺流程图(A3)及冷却器的工艺条件图(A3); 6.编写设计说明书。
四、厂址:长沙地区五、设计任务完成卧式列管冷却器的工艺设计并进行校核计算,对冷却器的有关附属设备的进行设计和选用,绘制换热器系统带控制点的工艺流程图及设备的工艺条件图,编写设计说明书。
六、设计时间安排三周:2012年5月28日-2012年6月16第一章长沙学院课程设计鉴定表目录第1章设计方案简介 (1)1.1 换热器概述 (1)1.2列管式换热器 (1)1.2.1 固定管板式 (1)1.2.3U形管式 (2)1.3设计方案的拟定 (3)1.4工艺流程简图(见附图) (3)第二章工艺计算和主体设备设计 (4)2.1 初选换热器类型 (4)2.2 管程安排及流速确定 (4)2.3确定物性数据 (5)2.4计算总传热系数 (5)第三章工艺结构设计 (9)3.1.管径和管内流速 (9)3.2.管程数和传热管数 (9)3.3.平均传热温差校正及壳程数 (9)第四章换热器核算 (14)第五章辅助设备的计算和选型 (20)第六章设计结果表汇 (22)参考文献 (23)化工原理课程设计之心得体会 (24)第1章设计方案简介1.1 换热器概述换热器是化工,炼油工业中普遍应用的典型的工艺设备。
煤油冷却器设计
河西学院Hexi University化工原理课程设计题目: 煤油冷却器设计学院: 化学化工学院专业: 化学工程与工艺学号:姓名: 张冠雄指导教师: 王兴鹏2016年11月21日化工原理课程设计任务书一、设计题目煤油冷却器的设计二、设计任务及操作条件1.设计任务生产能力(进料量)25000 吨/年操作周期7200 小时/年2.操作条件煤油入口温度120℃,出口温度40℃冷却介质自来水,入口温度20℃,出口温度40℃允许压降≦105Pa冷却水温度20℃饱和水蒸汽压力0.25Mpa(表压)3.设备型式列管式换热器4.厂址上海(压力:1atm )三、设计内容1.设计方案的选择及流程说明2.换热器的工艺计算3.换热器的主要尺寸设计4.辅助设备选型5.设计结果汇总6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图7.设计评述目录1概述 ..................................................................................................... 错误!未指定书签。
1.1化工原理课程设计的目的、要求 .................................................. 错误!未指定书签。
1.2列管式换热器及其分类 .................................................................. 错误!未指定书签。
1.3换热器的设计要求 .......................................................................... 错误!未指定书签。
1.4符号说明 .......................................................................................... 错误!未指定书签。
煤油冷却器课程设计
煤油冷却器课程设计一、引言煤油冷却器是一种常用的热交换器,其主要功能是将高温的液体或气体通过煤油冷却器内部的管道和壳体与冷却介质(通常为水)进行换热,从而实现降温或加热的目的。
在许多工业领域,如化工、电力、钢铁等,煤油冷却器都有着广泛的应用。
本文旨在介绍煤油冷却器课程设计。
二、课程设计内容1. 煤油冷却器的原理与结构2. 煤油冷却器的性能参数及其影响因素3. 煤油冷却器的设计计算方法4. 煤油冷却器实验设计与结果分析三、煤油冷却器原理与结构1. 煤油冷却器原理:利用传导、对流和辐射三种方式将高温液体或气体传递到壳体内部,并通过内部管道将其与低温介质进行换热。
2. 煤油冷却器结构:通常由一个外壳和一个或多个管束组成。
外壳内部为冷却介质的流动通道,管束内部为高温液体或气体的流动通道。
管束和外壳之间通过密封件连接。
四、煤油冷却器性能参数及其影响因素1. 热传导系数:指单位时间内单位面积的热量传递量。
2. 换热面积:指内部管道和外壳之间的有效换热面积。
3. 流体流速:指液体或气体在管道中的流速。
4. 温度差:指高温液体或气体与低温介质之间的温度差异。
5. 影响因素:包括介质物性、管束结构、流体流量等。
五、煤油冷却器设计计算方法1. 确定换热量和换热面积;2. 计算传热系数;3. 确定壳程和管程流量;4. 计算壳程和管程压降;5. 选择管束结构及材料。
六、煤油冷却器实验设计与结果分析1. 实验目的:验证理论计算结果,分析影响换热效果的因素。
2. 实验内容:利用实验装置进行不同流量、温度差等条件下的换热实验。
3. 实验结果分析:根据实验数据分析影响换热效果的因素,并与理论计算结果进行比较。
七、总结煤油冷却器是一种重要的热交换设备,其设计涉及多个方面的知识。
通过本文的介绍,读者可以了解到煤油冷却器的原理与结构、性能参数及其影响因素、设计计算方法以及实验设计与结果分析等方面的内容。
同时,本文也为相关领域的工程师和科学家提供了参考和指导。
化工设计-煤油冷却器
化工设计说明书设计题目:煤油冷却器的设计专业班级:设计人:学号:指导老师:时间:前言化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。
通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。
化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。
其基本内容为:(1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。
(2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。
(3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。
(4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。
(5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。
(6)设计说明书的编写。
设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。
整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且是上述这些行业的通用设备,占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。
完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。
煤油冷却器课程设计
煤油冷却器课程设计一、前言煤油冷却器是一种常见的热交换设备,用于将煤油从高温冷却到低温。
本课程设计旨在通过理论学习和实践操作,使学生对煤油冷却器的结构、工作原理和操作技能有深入的了解。
二、课程目标1.掌握煤油冷却器的基本结构和工作原理;2.理解煤油冷却器在工业生产中的应用;3.掌握煤油冷却器的操作技能和维护方法。
三、课程大纲1. 煤油冷却器概述•煤油冷却器的定义和分类;•煤油冷却器的工作原理;•煤油冷却器的常见问题和应对措施。
2. 煤油冷却器结构与组成•煤油冷却器的主体结构和内部组成;•煤油冷却器中常见的材料和制造工艺;•不同型号煤油冷却器的特点和适用范围。
3. 煤油冷却器的工作原理•煤油冷却器的工作过程解析;•煤油在煤油冷却器中的流动特点;•热量传递机制和传热效率的影响因素。
4. 煤油冷却器的操作技能•煤油冷却器的正常启停操作;•煤油冷却器的温度和压力监测;•煤油冷却器的安全措施和事故处理。
5. 煤油冷却器的维护与保养•煤油冷却器的日常维护方法和注意事项;•煤油冷却器的定期检修和保养计划;•煤油冷却器故障排查和维修常见技巧。
四、实践操作本课程设计包括实践操作环节,学生将通过模拟实验操作,深入了解煤油冷却器的实际运行情况,培养实际操作能力。
五、评价方式1.理论知识测试:对学生对课程内容的理解和掌握程度进行考核;2.实践操作评估:对学生在实践操作中的操作技能和安全意识进行评估;3.课程报告:学生撰写煤油冷却器课程设计报告。
六、教学资源和参考资料•煤油冷却器实物模型;•实验室设备和工具;•相关教材和参考资料。
七、总结本课程设计旨在通过理论学习和实践操作,使学生深入了解煤油冷却器的结构、工作原理和操作技能。
通过本课程的学习,学生可以掌握煤油冷却器的基本知识,并具备使用和维护煤油冷却器的能力。
煤油冷却器的设计,化工原理课程设计
目录1设计任务书 (1)1.1设计题目 (1)1.2设计任务及操作条件 (1)1.3设计已知条件 (1)1.4设计内容 (2)2设计目的及要求 (3)2.1目的 (3)2.2要求 (3)3概述及简介 (5)4设计方案简介 (6)4.1试算并初选设备规格 (6)4.2计算管程、壳程压强降 (7)5工艺计算 (8)5.1流体走法确定 (8)5.2计算和初选换热器的规格 (8)5.3核算总传热系数 (10)5.4核算压强降 (13)6辅助设计 (17)6.1换热器主要尺寸的确定 (17)6.2法兰的确定及垫片的确定 (17)6.3支座的确定 (18)6.4筒体的确定 (19)6.6拉杆及定距管的确定 (19)6.7分程隔板的确定 (20)6.8管板尺寸的确定 (20)6.9折流板的确定 (20)6.10接管尺寸的确定 (20)6.11浮头主要尺寸的确定 (21)6.12滑板结构 (21)7计算结果汇总 (23)7.1计算结果 (23)7.1计算结果 (24)8评述 (26)9重要符号说明 (28)10参考文献 (30)1设计任务书1.1设计题目煤油冷却器的设计1.2设计任务及操作条件1、设计任务①处理能力(煤油流量) 6500 kg/h②设备型式列管式换热器2、操作条件①煤油入口温度145℃,出口温度35℃②冷却介质河水入口温度25℃,出口温度35℃③管程、壳程的压强降不大于20kPa④换热器的热损失忽略3、厂址齐齐哈尔地区1.3设计已知条件1、定性温度下两流体的物性参数(1)煤油定性温度t m=90℃ 密度ρh=825kg/m3;比热容C ph=2.22kJ/(kg.℃) 导热系数λh=0.140W/(m℃)粘度μh=0.000715Pa.s(2) 河水定性温度t m=30℃ 密度ρc=995.7kg/m3比热容C pc=4.174kJ/(kg.℃) 导热系数λc=0.6176W/(m℃) 粘度μc=0.0008007Pa.s2、管内外两侧污垢热阻分别是R si=6.9157×10-4(m2℃)/WR so=1.7085×10-4 (m2℃)/W3、管壁导热系数λw=48.85 W/(m℃)1.4设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、换热器装配图(1号图纸)7、设计评述8、参考资料*总传热系数K暂取为200W/m2℃。
煤油冷却器的课程设计
目录一.列管式换热器设计任务书二.列管式换热器设计书1.概述2.设计原则(1)流体通道的选择(2)流体流速的选择(3)流体两端温度的确定(4)管径、管子排列方式和壳体直径的确定(5)管程、壳程数的确定(6)折流板(7)换热器中传热与流体流动阻力计算3.列管式换热器的选用和设计的一般步骤4.初步设计方案5.工艺结构尺寸的计算(1)管径和管流速 (2) 管程数和传热管数(3)传热管的排列和分程方法(4) 壳体径(5) 折流板(6) 折流板6.换热器核算(1)热流量核算(2)核算压强降(3)管板厚度计算(4)膨胀节计算(5)零部件结构的选取三.附表表一:固定管板式换热器的基本参数表二:常用固定管板式换热器的传热系数的围表三:常用体流的污垢热阻四.参考文献五.心得体会列管式换热器设计任务书一设计题目:煤油冷却器的设计二设计任务及操作条件1.处理能力:15万吨/年煤油2设备形式:列管式换热器3.操作条件(1)煤油:入口温度130℃,出口温度50℃(2)冷却介质:自来水,入口温度25℃,出口温度45℃(3)允许压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃) (5)每年按330天计,每天24小时连续运行三选择适宜的列管式换热器并进行核算3.1 传热计算3.2 管、壳程流体阻力计算3.3管板厚度计算3.4 U形膨胀节计算(浮头式换热器除外)3.5 管束振动3.6 管壳式换热器零部件结构四绘制换热器装配图(A1图纸)五.参考文献[1] 夏清,玉英,常贵,等. 化工原理[M]. 天津:天津大学,2001[2] 华南理工大学化工原理教研组. 化工过程及设备设计[M]. :华南理工大学,1996[3] 刁玉玮,王立业. 化工设备机械基础(第五版)[M]. :理工大学,2000[4] 理工大学化工原理教研室.化工原理课程设计[M]. :理工大学,1996[5] 崇光,晓梅. 化工工程制图[M]. :化学工业,1998[6] 娄爱娟,吴志泉. 化工设计[M].:华东理工大学,2002[7] 华东理工大学机械制图教研组. 化工制图[M]. :高等教育,1993[8] 王静康. 化工设计[M]. :化学工业出版,1998[9] 傅启民. 化工设计[M]. :中国科学技术大学,2000[10] 董大勤. 化工设备机械设计基础[M]. :化学工业,1999[11] GB 151-1999管壳式换热器[12] JB/T 4715-92 固定管板式换热器与基本参数[13] 靳明聪. 换热器[M]. :大学,1990[14] 石油机械研究所. 换热器[M]. :烃加工,1986列管式换热器设计书一.概述在不同温度的流体间传递热能的装置称为热交换器,简称热换器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙学院课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级) 09应化2班姓名学号指导教师宋勇起止日期2012.5.28——2012.6.16化工原理课程设计任务书系主任___________ 指导教师____________ 学生__戴姣______ 2班编号:2.2.7一、设计题目名称:煤油冷却器的设计二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水(P为0.3MPa,进口温度28℃,出口温度40℃)3.允许压强降,不超过105Pa;4.每年按300天计;每天24 s。
参考数据见表2.1,表2.2[1]。
表2.1.列管式换热器内的适宜流速范围流体种类流速(ms)管程壳程一般液体0.5~3 0.5~1.5 易结垢液体>1 >0.5 气体5~30 3~15表2.2不同粘度液体的流速(以普通钢壁为例)液体粘度mPa.s >15001500~500500~100100~35 35~1 <1最大流速(ms)0.6 0.75 1.1 1.5 1.8 2.42.3确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
壳程流体(煤油)的定性温度为:℃管程流体(硬水)的定性温度为:℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
见表2.3[1]表2.3.物性数据密度(㎏m3)比热容(kJkg•℃)粘度(Pa•s)导热系数(Wm•℃)煤油825 2.22 7.15×10-40.14水34℃) 993.95 4.174 7.27×10-40.622.4计算总传热系数(1).煤油的流量已知要求处理能力为16.5万吨煤油每年(每年按300天计,每天24小时连续运行),则煤油的流量为:h Kg Wh 78.90272430010650003=⨯⨯=W h----热流体的流量,kg=0.0225 在下面的公式中,代入以上数据,可得oso i o i o si i i o R d bd d d R d d K αλα11++++=(6).计算传热面积由以上的计算数据,代入下面的公式,计算传热面积:2523.3455.406.3201045.4'm t K Q S m =⨯⨯=∆=考虑15%的面积裕度,则:第三章 工艺结构设计3.1.管径和管内流速选用Φ25×2.5的碳钢管,管长6m ,管内流速取ui=0.5ms 。
3.2.管程数和传热管数根据传热管的内径和流速,可以确定单程管子根数:n s =按单程计算,所需传热管的长度是:m n d S L s o 8.857025.014.336.39=⨯⨯==π若按单程管计算,传热管过长,宜采用多管程结构,可见取传热管长l=6m ,则该传热管程数为:则传热管的总根数为:)(114572根=⨯=⨯=s P n N N3.3.平均传热温差校正及壳程数=28.48285040130)2850()40130(=-----In℃此时: P= R=可查得: =0.84[1]﹥0.8,所以,修正后的传热温度差为: =℃于是,校正后的平均传热温差是40.55℃,壳程数为单程,管程数为2。
3.4.传热管排列和分程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。
取管心距t=1.25d 0,则 )(3225.312525.1mm t ≈=⨯= 横过管束中心线的管数根)(1311419.119.1===N n c3.5.壳程内径和换热管的选型汇总采用多管程结构,取管板利用率η=0.7,则壳体内径为mm NtD 4297.01143205.105.1=⨯⨯==η圆整可取D450mm [3]3.6.折流板设置折流板的目的是为了提高流速,增加湍动,改善传热,在卧式换热器中还起支撑管束的作用。
常用的有弓形折流板(图1-20)和圆盘-圆环形折流板(图1-21),弓形折流板又分为单弓形[图1-20(a )]、双弓形[图1-20(b )]、三重弓形[图1-20(c )]等几种形式[4]。
单弓形折流板用得最多,弓形缺口的高度h为壳体公称直径Dg的15%~45%,最好是20%,见图1-22(a);在卧式冷凝器中,折流板底部开一90°的缺口,见图1-22(b)。
高度为15~20mm,供停工排除残液用;在某些冷凝器中需要保留一部分过冷凝液使凝液泵具有正的吸入压头,这时可采用堰的折流板,见图1-22(c)[4]。
近壳体处,会有一部分液体停滞起来,形成对传热不利的“死区”。
为了消除这种弊病,宜采用双弓形折流板或三弓形折流板。
从传热的观点考虑,有些换热器(如冷凝器)不需要设置折流板。
但为了增加换热器的刚度,防止管子振动,实际仍然需要设置一定数量的支承板,其形状与尺寸均按折流板一样来处理。
折流板与支承板一般均借助于长拉杆通过焊接或定距管来保持板间的距离,其结构形式可参见图1-23[7]。
由于换热器是功用不同,以及壳程介质的流量、粘度等不同,折流板间距也不同,其系列为:100mm,150mm,200mm,300mm,450mm,600mm,800mm,1000mm。
[5]允许的最小折流板间距为壳体内径的20%或50mm,取其中较大值。
允许的最大折流板间距与管径和壳体直径有关,当换热器内流体无相变时,其最大折流板间距不得大于壳体内径,否则流体流向就会与管子平行而不是垂直于管子,从而使传热膜系数降低。
折流板外径与壳体之间的间隙越小,壳程流体介质由此泄漏的量越少,即减少了流体的短路,使传热系数提高,但间隙过小,给制造安装带来困难,增加设备成本,故此间隙要求适宜。
折流板厚度与壳体直径和折流板间距有关,见表3.1所列数据。
[6]表3.1 折流板厚度 mm壳体公称内径mm相邻两折流板间距mm≤300 300~450 450~600 600~750 >750200~250 3 5 6 10 10400~700 5 6 10 10 12700~10006 8 10 12 16 >1000 6 10 12 16 16 支承板厚度一般不应小于表3.2(左)中所列数据。
支承板允许不支承的最大间距可参考表3.2(右)所列数据。
经选择,我们采用弓形折流板,取弓形折流圆缺高度为壳体内径的25%,则切去的圆缺高度为:取折流板间距B=0.3D ,则: B=0.3×450=150mm 可取B=200mm因而查表可得[7]:折流板厚度为5mm ,支承板厚度为8mm ,支承板允许不支承最大间距为1800mm 。
折流板数N B =(块)折流板间距传热管长3911506000=-=折流板圆缺面水平装配。
壳体直径mm<400400~800900~1200管子外径mm19253857支承板厚度mm6810最大间距mm15001800250034003.7.接管3.7.1.壳程流体进出口时接管取接管内油品流速为u=1.0ms 则接管内径为:d=m u V 052.00.114.3)825300243600/(1065000443=⨯⨯⨯⨯⨯⨯=π所以,取标准管的内径为57mm 。
3.7.2.管程流体进出口时的接管取接管内循环水流速u=1.5ms ,则接管内径:d=m 107.095.9935.114.388.84=⨯⨯⨯取标准管径为108mm 。
3.7.3.接管最小位置换热器设计之中,为了使换热面积得以充分利用,壳程流体进出口接管应尽量靠近两端的管板,而管箱的进出口尽量靠近管箱法兰,从而减轻设备重量。
所以,壳程和管程接管的最小位置的计算就显得很必要了。
1).壳程接管位置的最小尺寸所设计的为带补强圈的壳程接管,则壳程接管位置的最小尺寸L可用1如下公式计算:≧L1式子中:——补强圈的外圈直径,mmb——管板厚度,mmC——补强圈外缘至管板与壳体焊缝之间的距离,mm。
而且,C≧4S且C≧32,S为壳体厚度。
经计算易得,壳程接管位置的最小尺寸为:120mm。
2). 管程接管位置的最小尺寸所设计的为带补强圈的管程接管,则管程接管位置的最小尺寸L可用2如下公式计算:≧L2式子中:——补强圈的外圈直径,mmb——管板厚度,mmC——补强圈外缘至管板与壳体焊缝之间的距离,mm。
而且,C≧4S且C≧32,S为壳体厚度。
经计算易得,管程接管位置的最小尺寸为:140mm。
3.8其他附件本传热器传热管外径为25mm ,故拉杆直径为φ16,拉杆数为6个。
壳程入口出应设置防冲挡板。
第四章 换热器核算4.1热量核算4.1.1壳程对流传热系数对圆缺形的折流板,可采用克恩公式:14.03/155.000)()()(36.0wp e e c u d d μμρμμρλα= 计算壳程当量直径,由正三角形排列可得:=025.014.3)025.0785.0032.023(422⨯⨯-=0.020m壳程流通截面积: 20001313.0)032.0025.01(4.015.0)1(m t d BD S =-⨯⨯=-= 壳程流体流速为: 雷诺准数为: 5342000715.08252315.0025.0R 0000e =⨯⨯==μρu d普朗特准数:34.1114.0000715.02220P 00r =⨯==λμc粘度校正14.03/155.000)()()(36.0wp e e c u d d μμρμμρλα= ℃)⋅=⨯⨯⨯=23/155.0/(86.63034.11534202.014.036.0m W 4.1.2管程对流传热系数管程流通截面积:)(0179.0211402.0785.022m S i =⨯⨯= 管程流体流速: s m u i /218.095.9930141.088.8=⨯=雷诺准数为: 597710725.095.99218.002.0R 3-e =⨯⨯⨯= 普朗特准数:89.462.01027.74174P 4-r =⨯⨯=4.08.0r e 89.4597702.062.0023.0P R 023.04.08.0⨯⨯⨯==iii d λα4.1.3传热系数K污垢热阻: R si =0.000344m 2℃WR so =0.000172 m 2℃W还有,管壁的导热系数: =45 m 2℃W 管壁厚度: b=0.0025 内外平均厚度: d m =0.0225 在下面的公式中,代入以上数据,可得oso i o i o si i i o R d bd d d R d d K αλα11++++=86.630100017.00225.045025.00025.0020.0025.0000344.0020.096.1399025.01++⨯⨯+⨯+⨯=4.1.4传热面积S由K 计算传热面积2535.3455.4049.3191045.4m t K Q S m =⨯⨯==△ 该换热器的实际传热面积Sp)(57.47)13114(6025.014.3)(2m n N L d S c o P =-⨯⨯⨯=-=π 该换热器的面积裕度为: %5.38%10035.3435.3457.847%100=⨯-=⨯-=S S S H P 传热面积裕度合适,该换热器能完成生产任务。