角平分线、垂直平分线(精典例题+跟踪训练+参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线、垂直平分线
精典例题+跟踪训练+参考答案
知识考点:
了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:
【例题】如图,已知在△ABC 中,AB =AC ,∠B =300
,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。 分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。问题转化为证CF =2AF ,又∠B =∠C =300
,这就等价于要证∠CAF =900
,则根据含300
角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300
,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300
角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
例题图1
F E
C B A
例题图2 G F E
C
B A
分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300
,不妨设EF =1,再用勾股
定理计算便可得证。
以上三种分析的证明略。
例题图3
D F E
C
B A
问题图
3
2
1E
D C
B A
探索与创新:
【问题】请阅读下面材料,并回答所提出的问题:
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如图,△ABC 中,AD 是
角平分线。求证:AC AB
DC BD =
。 分析:要证AC
AB
DC BD =
,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。我们注意到在比例式AC
AB
DC BD =
中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明AC
AB
DC BD =
就可以转化为证AE =AC 。
证明:过C 作CE ∥AD 交BA 的延长线于E
CE ∥AD ⎪⎭
⎪
⎬⎫⎪⎩
⎪
⎨⎧∠=∠∠=∠∠=∠⇒E 13
221⇒∠E =∠3⇒AE =AC
CE ∥AD ⇒
AE AB
DC BD =
∴AC
AB
DC BD =
(1)上述证明过程中,用了哪些定理(写出两个定理即可);
(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种选出一个填入后面的括号内( ) ①数形结合思想 ②转化思想 ③分类讨论思想 答案:②转化思想
(3)用三角形内角平分线性质定理解答问题:已知AD 是△ABC 中∠BAC 的角平分线,AB =5 cm ,AC =4 cm ,BC =7 cm ,求BD 的长。
答案:
9
35
cm 评注:本题的目的主要在于考查学生的阅读理解能力。
跟踪训练:
一、填空题:
1、如图,∠A =520
,O 是AB 、AC 的垂直平分线的交点,那么∠OCB = 。
2、如图,已知AB =AC ,∠A =440
,AB 的垂直平分线MN 交AC 于点D ,则∠DBC = 。
第1题图
O
C
B
A
第2题图
N M
D
C
B
A
第3题图
E
D
C
B
A
第4题图
E
A
B C
D
3、如图,在△ABC 中,∠C =900
,∠B =150
,AB 的中垂线DE 交B C 于D 点,E 为垂足,若BD =8,则AC = 。 4、如图,在△ABC 中,AB =AC ,DE 是AB 的垂直平分线,△BCE 的周长为24,BC =10,则AB = 。
5、如图,EG 、FG 分别是∠MEF 和∠NFE 的角平分线,交点是G ,BP 、CP 分别是∠MBC 和∠NCB 的角平分线,交点是P ,F 、C 在AN 上,B 、E 在AM 上,若∠G =680
,那么∠P = 。
填空第5题图
G
P
M E
B N
C F
A 选择第1题图 F
E
D
C B
A
选择第2题图
4
32
1D
C
B
A
二、选择题:
1、如图,△ABC 的角平分线CD 、BE 相交于点F ,且∠A =600
,则∠BFC 等于( )
A 、800
B 、1000
C 、1200
D 、1400
2、如图,△ABC 中,∠1=∠2,∠3=∠4,若∠D =360
,则∠C 的度数为( ) A 、820
B 、720
C 、620
D 、520
3、某三角形有一个外角平分线平行于三角形的一边,而这三角形另一边上的中线分周长为2∶3两部分,若这个三角形的周长为30cm ,则此三角形三边长分别是( )
A 、8 cm 、8 cm 、14cm
B 、12 cm 、12 cm 、6cm