浙江杭州市拱墅区2018年七年级下学期期末数学试卷及解析
浙教版-学年度下学期七年级数学期末试卷(含解析)
浙教版2018-2019学年七年级下期末数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=24.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y65.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.46.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩7.如果,则x:y的值为()A.B.C.2 D.38.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣110.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.12.若分式的值为零,则x的值为.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是%.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=.16.若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣=.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.19.计算:①=,②=.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).22.(8分)解方程(组):(1).(2)23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.【分析】根据平移的性质,对四个选项逐步分析.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.【点评】本题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而误选A、B、C.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=2【分析】让第一个分式的分母不为0,第二个分式的分母为0即可.【解答】解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.【点评】分式有意义,分式的分母都应不为0;分式无意义,分母为0.4.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y6【分析】根据同底数幂的除法对A进行判断;根据同底数幂的乘法对B进行判断;根据幂的乘方对C进行判断;根据积的乘方对D进行判断.【解答】解:A、原式=x4,所以A选项的计算错误;B、原式=x7,所以B选项的计算错误;C、原式=x6,所以C选项的计算正确;D、原式=x4y6,所以D选项的计算错误.故选:C.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减.即a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).也考查了同底数幂的乘法.5.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.4【分析】观察已给的多项式,可变形为可以利用分组分解法,前三项可以用完全平方公式分解,根据式子的特点就可以确定k的值.【解答】解:原式=﹣(4x2+y2﹣4xy+k)=﹣[(2x﹣y)2+k]显然根据平方差公式的特点,两个平方项要异号才能继续分解又由y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,可知第二个数是1则k=﹣1.故选:B.【点评】要熟练因式分解的公式法,同时注意前后联系.本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.6.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有坏的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如果,则x:y的值为()A.B.C.2 D.3【分析】要想求得x:y的值,实际应把常数项消去.【解答】解:在方程组中,(2)×5﹣(1)×11,得3x﹣9y=0,∴3x=9y,即x=3y.所以x:y=3.故选:D.【点评】想求得方程组里两个未知数的比值,有两种方法:求得两个未知数的值再比;消去常数项,直接求比.8.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A. B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1【分析】原式利用完全平方公式展开得到结果,即可作出判断.【解答】解:原式=a2﹣2a+1,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于十位数字和个位数字都是未知的,所以不能直接设所求的两位数.本题中2个等量关系为:十位数字=2×个位数字+1;(10×十位数字+个位数字)﹣36=10×个位数字+十位数字.根据这两个等量关系可列出方程组.【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.【点评】解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若分式的值为零,则x的值为3.【分析】分式的值为零:分子等于零,且分母不等于零,由此得到3﹣|x|=0且x+3≠0,从而得到x的值.【解答】解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定是解题关键.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是90%.【分析】分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.【解答】解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故答案为90%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,据此求出算式(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)的值是多少即可.【解答】解:(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=20a n﹣2b n÷(﹣2a n﹣3b)﹣14a n﹣1b n+1÷(﹣2a n﹣3b)+8a2n b÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3故答案为:﹣10ab n﹣1+7a2b n﹣4a n+3.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.16.若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【分析】根据乘积二倍项和已知平方项确定出这两个数,再根据完全平方公式表示出另一个平方项求解即可;把已知条件直接平方然后整理即可.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.【点评】本题是对完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式;第二问中利用好m与互为倒数是求解的关键.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣= 0.25.【分析】先将已知所给式子依次相减得:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1;再把所求式子通分计算化成,为了将分子化成完全平方式,分子和分母同时乘以2,进行变形,再把所求的式子整体代入即可.【解答】解:由题意得:①﹣②得:a﹣b=﹣1①﹣③得:a﹣c=﹣2②﹣③得:b﹣c=﹣1∴﹣=====0.25故答案为:0.25【点评】本题综合考查了分式的加减法和完全平方公式,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本类题而言,分式求值题中比较多的题型主要有三种:①转化已知条件后整体代入求值;②转化所求问题后将条件整体代入求值;③既要转化条件,也要转化问题,然后再代入求值.本题就是第三种情况,既要转化条件,把已知式依次相减,也要转化问题,对所求式子通分、配方等,然后再整体代入求值.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为﹣3.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.19.计算:①=,②=.【分析】①两个分式相乘,直接约分即可;②首先计算乘方,然后进行加法运算即可.【解答】解:①原式=;②原式=4+1﹣=.故答案是:,.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、等考点的运算.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=3.【分析】已知等式整理变形后,利用完全平方公式化简,将各自的值代入计算即可求出值.【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).【分析】(1)原式利用二次根式除法法则,零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=+4×1﹣9=4+4﹣9=﹣1;(2)原式=x2﹣2xy+y2﹣x2+xy﹣2xy+2y2=﹣3xy+3y2.【点评】此题考查了多项式乘多项式,完全平方公式,零指数幂、负整数指数幂,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)解方程(组):(1).(2)【分析】(1)根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,依次计算可得;(2)利用加减法计算可得.【解答】解:(1)两边都乘以(x+1)(x﹣1),得:x(x﹣1)﹣(x﹣3)=(x+1)(x ﹣1),解得:x=2,当x=2时,(x+1)(x﹣1)=3≠0,所以原分式方程的解为x=2;(2)①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,则方程组的解为.【点评】本题主要考查解分式方程和二元一次方程组的能力,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论及加减消元法解方程组的能力.23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.【分析】(1)利用在同一平面内,垂直于同一直线的两直线平行得出DE∥BO,再结合已知条件求得∠1=∠3,从而证明DO∥CF;(2)主要是由平行线的判定及垂线的定义即可证明.由两直线平行,同位角相等得到∠BCF=∠BDO,由已知条件得到∠BDO=90°,所以两直线垂直.【解答】解:(1)DE∥BO,DO∥CF,理由如下:∵DE⊥AO,BO⊥AO(已知),∴DE∥BO(在同一平面内,垂直于同一直线的两直线平行),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DO∥CF(同位角相等,两直线平行);(2)DO⊥AB,理由如下:由(1)得:DO∥CF,∴∠BCF=∠BDO(两直线平行,同位角相等),∵FC⊥AB(已知),∴∠BCF=90°(垂直定义),∴∠BDO=90°(等量代换),∴DO⊥AB(垂直定义).【点评】此题主要考查了平行线的性质和判定,还考查了垂直的定义.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为∠E=∠END﹣∠BME;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.【分析】(1)由AB∥CD,即可得到∠END=∠EFB,再根据∠EFB是△MEF的外角,即可得出∠E=∠EFB﹣∠BME=∠END﹣∠BME;(2)由平行线的性质以及三角形外角性质,即可得到∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,再根据三角形内角和定理,即可得到∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,即可得到∠E+2∠NPM=180°;(3)延长AB交DE于G,延长CD交BF于H,由平行线的性质以及三角形外角性质,即可得到∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE;依据∠CHB是△DFH的外角,即可得到∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),进而得出∠F=∠E.【解答】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.【点评】本题主要考查了平行线的性质和角平分线的定义、三角形内角和的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.。
17-18第二学期期末测试七年级数学答案
2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
浙教版 2017-2018学年第二学期七年级数学期末测试卷 及答案
2017-2018学年七年级(下)期末数学试题班级_____________姓名____________学号______________得分_____________ 一、选择题(每小题3分,共30分)1.若1x y k =⎧⎨=⎩,是二元一次方程23x y -=的一个解,则k 的值是( )A .-1B .0C .1D .22.如图,已知∠1=70°,要使AB ∥CD ,则须具备另一个条件( )A .∠2=70°B .∠2=100°C .∠2=110°D .∠3=70°[来源:学。
科。
网]3.若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx4.因式分解(x -1)2-9的结果是( )A. (x +8)(x +1)B. (x +2)(x -4)C. (x -2)(x +4)D. (x -10)(x +8)5.下面是小马虎同学在一次数学测验中的计算摘录,其中正确的是( )A .()()23a a a -=-÷- B .()523a a =C .()532623xxx -=-⋅D .()623ab ab =6.若分式1x 2x x 2+--的值为零,那么x 的值为( )A .x =-1或x =2B .x =0C .x =2D .x =-17.图是某校初中各年级人数占初中总人数的比例统计图,已知八年级有学生360人,那么七年级有学生数 ( )A .900人 B. 315人 C .225人 D. 360人 8.下列各式计算正确的是( )A.222a ab b a b b a -+=--;B.2232()x xy y x y x y ++=++ C.23546x x y y ⎛⎫= ⎪⎝⎭; D.11x y x y -=-+-9.如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( ) A.60° B.50° C.30° D.20°F EDCB AG 1FEDCBA(第9题) (第13题) (第18题) 10.若分式方程a x ax =-+1无解,则a 的值是 ( ) A.-1 B. 1 C. ±1 D.-2 二、填空题(每小题3分,共30分) 11.计算:534515a b c a b -÷=12.因式分解:=+-m mx mx 2422;13.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F =45°,那么与∠FCD 相等的角有___个,它们分别是____。
zjm┃精选3套试卷┃2018届浙江省名校七年级下学期数学期末监测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形具有稳定性的是( )A .B .C .D .【答案】A【解析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键. 2.在绘制频数分布直方图时,一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )组;A .10B .9C .8D .不能确定【答案】A【解析】最大值减去最小值,再除以组距即可求解.【详解】()14350109.3-÷=故可以分成10组故答案为:A .【点睛】本题考查了频数分布直方图的问题,掌握求组数的方法是解题的关键.3.下列说法正确的是( )A .两点确定一条直线B .不相交的两条直线叫做平行线C .过一点有且只有一条直线与已知直线平行D .两点间的距离是指连接两点间的线段【答案】A【解析】依据直线的性质、平行公理、两点间的距离的概念进行判断即可.【详解】A 、两点确定一条直线,本选项正确;B 、在同一平面内不相交的两条直线叫做平行线,本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,本选项错误;D、两点间的距离是指连接两点间的线段的长度,本选项错误;故选A.【点睛】本题主要考查了直线的性质、平行公理、两点间的距离,解题时注意:经过直线外一点,有且只有一条直线与这条直线平行.4.对任意实数x,点P(x,x2-2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据点在平面直角坐标系中各个象限坐标的符号特点解答即可,注意分情况讨论.解:(1)当0<x<2时,x>0,x2-2x=x(x-2)<0,故点P在第四象限;(2)当x>2时,x>0,x2-2x=x(x-2)>0,故点P在第一象限;(3)当x<0时,x2-2x>0,点P在第二象限.故对任意实数x,点P可能在第一、二、四象限,一定不在第三象限,故选C.5.在探究平行线的判定——基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行时,老师布置了这样的任务:请同学们分组在学案上(如图),用直尺和三角尺画出过点P与直线AB平行的直线PQ;并思考直尺和三角尺在画图过程中所起的作用.小菲和小明所在的小组是这样做的:他们选取直尺和含有45°角的三角尺,用平移三角尺的画图方法画出AB的平行线PQ,并将实际画图过程抽象出平面几何图形(如图).以下是小菲和小明所在小组关于直尺和三角尺作用的讨论:①在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°②由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中QP为截线③初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角④在画图过程中,直尺可以由直线CD代替⑤在“三线八角图”中,因为AB和CD是截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”其中,正确的是()A.①②⑤B.①③④C.②④⑤D.③④⑤【答案】B【解析】这种画法就是画同位角∠DMB和∠DEP相等,从而判断PQ∥AB,从而根据平行线的判定定理对各小题进行判断.【详解】在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°,所以①正确;由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中CD为截线,所以②错误;初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角,所以③正确;在画图过程中,直尺可以由直线CD代替,所以④正确;⑤在“三线八角图”中,因为AB和PQ是一组平行线,CD为截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,所以⑤错误.故选:B.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.6.如图,已知AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是A.76°B.38°C.19°D.72°【答案】A【解析】根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD=38°,求出∠EAB,即可求出∠AEC.【详解】解:∵CD∥AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:A .【点睛】本题考查了平行线的性质和角平分线性质,关键是求出∠EAB 的度数,题目比较好,难度适中. 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( )A .B .C .D . 【答案】B【解析】根据科学计数法的表示即可求解.【详解】0.0067=故选B.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知负指数幂的应用.8.以下说法中正确的是( )A .若a >|b|,则a 2>b 2B .若a >b ,则1a <1bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则a ﹣c >b ﹣d 【答案】A【解析】分析:根据实数的特点,可确定a 、|b|、a 2、b 2均为非负数,然后根据不等式的基本性质或特例解答即可.详解:A 、若a >|b|,则a 2>b 2,正确;B 、若a >b ,当a=1,b=﹣2时,则1a >1b ,错误; C 、若a >b ,当c 2=0时,则ac 2=bc 2,错误;D 、若a >b ,c >d ,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a ﹣c=b ﹣d ,错误;故选A .点睛:此题主要考查了不等式的性质,利用数的特点,结合不等式的性质进行判断即可,关键是注意不等式性质应用时乘以或除以的是否为负数或0.9.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 【答案】D【解析】选项A. 若35x -=,则53x =-.错误. 选项B. 若1132x x -+=,则()2316x x +-=.错误. 选项C. 若5628x x -=+,则5286x x -=+ .错误.选项 D. 若()3121x x +-=,则3321x x +-=.正确.故选D.点睛:解方程的步骤:(1)去分母 (2)去括号 (3)移项(4)合并同类项 (5) 化系数为1.易错点:(1)去分母时,要给方程两边的每一项都乘以最小公倍数,特别强调常数项也必须要乘最小公倍数.(2)乘最小公倍数的时候,一定要与每一个字母进行相乘,不要漏掉某一个分母.(3)如果某字母项或某常数项前面是有符号的,那么乘最小公倍数的时候,这个符号不要10.22018-22019的值是( )A .12B .-12C .-22018D .-2【答案】C【解析】直接利用提取公因式法分解因式得出答案.【详解】1-22019=1×(1-2)=-1.故选C .【点睛】此题主要考查了提取公因式法分解音质,正确找出公因式是解题关键.二、填空题题11.如图,ABC MDE ∆∆≌,BC 的延长线交DA 于F ,交DE 于G ,25D ∠=︒,105E ∠=︒,16DAC ∠=︒,则DGB ∠的度数为_________.【答案】66°【解析】根据全等三角形对应角相等可得ACB E ∠=∠,再求出ACF ∠,然后根据三角形的内角和定理列式计算即可得解.【详解】解:ABC ADE ∆≅∆,105ACB E ∴∠=∠=︒,18010575ACF ∴∠=︒-︒=︒,在ACF ∆和DGF ∆中,D DGB DAC ACF ∠+∠=∠+∠,即251675DGB ︒+∠=︒+︒,解得66DGB ∠=︒.故答案为:66︒.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.若3,4a b b c -=-+=,则2()2()b a b c b a ---=_________.【答案】-24【解析】先将原式变形为2(a-b )(b+c ),然后将(a-b )和(b+c )的值代入上式中进行求解即可.【详解】原式=2b(a−b)+2c(a−b)=2(a−b)(b+c)∵a−b=−3,b+c=4,∴原式=2(a−b)(b+c)=2×(−3)×4=−24,故答案为:-24【点睛】此题考查因式分解的应用,掌握运算法则是解题关键13.已知关于x 的一元一次不等式10ax ->的解集是3x >,则a 的值是______. 【答案】13. 【解析】先解不等式10ax ->,然后根据不等式10ax ->的解集是3x >求出a 的值即可.【详解】解:10ax ->移项得1ax >当0a <时,系数化为1得1x a <,舍去; 当0a >时,系数化为1得1x a> ∵不等式10ax ->的解集是3x > ∴13a =,即13a =,故本题填13. 【点睛】本题考查根据不等式的解集求字母的值,在解决本题时需注意,系数化为1时需分情况讨论a 的正负,因为a 的正负决定系数化为1时改不改变不等号的方向.14.(2016福建省莆田市)在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为__________人.【答案】1.【解析】试题分析:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:106450++×1200=1,故答案为1. 考点:频数(率)分布直方图;用样本估计总体;扇形统计图.15.不等式组62{132x xx ->-<的解集为__________. 【答案】26x << 【解析】62{132x x x ->-<①② 由①得:x>2,由②得:x<1,所以不等式组的解集为2<x<1;故答案是2<x<1.点睛:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解. 16.一个等腰三角形的两条边的长为4和5,则这个等腰三角形的周长为_____.【答案】14或1.【解析】分4为底边或腰两种情况进行分类讨论.【详解】当4为等腰三角形的底边时,腰为5,符合三角形的三边关系,等腰三角形的周长=4+5+5=14; 当4为等腰三角形的腰时,底边长为5,符合三角形的三边关系,等腰三角形的周长=4+4+5=1. 故答案为:14或1.【点睛】本题考查了等腰三角形的性质,解题时要注意进行分类讨论.17.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正 方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整 点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数12×4-4=4;23×4-4=8;34×4-4=12;…………n4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.三、解答题18.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN 的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.【答案】(1)∠AMG+∠CNG=90°;(2)∠MGN+∠MPN=90°;(3)∠AME=50°.【解析】(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG的度数;(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=30°+α,∠MPN=60°-α,即可得到∠MGN+∠MPN=30°+α+60°-α=90°;(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义,可得∠MEN=∠TEN-∠TEM=90°-12y-2x,∠MGN=x+y,再根据2∠MEN+∠MGN=105°,即可得到2(90°-12y-2x)+x+y=105°,求得x=25°,即可得出∠AME=2x=50°.【详解】(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=12∠CNG=90°﹣12y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣12 y,∴∠MEN=∠TEN﹣∠TEM=90°﹣12y﹣2x,∠MGN=x+y,∵2∠MEN+∠MGN=105°,∴2(90°﹣12y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.【点睛】本题主要考查了平行线的性质与判定的综合运用,解决问题的关键是作辅助线构造内错角,利用平行线的性质以及角的和差关系进行推算.19.解不等式组:4261139x xx x>-⎧⎪-+⎨≤⎪⎩,并把解集在数轴上表示出来.【答案】-3<x≤2.【解析】试题分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.试题解析:426 {1139x xx x--+≤>①②∵解不等式①得:x>-3,解不等式②得:x≤2,∴不等式组的解集为-3<x≤2,在数轴上表示不等式组的解集为:.考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.20.已知:直线MN,PQ被射线BA截于A,B两点,且MN∥PQ,点D是直线MN上一定点,C是射线BA上一动点,连结CD,过点C作CE⊥CD交直线PQ于点E.(1)若点C在线段AB上.①依题意,补全图形;②请写出∠ADC和∠CEB的数量关系,并证明.(2)若点C在线段BA的延长线上,直接写出∠ADC和∠CEB的数量关系,不必证明.【答案】(1)①见解析;②∠ADC和∠CEB的数量关系:∠ADC+∠CEB=90°;证明见解析;(2)∠ADC+∠CEB=90°或∠CEB-∠ADC=90或∠ADC-∠CEB=90°【解析】(1)①连接CD,作CE⊥CD,交PQ于E即可;②根据两直线平行,内错角相等可知∠DCH=∠ADC,∠ECH=∠CEB,由∠DCH+∠ECH=90°,可知∠ADC+∠CEB=90°;(2)利用平行线的性质,三角形外角的性质,平角的定义列式即可求得.【详解】(1)①补全图形,如图.②∠ADC和∠CEB的数量关系:∠ADC+∠CEB=90°.证明:如图1,过点C作CH∥MN.∴∠DCH=∠ADC,∠ECH=∠CEB.∵CD⊥CE,∴∠DCE=90°,即∠DCH+∠ECH=90°.∴∠ADC+∠CEB=90°.(2)如图2①,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠CEB,∴∠ADC+∠CEB=90°;如图2②,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠2,∵∠2+∠CEB=180°,∴90°-∠ADC+∠CEB=180°,∴∠CEB-∠ADC=90°;如图2③,∵CE⊥CD,∴∠ECD=90°,∵MN∥PQ,∴∠1=∠CEB,∵∠ADC=∠ECD+∠1,∴∠ADC=90°+∠CEB∴∠ADC-∠CEB=90°;综上,∠ADC和∠CEB的数量关系为:∠ADC+∠CEB=90°或∠CEB-∠ADC=90°或∠ADC-∠CEB=90°.【点睛】本题考查了平行线的性质,平角的定义,三角形外角的定义,是基础题.21.阅读理解:请你参与下面探究过程,完成所提出的问题.(I)问题引入:如图①,在中,点是和平分线的交点,若,则度;若,则(用含的代数式表示);(II)类比探究:如图②,在中,,,.试探究:与的数量关系(用含的代数式表示),并说明理由.(III)知识拓展:如图③,、分别是的外角,的等分线,它们的交于点,,,,求的度数(用含、的代数式表示).【答案】(1);;(2),理由见解析;(3)【解析】(1)根据三角形的内角和可得到,根据角平分线的性质得到=(),再根据∠A=70°即可求解;同理可得到时的度数;(2)利用,同理根据三角形的内角和进行计算求解;(3)根据题意发现规律,同理即可得到结论.【详解】解:(I)=. 故时,; 若,则;(II ).理由如下:.(III ).【点睛】此题主要考查角度的计算,解题的关键是熟知三角形的内角和,根据题意找到规律进行换算求解. 22.如图,在ABC ∆中,点M 、N 是ABC ∠与ACB ∠三等分线的交点,连接MN(1)求证:MN 平分BMC ∠;(2)若60A ∠=︒,求BMN ∠的度数.【答案】(1)见解析;(2)50°.【解析】(1)过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得FG=FM=FN ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC(2)根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠EBC+∠ECB 的度数,然后利用三角形内角和定理求出∠BEC 的度数,从而得解【详解】(1)如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M,N ,∴BN 平分∠MBC ,CN 平分∠MCB ,∴CN=EN ,CN=FN ,∴EN=FN ,∴MN 平分BMC ∠;(2)∵MN 平分BMC ∠;∴∠BMN=12∠BMC , ∵∠A=60∘,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°根据三等分,∠MBC+∠MCB=23 (∠ABC+∠ACB)=23×120°=80° 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°∴BMN ∠=12×100°=50°【点睛】此题主要考查三角形的角度计算,解题的关键是熟知角平分线的判定与性质及三角形的内角和. 23.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?通过计算说明.【答案】不能剪出符合要求的纸片;理由见解析.【解析】首先设长方形的长为3xcm ,则宽为2xcm ,根据面积求出矩形的长和宽,然后与正方形的边长进行比较大小,如果大于正方形边长则不能剪出.【详解】解:设长方形的长为3xcm,则宽为2xcm,根据题意得:3x·2x=300解得:x=52cm则3x=152cm 2x=102cm∵正方形的面积为4002cm∴边长为20cm∵152cm>20cm ∴不能剪出符合要求的纸片.24.已知2a﹣3x+1=0,3b﹣2x﹣16=0.(1)用含x的代数式分别表示a,b;(2)当a≤4<b时,求x的取值范围.【答案】(1)312xa-=,2163xb+=;(2)﹣2<x≤1.【解析】(1)直接利用已知将原式变形求出答案;(2)利用a≤4<b得出关于x的不等式求出答案.【详解】解:(1)由2a﹣1x+1=0,得312xa-=,由1b﹣2x﹣16=0,得2163xb+ =;(2)∵a≤4<b,∴312xa-=≤4,2163xb+=>4,解得:﹣2<x≤1.【点睛】此题主要考查了不等式的性质,直接将原式变形是解题关键.25.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).【答案】(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查,适合用普查方式的是( )A .了解义乌市居民年人均收入B .了解义乌市民对“低头族”的看法C .了解义乌市初中生体育中考的成绩D .了解某一天离开义乌市的人口流量【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、了解义乌市居民年人均收入适合抽样调查,不符合题意;B 、了解义乌市民对“低头族”的看法适合抽样调查,不符合题意;C 、了解义乌市初中生体育中考的成绩适合全面调查,符合题意;D 、了解某一天离开义乌市的人口流量适合抽样调查,不符合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.要使33(4)4a a -=-成立,则a 的取值范围是( )A .a≤4B .a≤-4C .a≥4D .一切实数【答案】D【解析】∵a 取任意实数时均有33a a =成立,故33(4)4a a -=-成立时,a 取任意实数都可以. 3.如图,数轴所表示的不等式的解集是( )A .1x >B .1x <C .1x ≥D .1x ≤ 【答案】D【解析】根据不等式的解集在数轴上表示方法即可求出不等式的解集.【详解】解:如图所示,数轴所表示的不等式的解集是,x≤1.故选:D .【点睛】本题考查了不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【答案】C【解析】分析:根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.详解:∵点P(m-1,m+1)在第二象限,∴2010mm-⎧⎨+⎩<>,解得-1<m<1.故选C.点睛:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.某校七年级统计30名学生的身高情况(单位:cm),其中身高最大值为175,最小值为149,在绘制频数分布直方图时取组距为3,则组数为()A.7 B.8 C.9 D.10【答案】C【解析】计算最大值与最小值的差,除以组距即可求得.【详解】解:(175-149)÷3=26÷3≈9组.故答案为:C.【点睛】此题考查的是组数的确定方法,组数=极差÷组距.6.12xy=⎧⎨=⎩是二元一次方程2x + ay = 4 的一组解,则 a 的值是()A.1 B.0 C.2 D.-1 【答案】A【解析】把x与y的值代入方程计算即可求出a的值.【详解】把12xy==⎧⎨⎩代入方程得:2+2a=4,解得:a=1,故选A.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.《九章算术》有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三,人出七,不足四.问人数,物价各几何?译文:现有一些人共买一个物品,每人出8元,还盈余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.8374x yx y+=⎧⎨-=⎩B.8374x yx y-=⎧⎨+=⎩C.8473x yx y+=⎧⎨-=⎩D.8473x yx y-=⎧⎨+=⎩【答案】B【解析】根据条件列出方程组即可.【详解】由题意可得:8374x yx y-=⎧⎨+=⎩.故选:B.【点睛】本题考查列方程组,找准未知数之间的关系即可. 8.已知|3x+y﹣2|+(2x+3y+1)2=0,则xy的值为()A.1 B.﹣1 C.12D.2【答案】B【解析】根据非负数的性质可得32231x yx y+=⎧⎨+=-⎩,解方程组求得x,y的值,即可求得xy的值.【详解】∵|3x+y﹣2|+(2x+3y+1)2=0,∴32231x yx y+=⎧⎨+=-⎩,解得:11 xy=⎧⎨=-⎩,∴xy=﹣1,故选B.【点睛】本题考查了非负数的性质和解二元一次方程组,熟知非负数的性质是解决问题的关键.9.在平面直角坐标系中,点(﹣6,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据平面直角坐标系中,点在各象限中的符号特征进行分析.即:第一(+,+),第二(-,+),第三(-,-),第四(+,-).【详解】在平面直角坐标系中,点(﹣6,2)在第二象限.故选B【点睛】本题考核知识点:平面直角坐标系.解题关键点:熟记点的坐标与位置特点.10.下面是手机里的常见的4个图标,其中是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的定义进行判断.【详解】A、是轴对称图形,符合题意;B、C、D都不是轴对称图形,不符合题意;故选A.【点睛】本题考查轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.二、填空题题11.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF 的面积为_____.【答案】14m.【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12m,∴S△BCE=12S△ABC=12m,∵点F是CE的中点,∴S△BEF=12S△BCE=12×12m=14m.故答案为14 m.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.12.若不等式组0,x bx a-<⎧⎨+>⎩的解集为2<x<3,则关于x,y的方程组521ax yx by+=⎧⎨-=⎩的解为___________.【答案】43 xy=-⎧⎨=-⎩【解析】分析:根据已知解集确定出a与b的值,代入方程组求出解即可.详解:根据题意得:a=-2,b=3,代入方程组得:25 231x yx y-+⎧⎨-⎩=①=②,①+②得:-2y=6,即y=-3,把y=-3代入①得:x=-4,则方程组的解为43 xy-⎧⎨-⎩==,故答案为:43 xy-⎧⎨-⎩==点睛:此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】1.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥1.考点:一元一次不等式的应用.14.如图所示,等边△ABC中,D、E分别是AB、AC上的点,将△ADE沿直线DE翻折后,点A落在点A'处,且点A'在△ABC的外部,若原等边三角形的边长为a,则图中阴影部分的周长为_____.【答案】3a【解析】根据轴对称的性质,得AD=A′D,AB=A′B,则阴影部分的周长即为等边三角形的周长.【详解】根据轴对称的性质,得AD=A′D,AB=A′B.则阴影部分的周长即为等边三角形的周长,即3a.故答案为:3a【点睛】此题主要是运用了轴对称的性质.15.若关于x,y的二元一次方程组23122x y kx y+-⎧⎨+-⎩==的解满足x-y>4,则k的取值范围是__.【答案】k>1.【解析】把方程组的解求出,即用k表示出x、y,代入不等式x-y>4,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】23122x y kx y=①=②+-⎧⎨+-⎩,由①+②可得:3(x+y)=3k-3,所以:x+y=k-1③①-③得:x=2k,②-③得:y=-k-1,代入x-y>4可得:2k+k+1>4,解得:k>1,故填:k>1.【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法,解题的关键是求出方程组的解代入不等式可化为关于k的一元一次不等式求解.16.为了了解荆州市2017年3.6万名考生的数学中考成绩,从中抽取了1名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的1名考生的数学中考成绩是总体的一个样本;④样本容量是1.其中说法正确的有(填序号)______【答案】①②③④【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这3.6万名考生的数学中考成绩的全体是总体,正确;②每个考生数学中考成绩是个体,正确;③从中抽取的1名考生的数学中考成绩是总体的一个样本,正确;。
2018年初一下学期,期末数学试题,word版含答案
2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。
2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。
2018年第二学期期末考试七年级数学试卷(word版有答案)6
数学期末考试试卷一、选择题(共10小题,每小题3分,共30分)1、若点A (a ,2)在第二象限,则( )A 、a ≤ 0B 、a ≥0C 、a<0D 、a>02、不等式组2010x x -<⎧⎨+≥⎩的解集是( )A 、x ≥-1B 、x<2C 、-1≤ x<2D 、x>23、要调查下面几个问题,你认为应该作全面调查的是( )A 、鞋厂检查生产的鞋底能承受的弯折次数B 、调查市场上某种食品的色素含量是否符合国家标准C 、了解全班同学每周体育锻炼的时间D 、检测某城市的空气质量4、下列四个实数:-2,13,0.8,0.5050050005……(相邻两个5之间依次多一个0),其中无理数的个数有( )A 、4个B 、3个C 、2个D 、1个5、若a>b ,则下列不等式的变形错误..的是( ) A 、-8+a>-8+b B 、-3a>-3bC 、a+5>b+5D 、2211a b m m >++ 6、在等式y=kx+4中,当x=2,y=-6,则k 的值为( )A 、-5B 、-1C 、1D 、57、若3220x y -++=,则x y 的值等于( )A 、-36B 、-64C 、36D 、648、已知(3n n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点,如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;……依此规律,当n=8时,共有交点个数为( )A 、20B 、27C 、28D 、359、“戒烟一小时,健康亿人行”。
今年国际无烟日,小华就公众对餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.以下结论:①这次抽样的公众有200人;②“餐厅老板出门制止”部分的人数是60人;③在扇形统计图中“无所谓”部分对应的圆心角是18°,其中正确的结论有()A、3个B、2个C、1个D、0个10、如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为( )A、-1B、0C、2D、1二、填空题(共有6小题,每小题3分,共18分)11、用不等式表示:a与3的和是负数。
_浙江省杭州市余杭区2018-2019年七年级下学期数学期末考试试卷(含答案解析)
…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省杭州市余杭区2018-2019年七年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共15题)1. 在下列图形中,∠1与∠2是同位角的是( )A .B .C .D .2. 世界上最小的开花结果植物是澳大利亚的山水浮萍,它的果实像一粒微小的无花果,质量只有0.000 000 07克.数据0.000 000 07用科学记数法表示为( ) A . 0.7×10-7 B . 7× 10-7 C . 7× 10-8 D . 7× 10-93. 某市有9个区,为了解该市初中生的视力情况,小圆设计了四种调查方案.你认为比较合理的是( ) A . 测试该市某一所中学初中生的视力 B . 测试该市某个区所有初中生的视力 C . 测试全市所有初中生的视力D . 每区各抽5所初中,测试所抽学校学生的视力答案第2页,总15页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 下列计算正确的是( )A . a 3+a 3=a 6B . a 4 . a=a 4C . a 6÷a 3=a 2D . (-a 3)2=a 65. 下列各组数中,是二元一次方程3x -2y=12的解的是( ) A . B .C .D .6. 下列多项式可以用平方差公式分解因式的是( ) A . 4x 2+y 2 B . -4x 2+y 2 C . -4x 2-y 2 D . 4x 3-y 27. 将公式v=v 0+at(a≠0)变形成已知v ,v 0 , a ,求t 的形式.下列变形正确的是( ) A . t=B . t=C . t=a(v -v 0)D . t=a(v 0-v)8. 下图是七年级二班参加社团活动人数的扇形统计图(每位同学只参加其中一个社团).根据统计图提供的信息,下列结论正确的是( )A . 参加摄影社的人数占总人数的12%B . 参加篆刻社的扇形的圆心角度数是70°C . 参加种植社的同学比参加舞蹈社的多8人D . 若参加书法社的人数是6人,则该班有50人9. 己知a ,b 是常数,若化简(-x+a)(2x 2+bx -3)的结果不含x 的二次项,则36a -18b -1的值为( )A . -1B . 0C . 17D . 3510. 小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A . 他身上的钱会不足95元B . 他身上的钱会剩下95元…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………C . 他身上的钱会不足105元D . 他身上的钱会剩下105元11. 计算:()0= ,()-2= .12. 要使分式 有意义,x 的取值应满足 .13. 如图,梯子的各条横档互相平行,若∠1=∠2+20°,则∠3= 。
浙江省杭州市七年级下学期数学期末考试试卷
浙江省杭州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A . 120°B . 100°C . 60°D . 20°2. (2分)为了判断甲、乙两名学生数学测试成绩哪个更稳定,通常需要知道两人多次数学测试成绩的()A . 平均数B . 方差C . 众数D . 最高分3. (2分)如图,若∠A与()互补,可判定AB∥CD.A . ∠BB . ∠CC . ∠DD . 以上都不是4. (2分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A . 1B . 2C . 3D . 45. (2分) (2017七下·钦南期末) 下列调查中,适合用全面调查的是()A . 调査某批次汽车的抗撞击能力B . 鞋厂检测生产鞋底能承受的弯折次数C . 了解某班学生的身髙情况D . 调査市场上某种产品的色素含量是否符备国家标准6. (2分)(2012·梧州) 如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A . ∠3=∠4B . ∠D=∠DCEC . ∠1=∠2D . ∠D+∠ACD=180°7. (2分)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A . 18<t<27B . 18≤t<27C . 18<t≤27D . 18≤t≤278. (2分)随着我国三农问题的解决,小明家近两年的收入发生了变化.经测算前年棉花收入占48%,粮食收入占29%,副业收入占23%;去年棉花收入占36%,粮食收入占33%,副业收入占31%(如图).下列说法正确的是()A . 棉花收入前年的比去年多B . 粮食收入去年的比前年多C . 副业收入去年的比前年多D . 棉花收入哪年多不能确定9. (2分) (2017七下·柳州期末) 若方程组的解为,则点P(a,b)所在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)若点M(a+2,3-2a)在y轴上,则点M的坐标是().A . (-2,7)B . (0,3)C . (0,7)D . (7,0)11. (2分)(2017·淳安模拟) 下列命题中是真命题的是()A . 经过直线外一点,有且仅有一条直线与一线与已知直线垂直B . 平分弦的直径垂直于弦C . 对角线互相平分且垂直的四边形是菱形D . 反比例函数y= ,当k<0时,y随x的增大而增大12. (2分) (2017七下·苏州期中) 如图,宽为50 cm的长方形图案由10个一样的小长方形拼成,其中一个小长方形的面积为()A . 400 cm2B . 500 cm2C . 600 cm2D . 4000 cm2二、填空题 (共6题;共6分)13. (1分)已知方程8x﹣y=10,用x表示y的式子为________.14. (1分) (2018七上·杭州期中) 64的算术平方根是________.15. (1分)某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:________16. (1分)(2012·锦州) 已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.17. (1分)(2017·滨州) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为________.18. (1分) (2016七下·高密开学考) 小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=________.三、解答题 (共8题;共61分)19. (10分)(2018·吴中模拟)(1)解方程:x2-6x+4=0;(2)解不等式组20. (5分)已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.21. (12分) (2020七下·江阴月考) 如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC 分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=________°;若∠MON=90°,则∠ACG=________°;(2)若∠MON=n°,请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交于F,若CF∥OA时,求∠BGO-∠ACF的度数.(用含n的代数式表示).22. (12分)(2018·北京) 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息..A课程成绩的频数分布直方图如下(数据分成6组:,,,,,);.A课程成绩在这一组是:70 71 71 71 76 76 77 78 79 79 79.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数AB 7083根据以上信息,回答下列问题:(1)写出表中的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是________;(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.23. (5分)(2016·南京模拟) 解不等式组,并把解集在数轴上表示出来.24. (5分)如下图中的蝶形图案上的点的坐标分别是(2,5),(3,1),(4,2),(5,2),(6,1),(7,5),(5,4),(4,4),将图案向上平移5个单位,作出相应的图案,并写出平移后相应点的坐标。
浙教版2018学年度七年级数学第二学期期末模拟测试题C(含答案详解)
浙教版2018学年度七年级数学第二学期期末模拟测试题C (含答案详解)1.已知是二元一次方程组的解,则2m-n 的算术平方根为( ) A .±2 B .C .4D .2 2.下列各式与(x ﹣12)2相等的是( ) A .x 2﹣14 B .x 2﹣x+ 14 C .x 2+2x+ 14 D .x 2﹣2x+ 14 3.3.下列运算中,正确的是( )A .6410·a a a =B .2122a a-= C .()32639a a = D .235a a a += 4.如图所示,“过点P 画直线a 的平行线b ”的作法的依据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .两直线平行,内错角相等D .两直线平行,同位角相等5.下列计算中正确的是( )A .B .C .D .6.下列计算正确的是( )A .2223a a a +=B .C .()326a a =D .2232a a a -= 7.一扇形统计图中,一部分占总体的,则这部分在扇形统计图中所绘出的扇形的圆心角为( )A . B . C . D .8.第五次全国人口普查中,四个直辖市的人口的两幅统计图如图所示,由统计图得到的下列结论你认为正确的是( )A .重庆的人口与其他三个直辖市人口的和相当B .重庆的人口增长最快C .上海相对北京的人口增长的百分数与北京相对天津的人口增长的百分数较小D .重庆人口总数比天津的3倍还要多9.如图,直线//,,,则的度数为( )A .30°B .35°C .36°D .40°10.x 3+m (m 为正整数)可写成( )A .x 3+x mB .x 3-x mC .x 3·x mD .x 3m11.计算:________________. 12.化简:=______________13.若a+b=2,ab=﹣1,则(a -b)2=______.14.分解因式:ma ﹣bm+m= .15.为了估计鱼塘里有多少条鱼,先从鱼塘中打捞条鱼,把每条鱼都做上标记,放回鱼塘,几天后,又从鱼塘中打捞上条鱼,结果条鱼有标记,那么这个鱼塘里大约有鱼________条.16.在方程578x y -=中,用含y 的式子表示x ,则__________________ .17.当x=________时,分式 232x x --的值为1 18.分解因式ma 2﹣2mab+mb 2=_____.19.若x=,y=,则代数式(2x+3y )2-(2x-3y )2的值是__________.20.若,,则的值是__________.21.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.22.小明将一直角三角板(∠A=30°)放在如图所示位置,已知a//b;(1)若∠1=∠A,求∠2;(2)将三角板进行适当转动,直角顶点始终在两直线间,M在线段CD上,且∠CEM=∠CEH,给出下列结论:①的值不变;②∠MEG -∠BDF的值不变,可以证明,其中一个是正确的,请你做出正确的选择并求值.23.解方程:﹣=024.化简(x﹣4+)÷(1﹣),并问其代数式的值可能为﹣2,0,1吗?25.某市共有一中、二中、三中等3所高中,有一天所有高二学生参加了一次数学测试,阅卷后老师们对第10题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A(概念错误),B(计算错误),C(基本正确),D(完全正确).各校出现这四类情况的人数占本校高二学生数的百分比见下面的条形统计图:已知一中高二学生有400名,这三所学校之问高二学生人数的比例见扇形统计图. (1)求全市高二学生总数;(2)求全市解答完全正确的高二学生数占高二学生总数的百分比;(3)请你对三中高二数学老师提一个值得关注的教学建议,并说明理由.26.先化简(x -4x )÷244x x x ++, 若-2≤x≤2,请你选择一个恰当的x 值(x 是整数)代入求值.27.计算(1)()()2232x y x x y --- (2)24132333a a a a a a--⎛⎫--÷ ⎪++⎝⎭参考答案1.D【解析】 试题分析:把代入二元一次方程组求出m ,n ,再求出2m-n 的算术平方根即可. 试题解析:把代入二元一次方程组得:解得, 所以2m-n=6-2=4,则2m-n 的算术平方根是2,故选D .考点:1.二元一次方程组的解,2.算术平方根2.B【解析】(x ﹣12)2=x 2-x+14, 故选B.3.A【解析】A. ∵6410·a a a =,故正确; B. 2222a a -= ,故不正确; C. ∵()326327a a =,故不正确; D. ∵a 2与a 3不是同类项,不能合并,故不正确.故选A.4.A【解析】如图所示,根据图中直线a 、b 被c 所截形成的内错角相等,可得依据为内错角相等,两直线平行.故选:A.点睛:本题考查的是平行线的判定定理,即内错角相等,两直线平行.比较简单. 5.C【解析】【分析】根据合并同类项,同底数幂相乘,底数不变指数相加;同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;对各选项分别计算后利用排除法求解.【详解】A. 与不是同类项,不能合并,故不正确;B. ,故不正确;C. ,故正确;D. ,故不正确;故选C.【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.6.C【解析】试题分析:A选项中不是同类项,故不能进行加法计算,错误;B选项根据同底数幂的除法底数不变,指数相减可得:原式=4a,故错误;C选项计算正确;D选项中不是同类项,故不能进行减法计算,错误,故本题选C.7.D【解析】【分析】根据圆周角为360°,乘以扇形的圆心角所占百分比即可解答.【详解】360°×25%=90°,故选D.【点睛】本题考查了扇形统计图,知道扇形统计图所有部分之和为360°是解题的关键.8.D【解析】【分析】根据条形统计图和折线统计图得出的数据,分别对每一项进行分析即可.【详解】A、重庆的人口小于它三个直辖市人口的和,故本选项错误,B、不能看出人口增长的情况,故本选项错误,C、不能看出人口增长的百分数,故本选项错误,D、3090>1001×3,重庆是天津人口总数的3倍还要多,故本选项正确;故选D.【点睛】本题考查的是条形统计图和折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.9.A【解析】如图,过点A作l1的平行线AC,过点B作l2的平行线BD,则∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.故选:D.【点睛】运用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.10.C【解析】x3+m=x3·x m,故选C.本题主要考查了同底数幂的乘法法则的逆用,同底数幂相乘,底数不变,指数相加,即a m ·a n =a m+n (m ,n 是正整数),很多时候,需要逆用同底数幂的乘法法则,即a m+n =a m ·a n (m ,n 是正整数).11.【解析】【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】=. 故答案为:. 【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.12. 【解析】分析:把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,然后约分.详解:原式==.故答案为:. 点睛:分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.13.8【解析】解:将a +b =2两边平方得:(a +b )2=4,即a 2+2ab +b 2=4,∴a 2-2+b 2=4,即a 2+b 2=6,则(a ﹣b )2=a 2﹣2ab +b 2=6+2=8.故答案为:8.点睛:本题考查了完全平方公式,熟练掌握完全平方公式是解答本题的关键.14.m (a ﹣b+1).【解析】原式= ()1m a b -+.15.【解析】先求出有记号的2条鱼在50条鱼中所占百分比,再根据用样本中有记号的鱼所占百分比等于鱼塘中有记号的鱼所占百分比,即可求得答案.【详解】解:∵,∴60÷4%=1500.故答案为:1500.【点睛】本题考查了统计中用样本估计总体的思想,在实际生活中经常用到此类知识,解此题的关键在于首先求得有记号的鱼所占百分比.16.875y x+=【解析】试题解析:方程5x-7y=8,解得:x=875y+,故答案为:x=87 5y +17.1【解析】2312xx-= -,解得x=1,经检验是方程的根.故答案为1.18.m(a﹣b)2【解析】ma2﹣2mab+mb2=m(a2﹣2ab+b2)=m(a-b)2.故答案为m(a-b)2.19.【解析】【分析】根据平方差公式将原分式分解,转化为因式的积形式,再把x、y代入求值.【详解】原式=(2x+3y-2x+3y)(2x+3y+2x-3y)=6y×4x=24xy,代入x、y值,计算出得 .本题考查了学生简便方法的应用,用平方差公式将代数式先化简再代值计算是解决此题的关键.20.【解析】∵,,∴,,,∴.故答案为:±7.21.(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.22.(1)∠2=60°;(2)见解析.【解析】分析:(1) 根据得到根据即可求解.(2)延长BC 交a 于N. 根据又得到 可得是固定的.详解:(1)∵∴∴又∵∴∴(2)延长BC 交a 于N. ∴∵又∴∴又∴是固定的. 结论①正确, 由①可知②的值会改变. 点睛:考查平行线的性质,三角形外角的性质,熟练掌握三角形外角的性质是解题的关键. 23.x =-2【解析】分析:根据等式的性质去分母,可得整式方程,然后解这个整式方程,最后检验可得答案.详解:方程两边同乘以x (x-1),去分母得,3x-2(x-1)=0,解得x=-2,经检验:x=-2是原分式方程的解.点睛:本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.24.1.【解析】(x﹣4+)÷(1﹣)===x﹣2,∵当x=0和x=2时,使得原分式无意义,∴原分式的值可以是1,但不能等于﹣2,0.25.(1)1200人;(2)40.5%(3)建议三中高二数学老师要加强学生的概念教学,及关注学生的概念学习,三中学生的概念出错占12%,占的比率较高;【解析】分析:(1)观察条形统计图和扇形统计图,已知一中高二学生有400名,扇形统计图中一中的圆心角为120°,用400乘以一中所占百分比(扇形圆心角÷360°),即可求解;(2)先求出县解答完全正确的高二学生人数,再求出全市解答完全正确的高二学生数占高二学生总数的百分比;(3)观察条形统计图中的相关数据分析即可.详解:(1)400÷=1200人故答案为:1200人(2)解:∵二中的人数为:1200×=450人,三中学生人数为:1200-400-450=350人.∴全县解答完全正确的高二学生人数为:400×32%+450×36%+350×56%=486人全市解答完全正确的高二学生数占高二学生总数的百分比:486÷1200=40.5%;(3)建议三中高二数学老师要加强学生的概念教学,及关注学生的概念学习,三中学生的概念出错占12%,占的比率较高26.22 xx-+【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.试题解析:解:原式=()2242x x x x -⋅+ =()()()2222x x x x x +-⋅+=22x x -+ 当x =±2,0时,分式无意义,∴x 只能取±1. 当x =1时,原式=1212-+=﹣13. 当x =-1时,原式=1212---+=﹣3. 点睛:本题考查的是分式的化简求值,在选取合适的x 的值时要保证分式有意义.27.(1) (2)22a a -【解析】【试题分析】(1)依据完全平方公式展开,去括号,合并同类项,化简即可 ; (2)先通分,因式分解,约分,化简即可.【试题解析】(1)()()2232x y x x y --- =2222244322x xy y x xy x xy y -+-+=-+ ; (2)24132333a a a a a a --⎛⎫--÷ ⎪++⎝⎭=()()()2232394133232a a a a a a a a a a a +-+--+⋅=⋅=+-+- 22a a -.。
杭州拱墅区2017 2018七年级下期末统考数学试卷有答案 浙教版
2017-2018学年七年级下学期期末统考浙江省杭州拱墅区Z)试卷数学( 30分)小题,每小题3分,共一、选择题(本大题有100.00072cm1..已知人体红细胞的平均直径是,用科学记数法可表示为()DC BA6?5?4??3....cm7.2?10107.2cmcm?107.27.2?10?cmB【答案】10?1≤a n.,【解析】科学记数法:将数写成10a?10036100000 2个批次,每个批次月份某厂生产的.为调查件手机电池的质量,质检部门共抽检了其中.件的手机电池进行检验,在这次抽样调查中,样本的容量是()3001001000003 DC B A ....D【答案】300100?3?.【解析】36..下列运算结果为的是()x33)x( A C B D251233....xxx?x?x?xC【答案】933x()x?1051262333.【解析】解析:,,,x?x?x?x?xxx??xx24..下列式子直接能用完全平方公式进行因式分解的是()DC AB2222....1616a?8a?a189a3?a??4a41?aa??A【答案】221)?(4?a?816a?a1 .【解析】lll5? 5.(如图).已知直线,,,,的内错角是()312ll2123154l33? A B CD....1?4??2B【答案】【解析】内错角的定义.6..下列分式中,最简分式是()2xxy3x?x1?x?2 A B C D ....22y?xxy221x?2x?x4?A【答案】 121?x?x1112?2x?x?xy3x?y3x?????.,,【解析】2222x?x?2)xx?4(?2)(x1??1(x?1)x?2xyxyca01?2?b3)?3)?cb?(?3)?(?a( 7.,.已知,那么,之间的大小关系是(),,ba??ac?cb?ca?c?b?ba? C BD A ....D【答案】111?2?0?a?(??(3)??3)b?1(?3)?c?,,,【解析】39c?b?a .∴ynxmnyx?※xy?m 8“”,※均为非零常数),规定:(其中.对,若,,定义一种新运算41?1※3?1※2 的值是().则.1※2935 CDA B ....11C【答案】3n?2?m?211※?m?n?41※,【解析】,1??5n?m ,,∴9?m?n2※1?2 .∴9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,mm?2015?100 (单位:.且轴直径的合格标准为.有下列结论:)不含后一个边界值)0.15?50 根;①这批被检验的轴总数为yx?0.44a?b?;②且100.15mm 的轴;③这批轴中没有直径恰为18082%1000 根不合格,其中正④这一批轴的合格率是根这样的轴.则其中恰好有,若该厂生产.确的有()+0.14φ-0.15mm 频率频级别()数ax99.709.55~99.850.1~599.70100.0099.85~0.4221b20100.15100.00~00100.30100.15~y 100.45100.30~0.0423 D B CA 个.个个..个.412C【答案】5?0.1?50 ,【解析】总数为(根)b?20?50?0.4a?1?0.1?0.42?0.4?0.04?0.04a?b?0.44 .,,x?y4y?x?2bx?20 ,个,所以,对应,10015mm 的轴,由表知,没有直径恰好,0.42?0.4?0.82?82% ,合格率为1000?(1?82%)?1801000 ,不一定恰好,生产(根)根中不合格的估计有3 个.故正确的为①②③,共a ”10“吨,另有从.某市在中新建成一个污水处理厂.已知该厂库池中存有待处理的污水五水共治b 台.若污水处理厂同时开动吨的定流量增加)城区流入库池的待处理污水(新流入污水按每小时2315530 个小时将小时处理完污水;若同时开动小时处理完污水.现要求用台机组.需机组,需.污水处理完毕,则需同时开动的机组数为()567 D B CA 台台...台台.4D【答案】30,?a?30b?2?【解析】依题意:有?15,a?15b?3??a?30.?xa?5b?5x ,则设需台机组,则?b?1.?x?7 .∴二、填空填(本大题有6小题,每小题4分,共24分)x?1x__________ 11.要使分式的取值应满足有意义,.1x?1x?【答案】x?1x?1?0 ,【解析】要使有意义,则x?1x?1 .∴xyyy?x1??__________ 12.已知二元一次方程.若用含,可得的代数式表示;方程的正整数解是24__________ .xy?12?2?x 【答案】,2yx1??,【解析】∵24x?2,?xx??y?2?1??2?.∴,正整数解为???y?1.42????3??4?B??5?B??BAD?180? 13;②有下列条件:.如图,①④③;.其中能得到;2??1?CD∥AB__________ .的是(填写编号)3AD13425BEC【答案】②③【解析】平行线的判定.14__________3..分解因式:?ab?4ab1)b?b?1)(2ab(2 【答案】231)b?b?1)(2?1)?ab(24abab??ab(4b .【解析】3k21???k 15__________..若分式方程有增根,则x??11x3?【答案】23k21)?(x1??,【解析】等式两边同乘x?11x?4k?x?1?22k?3?x ,得∵方程有增根,14?2k?0x?1?,即∴3?k?.∴ 2n 16个水平放置的小长.如图所示,一个大长方形刚好由个相同的小长方形拼成,其上、下两边各有2n1.75 的值是倍,则方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的__________.32 【答案】ab ,【解析】依题意,设小长方形的长为,宽为ab?2a2 ,则大长方形长为,宽为)a1.75(2?b?2ab14a?,解得则324??14?2 (个)小长方形拼成.∴大长方形有分)小题,共三、解答题(本大题有766ABCABC 617平移到格,使三角形的顶点的网格上.平移格点三角形(.分)如图,在每格边长为A1 处.点D 4CB C 的面积.,并求三角形的对应点分别为点,)()请画出平移后的图形三角形(,DEFDEFEBF1 之间的关系.与线段()写出线段BFAD2 【答案】见解析11143??2???1?2??S?S?34??2?4 .【解析】解:()图略1ABC△DEF△222 .且()BEAD2?BEAD∥8 18分)计算:.(31?2??mm2??n)?6(2m?n)?n(4m ))(;(21??22yxxy2 【答案】见解析y?32x3yx2??.()【解析】解:1222222y2x2yy2xx2??m?6m2n(4m?n)??(2mn)?)(2??222m2m)?4mnn??(4m??4mn?n6?23??2mm)?2m?(4m6?.9211??3xx1x?3??1083)??x?(? 19??..分)先化简,再求值:(,其中??233xx?2??x11??【答案】见解析31)x?1)(x?1)3((x???【解析】解:原式21?11)xx?(x?7?8?19xx??1???1x?x?1x?1x?191??1033)??x???(?时,??3??57???1?.原式2?1?30120 (.分)解方程(组)5,?yx???12x?0??.)()(21?5;3xy2??2x2?4xx?4??【答案】见解析 5①?5,x?y??【注意有①②】,【解析】解:()1?②?5,x?2y3??5??5x ,②得①?24?y?1?x?,∴,代入①得1,?x??.∴?4.?y??12x?0??).(22x2?4x?x4?1?2x0??22)?(x 化简得,左右同乘,22??2)xx(0?2?x?2?x ,得00x?x?为原分式方程的解.∴,经检验,0?MCN?CO?MCN?1?CMA?30?CNE?8021 (..求,分)如图,已知,,,平分EFAB∥CD∥DCO?.的度数(要求有简要的推理说明)MABDCOEFN?25 【答案】,【解析】解:∵CDAB∥?AMC?30?MCD??,∴??80NCD???CNE ,同理,?110?MCD?NCD??MCN??.∴MCN?CO ,平分∵1?55?MCN???NCO ,∴2??25NCONCD??DCO??.∴22月关于图书销售情况的两个统计图:分)以下是某网络书店(.41~12 绘本类图书销售额占该书店某网络书店月销售总额统计图41?当月销售总额的百分比统计图6万月销售百分比812710661068586640422%00月4月3月1月2月份月4月月23月1月份2图1图月份该网络书店绘本类图书的销售额.()求11 .)若已知月份与月份这两个月的绘本类图书销售额相同,请补全统计图(24123 )有以下两个结论:(182 万元.①该书店第一季度的销售总额为3 月份绘本类图书销售额的月增长率相等.②该书店月份到1 请你判断以上两个结论是否正确,并说明理由.【答案】见解析4.2??6%70 .月份绘本类图书的销售额为(万元)【解析】解:()117%??604.2 .图略.月份绘本类图书销售总额占的百分比为()4218250?70?62?3 .)第一季度销售总额为((万元)18.1%≈??0.764.28%?70?6%)?4.2(62?.月份,绘本类图书销售额增长率为①正确.月份到210.8%≈8%)8%)??(62?(50?10%?623 .②错误.月份增长率为月份到2400g 23;午餐的成分分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量.(12 所示;其中矿物质的含量是脂为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图180%1.5 .肪含量的倍,蛋白质和碳水化合物含量占某校营养午餐组成统计某校营养午餐组成成分统计图图碳水化蛋白质合物矿脂肪物质55%45%2图图1yx(g)x(g)y 的代数式分别表示碳水化合物和矿物.脂肪含量是)设其中蛋白质含量是(或,请用含1 质的质量.)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量.(23 中完成这四种不同成分所占百分比的扇形统计图.,请在图()参考图21 7【答案】见解析1.5y(g) .)由题可知,矿物质的质量为【解析】解:(1400?45%?1.5y?180?1.5y(g) .碳水化合物的质量为x?y?400?55%,x?188,??(),解得2??x?180?1.5y?400?80%,y?32,??188g .蛋白质质量为180?1.5?32?132g ,碳水化合物质量为32g1.5?32?48g ,矿物质质量为脂肪质量为188?100%?47%3 ,()蛋白质:40080%?47%?33% ,碳水化合物:55%?47%?8% ,脂肪:45%?33%?12% .图略.矿物质:8。
浙江省杭州拱墅区2017-2018学年七年级下学期期末统考数学试卷(解析版)
浙江省杭州拱墅区2017-2018学年七年级下学期期末统考数学(Z)试卷一、选择题(本大题有10小题,每小题3分,共30分)1. 已知人体红细胞的平均直径是,用科学记数法可表示为().A. B. C. D.【答案】B【解析】分析:根据绝对值小于1的数可表示成为a×10-n的形式即可求解.详解:0. 00072=7.2×10−4,故选:B.点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.2. 为调查月份某厂生产的件手机电池的质量,质检部门共抽检了其中个批次,每个批次件的手机电池进行检验,在这次抽样调查中,样本的容量是().A. B. C. D.【答案】D【解析】分析:根据样本容量的定义即可求解.分析:.点睛:此题考查了样本容量的定义,样本容量指样本中个体的数目,弄清定义是解此题的关键.3. 下列运算结果为的是().A. B. C. D.【答案】C【解析】分析:根据同底数幂的运算法则进行计算即可.详解:A.原式=2x3,故本选项错误;B. 原式=x9,故本选项正确;C. 原式=x6,故本选项错误;D. 原式=x12−2=x10,故本选项错误。
故选:C.点睛:此题考查了和同底数幂有关的运算法则,掌握这些法则并熟练运用是解此题的关键.4. 下列式子直接能用完全平方公式进行因式分解的是().A. B. C. D.【答案】A【解析】分析:其中两项能够写成两个数或式平方和的形式,另一项是这两个数(或式)的积的2倍;完全平方公式:a2±2ab+b2=(a±b)2,判断即可.详解:A.16a2+8a+1=(4a+1)2,能用完全平方公式分解因式,符合题意;B.,不能用完全平方公式分解因式,不合题意;C,不能用完全平方公式因式分解因式,不合题意;D.能用完全平方公式分解因式,不合题意;故选:A.点睛:本题主要考查完全平方公式的运用,熟练掌握完全平方公式的形式是解题的关键.5. 已知直线,,,(如图),的内错角是().A. B. C. D.【答案】B【解析】分析:根据内错角的定义解决即可.详解:由图可知:的内错角是,故选:B.点睛:此题考查了内错角的定义,内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.6. 下列分式中,最简分式是().A. B. C. D.【答案】A【解析】分析:根据最简分式的定义判断即可.详解:B. C. D.A.分母不能分解因式,因而分式不能再化简,是最简分式,故选项正确;B. 原式==,故选项错误;C. 原式= =,故不是最简分式,选项错误;D. 原式==-,故不是最简分式,选项错误.故选:A.点睛:此题考查最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.7. 已知,,,那么,,之间的大小关系是().A. B. C. D.【答案】D【解析】分析:利用0指数幂和负整数指数幂的运算性质分别求出a、b、c的值,再比较即可.详解:==,==-,=1,故故选:D.点睛:此题考查了0次幂和负整数指数幂的运算及数的大小比较,熟练在掌握运算性质是解此题的关键. 8. 对,定义一种新运算“※”,规定:(其中,均为非零常数),若,.则的值是().A. B. C. D.【答案】C【解析】分析:根据新定义的运算律可得,解方程即可得到m、n的值,再带入到.中,求解即可.详解:根据题意可得方程组解得,则=5×2+(-1)×1=9,故选:C点睛:此题考查了定义新运算,由新定义化简得出两式是解此题的关键.9. 对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为(单位:).有下列结论:①这批被检验的轴总数为根;②且;③这批轴中没有直径恰为的轴;④这一批轴的合格率是,若该厂生产根这样的轴.则其中恰好有根不合格,其中正确的有().A. 个B. 个C. 个D. 个【答案】C【解析】分析:根据=样本容量=各组频数之和,各组频率之和=1即可判断.详解:总数为(根),,,.对应个,所以,,,由表知,没有直径恰好.的轴,合格率为,生产根中不合格的估计有(根),不一定恰好,故正确的为①②③,共个.点睛:此题考查了频数、频率、样本容量之间的关系,熟知这些关系是解决此题的关键.10. 某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水吨,另有从城区流入库池的待处理污水(新流入污水按每小时吨的定流量增加).若污水处理厂同时开动台机组,需小时处理完污水;若同时开动台机组.需小时处理完污水.现要求用个小时将污水处理完毕,则需同时开动的机组数为().A. 台B. 台C. 台D. 台【答案】D【解析】分析:设1台机组每小时处理污水v吨,根据题意列出方程组,将求得的值再代入不等式,求不等式的解集即可.详解:设1台机组每小时处理污水v吨,由题意得,.解得.则=7,故选:D点睛:此题考查二元一次方程组组的应用,设出题目中的未知数是解答本题的关键.二、填空填(本大题有6小题,每小题4分,共24分)11. 要使分式有意义,的取值应满足__________.【答案】【解析】分析:根据分式有意义的条件可得x-1≠0,再解即可.详解:要使有意义,则,∴.故答案为:点睛:此题考查了分式有意义的条件,注意:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.12. 已知二元一次方程.若用含的代数式表示,可得__________;方程的正整数解是__________.【答案】(1). (2).【解析】分析:由等式的基本性质进行恒等变形即可.详解:∵,∴,∵只有当x=2时,y的值才是正整数,∴正整数解为.故答案为:(1);(2)点睛:本题主要考查二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.13. 如图,有下列条件:①;②;③;④.其中能得到的是__________(填写编号).【答案】②③【解析】分析:根据平行线的判定定理求解,即可求得答案.详解:①∵∠1=∠2,∴AD∥BC;②∵∠3=∠4,∴AB∥CD;③∵∠B=∠5,∴AB∥CD;④∵∠B+∠BAD=180°,∴AD∥BC;∴能得到AB∥CD的条件是②③.故答案为:②③点睛:本题考查了平行线的判定,掌握平行线的三种判定方法是解此题的关键.14. 分解因式:__________.【答案】【解析】分析:先提取公因式ab,再把剩余部分利用平方差公式分解因式即可.详解:故答案为:点睛:此题考查了综合提公因式法和公式法因式分解,分解因式时要一提二用,即先看看多项式有没有公因式,有的话先题公因式,再看剩余部分是否是平方差或完全平方形式.15. 若分式方程有增根,则__________.【答案】【解析】分析:根据解分式方程的步骤,可得整式方程的解,根据分式方程无解,可得关于k的一元一次方程,根据解方程,可得答案.详解:等式两边同乘,得,∵方程有增根,∴即,∴.故答案为:16. 如图所示,一个大长方形刚好由个相同的小长方形拼成,其上、下两边各有个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的倍,则的值是__________.【答案】32【解析】分析:依题意,设小长方形的长为,宽为,则大长方形长为,宽为,则解得,∴大长方形有(个)小长方形拼成.故答案为:32.........................三、解答题(本大题有7小题,共66分)17. 如图,在每格边长为的网格上.平移格点三角形,使三角形的顶点平移到格点处.()请画出平移后的图形三角形(,的对应点分别为点,),并求三角形的面积.()写出线段与线段之间的关系.【答案】(1)4;(2)且.【解析】分析:(1)根据网格结构找出点B、C的对应点E、F的位置,然后与点D顺次连接即可;利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(2)由平移的性质即可得到且.详解:()三角形如图:.()且.点睛:本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是做题的关键.18. 计算:();()【答案】(1);(2).【解析】分析:(1)先通分化为同分母分式,再分母不变分子相减即可计算;(2)多项式除以单项式的法则计算即可.详解:()原式=.().点睛:本题考查了的分式的加减和混合运算的应用,主要考查学生的计算能力和化简能力,题目比较典型,难度适中.19. 先化简,再求值:,其中.【答案】;.【解析】分析:先根据分式混合运算的法则把把分式化简,再求出x值代入进行计算即可.解:原式时,原式.点睛:此题考查分式的化简与求值,主要考查的知识点是因式分解、通分、约分等.熟练运用分式的运算法则是解题的关键.20. 解方程(组)()().【答案】(1);(2).【解析】分析:(1)根据加减消元法,可得二元一次方程组的解;(2)根据解分式方程的步骤,可得整式方程的解,代入最简公分母验根,可得答案.详解:(),①②得,∴,代入①得,∴.().化简得,左右同乘,得,∴,经检验,为原分式方程的解.点睛:此题考查了解分式方程,注意分式方程一定要验根,检验增根的方法是:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根.21. 如图,已知,,,平分.求,的度数(要求有简要的推理说明).【答案】【解析】分析:由两直线平行,内错角相等得到∴,,即可求得,由角平分线的定义可求得的度数详解:∵,∴,同理,,∴.∵平分,∴,∴.点睛:本题主要考查了平行线的性质和角平分线定义的应用,解题时要注意:两直线平行,内错角相等.22. 以下是某网络书店月关于图书销售情况的两个统计图:()求月份该网络书店绘本类图书的销售额.()若已知月份与月份这两个月的绘本类图书销售额相同,请补全统计图.()有以下两个结论:①该书店第一季度的销售总额为万元.②该书店月份到月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.【答案】(1)4.2万元;(2)见解析;(3)①正确,②错误.【解析】分析:(1)月份该网络书店绘本类图书的销售额为一月份月销售额×绘本类图书所占百分比;(2)用四月份绘本类图书销售额4.2除以月销售额,即可得到,补充图形即可;(3)①第一季度销售总额为一二三约分销售额之和;②用增长率公式计算比较即可.详解:解:()月份绘本类图书的销售额为(万元).()月份绘本类图书销售总额占的百分比为.补图:.()第一季度销售总额为(万元).①正确.月份到月份,绘本类图书销售额增长率为.月份到月份增长率为.②错误.点睛:本题是统计题,考查了条形图和折线图,是基础知识要掌握,本题考查的是条形统计图和折线统计图的综合应用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23. 通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图所示;其中矿物质的含量是脂肪含量的倍,蛋白质和碳水化合物含量占.()设其中蛋白质含量是.脂肪含量是,请用含或的代数式分别表示碳水化合物和矿物质的质量.()求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量.()参考图,请在图中完成这四种不同成分所占百分比的扇形统计图.【答案】(1)矿物质的质量为,碳水化合物的质量为;(2)蛋白质质量为,碳水化合物质量为,脂肪质量为,矿物质质量为;(3)见解析.【解析】分析:(1)由矿物质的含量是脂肪含量的倍,即可表示出矿物质的质量,再用总质量的减去矿物质的质量,即可表示出碳水化合物的质量;(2)根据蛋白质和脂肪含量占,蛋白质和碳水化合物含量占,得到关于x,y的二元一次方程组,解之即可;(3)借助关系式“某一部分的百分比=×100%×360°易得出各物质所对圆心角的度数,即可得出扇形统计图.详解:()由题可知,矿物质的质量为.碳水化合物的质量为.()由题意得:,解得蛋白质质量为.碳水化合物质量为,脂肪质量为,矿物质质量为()各物质含量对应的圆心角为:蛋白质:×360°=169.2°,碳水化合物:(×360°=118.8°,脂肪:(×360°=28.8°,矿物质:(×360°=43.2°.扇形统计图如下:点睛:解答此类题目的关键是能根据题意找出等量关系式,再结合已知信息即可使问题简化.此外,本题还考查了制作扇形统计图的步骤:①计算百分比;②据算圆心角(百分比×360°);③画圆及扇形;④做标注.。
2017-2018学年浙教版七年级第二学期期末测试卷及答案
2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1.如图的图案是由下列四个选项中的哪个图案平移得到的()A.B.C.D.2.已知:如图,直线a,b被直线c所截,且a∥b,若∠1=70°,则∠2的度数是()A.130°B.110°C.80°D.70°3.分式有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣14.下列计算结果正确的是()A.a3×a4=a12B.a5÷a=a5C.(ab2)=ab6D.(a3)2=a65.下列各式由左到右的变形中,属于因式分解的是()A.a(x+y)=ax+ay B.x2﹣4x+4=(x﹣2)2C.2a﹣4b+2=2(a﹣2b)D.x2﹣16+3x=(x﹣4)(x+4)+3x6.下列调查中,适合采用全面调查方式的是()A.了解一批炮弹的杀伤半径B.了解全国中学生的身高情况C.对市场上某种饮料质量情况的调查D.调查一架隐形战机的各零部件的质量情况7.二元一次方程组的解是()A.B.C.D.8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.9.已知x﹣=2,则代数式5x2+﹣3的值为()A.27 B.7 C.17 D.210.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A.2013 B.2014 C.2015 D.2016二、填空题(每小题3分,共30分)11.用科学记数法表示:0.00000706=.12.当x=时,分式的值为0.13.如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD∥BC的条件:(一个即可).14.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.15.计算:(6a2﹣10ab+4a)÷(2a)=.16.若多项式x2﹣kx+9是一个完全平方式,则常数k的值是.17.计算:﹣=.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣2,则2m﹣n的值为.19.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F、G、D、C在同一直线上,点G和点D 重合,现将△EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△EFG 与长方形重叠部分的面积是4cm2,则△EFG向右平移了cm.20.已知实数a,b,c满足a+b=ab=c,有下列结论:①若c≠0,则=﹣;②若a=3,则b+c=9;③若c≠0,则(1﹣a)(1﹣b)=+;④若c=5,则a2+b2=15.其中正确的是(把所有正确结论的序号都填上).三、解答题(共50分)21.计算下列各题(1)(﹣3)2+(π+)0﹣(﹣)﹣2(2)(2x﹣1)2﹣(x﹣1)(4x+3)22.解方程(组)(1)(2)﹣=2.23.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3.24.如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若∠ABC=120°,求∠BEC的度数.25.某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2)求a,b的值.四、附加题(每小题10分,共20分)27.已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折弦,且∠APN<90°,Q是a,b之间且在折线APB左侧的一点,如图.(1)若∠1=33°,∠APB=74°,则∠2=度.(2)若∠Q的一边与PA平行,另一边与PB平行,请探究∠Q,∠1,2间满足的数量关系并说明理由.(3)若∠Q的一边与PA垂直,另一边与PB平行,请直接写出∠Q,∠1,2之间满足的数量关系.28.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1.如图的图案是由下列四个选项中的哪个图案平移得到的()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2.已知:如图,直线a,b被直线c所截,且a∥b,若∠1=70°,则∠2的度数是()A.130°B.110°C.80°D.70°【考点】平行线的性质.【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°.故选B.3.分式有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得x﹣1≠0,解得x≠1.故选A.4.下列计算结果正确的是()A.a3×a4=a12B.a5÷a=a5C.(ab2)=ab6D.(a3)2=a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法,积的乘方,幂的乘方,即可解答.【解答】解:A、a3×a4=a7,故本选项错误;B、a5÷a=a4,故本选项错误;C、(ab2)3=a3b6,故本选项错误;D、正确;故选:D.5.下列各式由左到右的变形中,属于因式分解的是()A.a(x+y)=ax+ay B.x2﹣4x+4=(x﹣2)2C.2a﹣4b+2=2(a﹣2b)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C、2a﹣4b+2=2(a﹣2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6.下列调查中,适合采用全面调查方式的是()A.了解一批炮弹的杀伤半径B.了解全国中学生的身高情况C.对市场上某种饮料质量情况的调查D.调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确.故选D.7.二元一次方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,把②代入①得:x+4x=10,即x=2,把x=2代入②得:y=4,则方程组的解为.故选A.8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,根据甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,由题意得,=.故选D.9.已知x﹣=2,则代数式5x2+﹣3的值为()A.27 B.7 C.17 D.2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵x﹣=2,∴原式=5(x2+)﹣3=5[(x﹣)2+2]﹣3=30﹣3=27,故选A10.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A.2013 B.2014 C.2015 D.2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得,两式相加得,m+n=5(x+y),∵x、y都是正整数,∴m+n是5的倍数,∵2013、2014、2015、2016四个数中只有2015是5的倍数,∴m+n的值可能是2015.故选C.二、填空题(每小题3分,共30分)11.用科学记数法表示:0.00000706=7.06×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06×10﹣6,故答案为:7.06×10﹣6.12.当x=时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:∵分式的值为0,∴3x﹣1=0,且x+2≠0,解得x=,x≠﹣2,即x=.故答案为:13.如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD∥BC的条件:∠EAD=∠B(一个即可).【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:∵AD和BC被BE所截,∴当∠EAD=∠B时,AD∥BC.故答案为:∠EAD=∠B.14.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4.【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.15.计算:(6a2﹣10ab+4a)÷(2a)=3a﹣5b+2.【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2﹣10ab+4a)÷(2a)=(6a2)÷(2a)﹣(10ab)÷(2a)+(4a)÷(2a)=3a﹣5b+2故答案为:3a﹣5b+2.16.若多项式x2﹣kx+9是一个完全平方式,则常数k的值是±6.【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可.【解答】解:∵x2﹣kx+9=x2﹣kx+32,∴﹣kx=±2×x×3,解得k=±6.故答案为:±6.17.计算:﹣=.【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.【解答】解:原式===.故答案为:.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣2,则2m﹣n的值为4.【考点】因式分解的意义.【分析】设另一个因式为x﹣a,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得x2﹣mx+n,根据各项系数相等列式,计算可得2m﹣n=4.【解答】解:设另一个因式为x﹣a,则x2﹣mx+n=(x﹣2)(x﹣a)=x2﹣ax﹣2x+2a=x2﹣(a+2)x+2a,得,由①得:a=m﹣2③,把③代入②得:n=2(m﹣2),2m﹣n=4,故答案为:4.19.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F、G、D、C在同一直线上,点G和点D重合,现将△EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△EFG 与长方形重叠部分的面积是4cm2,则△EFG向右平移了3cm.【考点】平移的性质;等腰直角三角形.【分析】首先判断出平移△EFG经过长方形ABCD对角线的交点时,重叠面积是长方形的面积的一半即面积为4cm2,然后求出平移的距离.【解答】解:∵长方形AB=2cm,AD=4cm,∴长方形的面积为8cm2,∵△EFG与长方形重叠部分的面积是4cm2,∴△EFG边DE经过长方形ABCD对角线的交点,∵FG=4,CD=2,∴(FG+CD)=3,∴△EFG向右平移了3cm,故答案为3.20.已知实数a,b,c满足a+b=ab=c,有下列结论:①若c≠0,则=﹣;②若a=3,则b+c=9;③若c≠0,则(1﹣a)(1﹣b)=+;④若c=5,则a2+b2=15.其中正确的是①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=c≠0,将原式变形后将a+b整体代入即可求出答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△<0,所以a、b无解,③分别计算(1﹣a)(1﹣b)和+.④由于a+b=ab=5,联立方程可知△>0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①∵c≠0,∴ab≠0∵a+b=ab,∴原式====﹣故①正确;②∵c=3,∴ab=3,∴a+b=3,∴联立化简可得:b2﹣3b+3=0,∵△<0,∴该方程无解,c=3时,a、b无解,故②错误;③∵c≠0,∴ab≠0,∵a+b=ab∴(1﹣a)(1﹣b)=1﹣b﹣a+ab=1,==1,∴(1﹣a)(1﹣b)=+,故③正确;④∵c=5,∴a+b=ab=5,联立,化简可得:b2﹣5b+5=0,∵△>0,∴a2+b2=(a+b)2﹣2ab=15,故④正确故答案为:①③④三、解答题(共50分)21.计算下列各题(1)(﹣3)2+(π+)0﹣(﹣)﹣2(2)(2x﹣1)2﹣(x﹣1)(4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1﹣4=6;(2)原式=4x2﹣4x+1﹣4x2﹣3x+4x+3=﹣3x+4.22.解方程(组)(1)(2)﹣=2.【考点】解分式方程;解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×7﹣①得:19x=﹣19,即x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为;(2)去分母得:x+2=4x﹣2,解得:x=,经检验x=是分式方程的解.23.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(2)3x2y﹣6xy2+3y3=3y(x2﹣2xy+y2)=3y(x﹣y)2.24.如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若∠ABC=120°,求∠BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD⊥BE,BC⊥BE得出AD∥BC,故可得出∠ADE=∠C,再由∠A=∠C得出∠ADE=∠A,故可得出结论;(2)由AB∥CD得出∠C的度数,再由直角三角形的性质可得出结论.【解答】解:(1)AB∥CD.理由:∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠ADE=∠C.∵∠A=∠C,∴∠ADE=∠A,∴AB∥CD;(2)∵AB∥CD,∠ABC=120°,∴∠C=180°﹣120°=60°,∴∠BEC=90°﹣60°=30°.25.某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为40人,扇形统计图中“良好”所对应的圆心角的度数为162°;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数,用良好的人数除以总人数再乘以360°即可得出“良好”所对应的圆心角的度数;(2)用40﹣2﹣8﹣18即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8÷20%=40(人),18÷40×360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,如图,(3)“良好”的男生人数:×480=216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A ,B ,C 三个小区所购买的数量和总价如表所示.(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2)求a ,b 的值.【考点】二元一次方程组的应用.【分析】(1)设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于a、b的二元一次方程,结合a、b的取值范围来求它们的值即可.【解答】解:(1)设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.依题意得:,解得.答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套.(2)由题意得:140a+240b=2580,整理,得7a+12b=129,因为a、b都是正整数,所以或.四、附加题(每小题10分,共20分)27.已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折弦,且∠APN<90°,Q是a,b之间且在折线APB左侧的一点,如图.(1)若∠1=33°,∠APB=74°,则∠2=41度.(2)若∠Q的一边与PA平行,另一边与PB平行,请探究∠Q,∠1,2间满足的数量关系并说明理由.(3)若∠Q的一边与PA垂直,另一边与PB平行,请直接写出∠Q,∠1,2之间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P作PC∥直线a,根据平行线的性质得到∠1=∠APC,∠2=∠BPC,于是得到结论;(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到∠MQN=∠P=∠1+∠2,根据平角的定义即可得到结论;(3)由垂直的定义得到∠QEP=90°,由平行线的性质得到∠QFE=∠P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC∥直线a,∴PC∥b,∴∠1=∠APC,∠2=∠BPC,∴∠2=∠APB﹣∠1=41°;故答案为:41;(2)如图2,∵QM∥PB,QN∥PA,∴四边形MQNP是平行四边形,∴∠MQN=∠P=∠1+∠2,∴∠EQN=180°﹣∠MQM=180°﹣∠1﹣∠2;即∠Q=∠1+∠2=180°﹣∠1﹣∠2;(3)∵QE⊥AP,∴∠QEP=90°,∵QF∥PB,∴∠QFE=∠P,∴∠EQF=90°﹣∠QFE=90°﹣∠1﹣∠2,∴∠EQG=180°﹣∠EQF=90°+∠1+∠2.28.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=(m+1)(m﹣5).(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2﹣4m﹣5变形为m2﹣4m+4﹣9,再根据完全平方公式写成(m﹣2)2﹣9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2﹣4a+6b+18转化为(a﹣2)2+(b+3)2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2﹣2ab+2b2﹣2a﹣4b+27转化为(a﹣b﹣1)2+(b﹣3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为(m+1)(m﹣5);(2)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;(3)∵a2﹣2ab+2b2﹣2a﹣4b+27=a2﹣2a(b+1)+(b+1)2+(b﹣3)2+17=(a﹣b﹣1)2+(b﹣3)2+17,∴当a=4,b=3时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值17.2017年4月18日。
浙教版2018-2019学年七年级数学下学期期末测试卷(含答案)
2018-2019学年七年级下学期期末统考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为().A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是(). 3.下列运算结果为6x 的是().A .33x x +B .33()xC .5x x ⋅D .122x x ÷4.下列式子直接能用完全平方公式进行因式分解的是().A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是().A .1∠B .2∠C .3∠D .4∠6.下列分式中,最简分式是().A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是().A .a b c >>B .a c b >>C .c b a >>D .c a b >>8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是(). A .3 B .5 C .9 D .119.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论:①这批被检验的轴总数为50根;12345l 2l 1l 3②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有().A .1个B 2 D .4个10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为().A .4台B .5台C .6台D .7台二、填空填(本大题有6小题,每小题4分,共24分) 11.要使分式11x x +-有意义,x 的取值应满足__________. 12.已知二元一次方程142x y +=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).-0.15+0.14φ14.分解因式:34ab ab -=__________. 【答案】(21)(21)ab b b +- 15.若分式方程23111k x x-=--有增根,则k =__________. 16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系.18.(8分)计算:(1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦DABCE12345.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.20.(10分)解方程(组)(1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图D A BC EFOM N(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图图1图2图1碳水化合物矿物质45%蛋白质脂肪55%图2(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.2018-2019学年七年级下学期期末统考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为().A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯【答案】B【解析】科学记数法:将数写成10n a ⨯,110a <≤.2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是(). A .100000 B .3 C .100 D .300【答案】D【解析】3100300⨯=.3.下列运算结果为6x 的是().A .33x x +B .33()xC .5x x ⋅D .122x x ÷【答案】C【解析】解析:3332x x x +=,339()x x =,56x x x ⋅=,12210x x x ÷=.4.下列式子直接能用完全平方公式进行因式分解的是().A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --【答案】A【解析】221681(41)a a a ++=+.5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是().A .1∠B .2∠C .3∠D .4∠【答案】B【解析】内错角的定义.6.下列分式中,最简分式是().12345l 2l 1l 3A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+【答案】A【解析】233x xy x yxy y--=,22214(2)(2)2x x x x x x ++==-+--,2211121(1)1x x x x x x --==-+--.7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是().A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D【解析】21(3)9a -=-=,11(3)3b -=-=-,0(3)1c =-=,∴b a c <<.8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是(). A .3 B .5 C .9 D .11【答案】C【解析】114m n =+=※,1223m n =+=※, ∴5m =,1n =-,∴1292m n =+=※.9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有().A .1个B 2 D .4个【答案】C【解析】总数为50.150÷=(根), 20500.4b =÷=,10.10.420.40.040.04a =----=,0.44a b +=. b 对应20个,所以2x =,4x y +=,x y =,由表知,没有直径恰好100,15mm 的轴, 合格率为0.420.40.8282%+==,生产1000根中不合格的估计有1000(182%)180⨯-=(根),不一定恰好, 故正确的为①②③,共3个.10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为(). A .4台B .5台C .6台D .7台【答案】D-0.15+0.14φ【解析】依题意:有30230,15315,a b a b +=⨯⎧⎨+=⨯⎩则30.1.a b =⎧⎨=⎩设需x 台机组,则55a b x +=,∴7x =.二、填空填(本大题有6小题,每小题4分,共24分) 11.要使分式11x x +-有意义,x 的取值应满足__________. 【答案】1x ≠ 【解析】要使11x x +-有意义,则10x -≠, ∴1x ≠.12.已知二元一次方程142x y +=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________. 【答案】22x -2x =,1y =【解析】∵142x y +=, ∴21242x x y ⎛⎫=⨯-=- ⎪⎝⎭,正整数解为2,1.x y =⎧⎨=⎩.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).【答案】②③【解析】平行线的判定.DA BCE1234514.分解因式:34ab ab -=__________. 【答案】(21)(21)ab b b +-【解析】324(41)(21)(21)ab ab ab b ab b b -=-=+-.15.若分式方程23111k x x-=--有增根,则k =__________. 【答案】32- 【解析】23111k x x -=--等式两边同乘(1)x -, 231k x +=-得24x k =+,∵方程有增根, ∴10x -=即241k +=, ∴32k =-.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】依题意,设小长方形的长为a ,宽为b , 则大长方形长为2a ,宽为2b a +, 则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 【答案】见解析【解析】解:(1)图略111342412234222DEF ABC S S ==⨯-⨯⨯-⨯⨯-⨯⨯=△△. (2)AD BE ∥且AD BE =.18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦【答案】见解析 【解析】解:(1)2222222323222x y x yx y x y x y --=. (2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦222(4446)2m mn n mn n m m =++--+÷2(46)223m m m m =+÷=+.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.【答案】见解析 【解析】解:原式2(1)(1)3(1)3(1)11x x x x x x +--=+++-198711111x x x x x x -+=+==+++++9101(3)33x ⎛⎫=-⨯-=- ⎪⎝⎭时, 原式751312=+=--+.20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.【答案】见解析【解析】解:(1)5,325,x y x y +=-⎧⎨-=⎩①②,【注意有①②】2⨯①+②得55x =-,∴1x =-,代入①得4y =-,∴1,4.x y =-⎧⎨=-⎩. (2)2210442x x x x+-=-+-.化简得2210(2)2x x x ++=--,左右同乘2(2)x -, 得220x x ++-=,∴0x =,经检验,0x =为原分式方程的解.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).【答案】25︒【解析】解:∵AB CD ∥,D A BC EFOM N∴30MCD AMC ∠=∠=︒, 同理,80NCD CNE ∠=∠=︒, ∴110MCN MCD NCD ∠=∠+∠=︒. ∵CO 平分MCN ∠, ∴1552NCO MCN ∠=∠=︒, ∴25DCO NCD NCO ∠=∠-=︒.22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由. 【答案】见解析【解析】解:(1)1月份绘本类图书的销售额为706% 4.2⨯=(万元).(2)4月份绘本类图书销售总额占的百分比为4.2607%÷=.图略. (3)第一季度销售总额为706250182-+=(万元). ①正确.1月份到2月份,绘本类图书销售额增长率为(628%706%) 4.20.76 4.218.1%⨯-⨯÷=÷≈.图1图22月份到3月份增长率为(5010%628%)628%()0.8%⨯-⨯÷⨯≈.②错误.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图. 【答案】见解析【解析】解:(1)由题可知,矿物质的质量为1.5(g)y .碳水化合物的质量为40045% 1.5180 1.5(g)y y ⨯-=-.(2)40055%,180 1.540080%,x y x y +=⨯⎧⎨+-=⨯⎩,解得188,32,x y =⎧⎨=⎩蛋白质质量为188g .碳水化合物质量为180 1.532132g -⨯=, 脂肪质量为32g ,矿物质质量为1.53248g ⨯= (3)蛋白质:188100%47%400⨯=, 碳水化合物:80%47%33%-=,图1碳水化合物矿物质45%蛋白质脂肪55%图2脂肪:55%47%8%-=,矿物质:45%33%12%-=.图略.。
2018年七年级(下)期末数学试卷含答案
2018年七年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为.17.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)20.(4分)计算:.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.七年级(下)期末数学试卷参考答案与试题解析一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【分析】根据整式的运算法则即可求出答案.【解答】解:①原式=2ab,故①错误;②原式=﹣6x2y2,故②错误;③原式=﹣64c,故③错误;④原式=(﹣ab2)2=a2b4,故④正确;故选(C)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】分别根据零指数幂,负指数幂、乘方的运算法则计算,然后再比较大小.【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°【分析】两人互相看时,说明方向正好是相反关系,故小颖应在小明的南偏西70°.【解答】解:∵小明处在小颖的北偏东70°方向上,∴小颖应在小明的南偏西70°,故选:C.【点评】此题主要考查了方向角,关键是掌握方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【分析】根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.【解答】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.【点评】本题主要考查三角形内角和定理的运用.7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选B.【点评】本题考查了函数的图象,应首先看清横轴和纵轴表示的量,然后根据实际情况进行确定.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.【分析】找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.【解答】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选B.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为 2.04×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00204=2.04×10﹣3,故答案为:2.04×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为8或9或10.【分析】根据三角形的三边关系即可确定a的范围,则a的值即可求解.【解答】解:a的范围是:9﹣2<a<9+2,即7<a<11,则a=8或9或10.故答案为:8或9或10.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为y=x2+6x.【分析】增加的面积=边长为3+x的新正方形的面积﹣边长为3的正方形的面积,把相关数值代入即可求解.【解答】解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.【点评】解决本题的关键是得到增加的面积的等量关系,注意新正方形的边长为3+x.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=1.【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【解答】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,=AC•BC=(AC+BC+AB)•r,∴S△ABC∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.=【点评】此题考查了角平分线的性质.此题难度适中,注意掌握S△ABCAC•BC=(AC+BC+AB)•r.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为22cm或14cm.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,可得x﹣6=2或6﹣x=2,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=2或6﹣x=2,解得:x=8或x=4,∴这个等腰三角形的周长为:22cm或14cm.故答案为:22cm或14cm.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.17.观察下列图形的构成规律,根据此规律,第8个图形中有65个圆.【分析】观察图形可知,每幅图可看成一个正方形加一个圆,利用正方形的面积计算可得出结果.【解答】解:第一个图形有2个圆,即2=12+1;第二个图形有5个圆,即5=22+1;第三个图形有10个圆,即10=32+1;第四个图形有17个圆,即17=42+1;所以第8个图形有82+1=65个圆.故答案为:65.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115°.【分析】根据角平分线的定义求出∠EBC的度数,根据线段垂直平分线的性质得到EB=EC,求出∠C的度数,根据邻补角的概念计算即可.【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBC=25°,∵AD垂直平分线段BC,∴EB=EC,∴∠C=∠EBC=25°,∴∠DEC=90°﹣25°=65°,∴∠AEC=115°,故答案为:115°.【点评】本题考查的是线段垂直平分线的概念和性质以及等腰三角形的性质,掌握线段垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)【分析】直接利用同底数幂的乘法、幂的乘方与积的乘方以及合并同类项的知识求解即可求得答案.【解答】解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.【点评】此题考查了同底数幂的乘法、幂的乘方与积的乘方.此题比较简单,注意掌握指数与符号的变化是解此题的关键.20.(4分)计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)【分析】先去小括号,再合并同类项,再根据单项式除以单项式的法则计算即可.【解答】解:原式=﹣[a2+2ab+b2﹣a2+2ab﹣b2]÷4ab=﹣4ab÷4ab=﹣1.【点评】本题考查了整式的除法.解题的关键是注意灵活掌握去括号法则、单项式除单项式的法则.22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.【分析】原式前两项利用完全平方公式化简,最后一项利用平方差公式化简,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x6+4x3+4﹣x6+4x3﹣4﹣2x4+32=8x3﹣2x4+32,当x=时,原式=1﹣+32=32.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,是基础题,熟记概念并准确识图,找准各角之间的关系是解题的关键.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.【分析】由全等三角形的判定定理SSS证得△ABC≌△DEF,则对应角∠BCA=∠EFD,易证得结论.【解答】证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.【点评】本题考查了全等三角形的判定与性质,平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.【分析】首先根据角平分线的定义,可得:∠1=∠ABD,∠2=∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.【解答】证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.【点评】此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?【分析】O是AB、A′B′的中点,得出两组对边相等,又因为对顶角相等,通过SAS得出两个全等三角形,得出AA′、BB′的关系.【解答】解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BOB′(SAS),∴AA′=BB′.【点评】本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握.28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【分析】首先可判断△ABC是等腰直角三角形,连接AD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.【解答】证明:连AD,如图所示:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵D为BC中点,∴AD=DC,AD平分∠BAC,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.。
浙教版数学2018-2019学年七年级下期期末试卷(含答案)
浙教版2018-2019学年七年级下期数学期末试卷考生须知:1.全卷满分为120分,考试时间120分钟.2.本卷答案必须做在答题卷的相应位置上,做在试卷上无效.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分)1.当x =2时,分式3x -1的值为( ▲ )A. 1B. 2C. 3D. 4 2.如图,已知直线a ∥b ,∠1=110°,则∠2等于( ▲ )A .110°B .90°C .70°D .60°3.下列调查应作全面调查的是( ▲ )A .节能灯管厂要检测一批灯管的使用寿命.B .了解居民对废电池的处理情况.C .了解现代大学生的主要娱乐方式.D .某公司对退休职工进行健康检查. 4.计算()32b a 的结果是( ▲ )A .b a 3B .36b aC .35b aD .32b a 5.二元一次方程组⎩⎨⎧=-=+425y x y x ,的解为( ▲ )A ⎩⎨⎧==;,41y x B ⎩⎨⎧==;,32y x C ⎩⎨⎧==;,23y x D ⎩⎨⎧==.,14y x 6.下列分解因式正确的是( ▲ )A .a ﹣16a 3=(1+4a )(a ﹣4a 2)B .4x ﹣8y +4=4(x ﹣2y )C .x 2﹣5x +6=(x +3)(x +2)D .22)1(12--=-+-x x x7.如图,从边长为a +2的正方形纸片中剪去一个边长为a ﹣2的正方形(a >2),剩余部分沿线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是( ▲ )(第2题图)(第7题图)A .8aB .4aC .2aD .a 2﹣48.化简xx x -+-2422结果是( ▲ ) A .21+x B . 2+x C .2-x x D . 2-x 9.如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.则方格内打上“a ”的数.是.( ▲ )A .6B .7C .8D .910.如图,直线AB ∥CD ,∠FGH =90°,∠GHM = 40°,∠HMN =30°,并且∠EF A 的两倍比∠CNP 大10°,则∠PND 的大小是( ▲ )A .100° B.120° C .130° D.150°卷 Ⅱ二、填空题:(本题有6小题,每小题4分,共24分) 11.湖州奥体中心于2017年6月10日举行了开幕式并投入使用,整个奥体中心占地31.3公顷,总建筑面积约121000平方米,数字121000用科学记数法表示的结果为 ▲ . 12.因式分解=-92a ▲ . 13.如图是七年级某班全体50位同学身高情况的频数分布直方图,则身高在155﹣160厘米的人数的频率是 ▲ .a -2x9 2y -4x 11 y (第9题图)(第11题图)题图)15(第(第13题图)(第10题图)14.为了奖励兴趣小组的同学,张老师花94元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本17元,《数学趣题》每本6元,则《数学趣题》买了 ▲ 本. 15.如图,将△ABC 沿AB 方向向右平移得到△DEF ,连结CF .若AE=10cm ,DB=3cm .则线段CF 的长度为 ▲ cm .16.有一个运算程序,可以使:当为常数)k k n m (=⊗时,得1-1k n m =⊗+)(,21+=+⊗k n m )(。
2018-2019学年浙教版七年级数学下册期末考试试卷(解析版)
浙教版七年级数学下册期末考试试卷一、选择题(每小题2分,共20分)1.(2分)下列调查中,适合采用全面调查方式的是()A.了解一批灯管的使用寿命B.了解居民对废电池的处理情况C.了解一个班级的数学考试成绩D.了解全国七年级学生的视力情况2.(2分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1073.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2?a3C.a12÷a2D.(a2)34.(2分)如图,直线a,b被直线c所截,下列说法错误的是()A.当a∥b时,一定有∠1=∠3 B.当∠1=∠3时,一定有a∥bC.当a∥b时,一定有∠1+∠2=180°D.当∠2+∠3=180°时,一定有a∥b 5.(2分)若分式的值是零,则x的值为()A.1 B.0 C.﹣2 D.﹣16.(2分)二元一次方程组的解为()A.B.C.D.7.(2分)如图,将图1的长方形ABCD纸片沿EF所在直线折叠得到图2,折叠后DE与BF交于点P,如果∠BPE﹣∠AEP=80°,则∠PEF的度数是()A.55°B.60°C.65°D.70°8.(2分)如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=5009.(2分)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.(a﹣1)2﹣a+1 D.(a+2)2﹣2(a+2)+110.(2分)设a,b是实数,定义关于“*”的一种运算如下:a*b=(a+b)2﹣(a ﹣b)2.则下列结论:①若a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④若ab≠0,a*b=8,则÷=.其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(每小题3分,共30分)11.(3分)分解因式:ax+ay=.12.(3分)已知是方程2x+my=5的一个解,则m的值是.13.(3分)已知:如图,直线a⊥m,直线b⊥m,若∠1=60°,则∠2的度数是.14.(3分)如图,将边长为3cm的等边三角形ABC沿边BC向右平移2cm得到,则四边形AA′C′B的周长是cm.三角形A′B′C′15.(3分)在样本容量为50的一个样本中,某组数据的频率是0.2,则这组数据的频数是.16.(3分)若a+b=2,且a≠b,则代数式(a﹣)?的值是.17.(3分)若x m=3,x n=﹣2,则x m+2n=.18.(3分)若a+b=10,ab=1,则多项式a3b+ab3的值为.19.(3分)如图,A类、B类卡片为正方形(b<a<2b),C类卡片为长方形,小明拿来9张卡片(每类都有若干张)玩拼图游戏,他发现用这9张卡片刚好能拼成一个大正方形(不重叠也不留缝隙),那么他拼成的大正方形的边长是(用a,b的代数式表示).20.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),则a4=.若+++…+=,则n的值为.三、解答题(共50分)21.(8分)计算下列各题(1)+(﹣1)2017﹣(﹣3)0(2)4a2b?(﹣3b2c)÷(2ab3).22.(8分)解方程(组)(1)(2)=3﹣.23.(8分)分解因式(1)2x2﹣2(2)(a2+4)2﹣16a2.24.(8分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.25.(8分)某学校为了了解该校学生对“社会主义核心价值观”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为A,B,C,D四类.A表示“非常熟悉”,B表示“比较熟悉”,C表示“不太熟悉”,D表示“不熟悉”.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)直接写出本次随机抽查的人数为人,m=%,n=%.(2)补全条形统计图中“C类”的空缺部分.(3)若该校共有1200人,请你估计该校D类学生的人数,并给这些学生提一条建议.26.(10分)为了建设“美丽嵊州”,嵊义线两侧绿化提质改造工程如火如荼地进行.某施工队计划购买甲、乙两种树木,已知3棵甲种树木和2棵乙种树木共需700元;1棵甲种树木和3棵乙种树木共需700元.(1)求甲种树木、乙种树木每棵分别是多少元.(2)该施工队某天计划种植300棵树木,为了尽量减少对嵊义线交通的影响,实际劳动中每小时种植的数量比原计划多20%,结果提前1小时完成,求原计划每小时种植多少棵树.四、附加题(每小题10分,共20分)27.(10分)已知:如图,直线PQ∥MN,点C是PQ,M N之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:①的值不变;②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.28.(10分)阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=.②已知关于x,y的方程组的解是,关于x,y的方程组的解是.参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列调查中,适合采用全面调查方式的是()A.了解一批灯管的使用寿命B.了解居民对废电池的处理情况C.了解一个班级的数学考试成绩D.了解全国七年级学生的视力情况【解答】解:A、了解一批灯管的使用寿命调查具有破坏性适合抽样调查,故A 不符合题意;B、了解居民对废电池的处理情况调查范围广适合抽样调查,故B不符合题意;C、了解一个班级的数学考试成绩适合普查,故C符合题意;D、了解全国七年级学生的视力情况调查范围广适合抽样调查,故D不符合题意;故选:C.2.(2分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×10710﹣7,【解答】解:0.00 000 069=6.9×故选:B.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2?a3C.a12÷a2D.(a2)3【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2?a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.4.(2分)如图,直线a,b被直线c所截,下列说法错误的是()A.当a∥b时,一定有∠1=∠3 B.当∠1=∠3时,一定有a∥bC.当a∥b时,一定有∠1+∠2=180°D.当∠2+∠3=180°时,一定有a∥b 【解答】解:A、∴a∥b,∴∠1=∠3,符合平行线的性质,故本选项正确;B、∵∠1=∠3,∴a∥b,符合平行线的判定定理,故本选项正确;C、∵a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,故本选项正确;D、无论a与b位置关系如何,∠2+∠3=180°不变,故本选项错误.故选D.5.(2分)若分式的值是零,则x的值为()A.1 B.0 C.﹣2 D.﹣1【解答】解:依题意得:x﹣1=0,解得x=1,,符合题意,当x=1时,分母x+2=3≠0故选:A.6.(2分)二元一次方程组的解为()A.B.C.D.【解答】解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.7.(2分)如图,将图1的长方形ABCD纸片沿EF所在直线折叠得到图2,折叠后DE与BF交于点P,如果∠BPE﹣∠AEP=80°,则∠PEF的度数是()A.55°B.60°C.65°D.70°【解答】解:AE∥BP,∴∠BPE+∠AEP=180°①.∵∠BPE﹣∠AEP=80°②,∴①﹣②得,∠AEP=50°,∴∠PEF==65°.故选C.8.(2分)如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=500【解答】解:设衣服一件标价为x元,裤子一条标价为y元,由题意得,0.6x+0.4y+100=500.故选A.9.(2分)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.(a﹣1)2﹣a+1 D.(a+2)2﹣2(a+2)+1【解答】解:A、原式=(a+1)(a﹣1),故A不符合题意;B、原式=a(a+1),故B不符合题意;C、原式=(a﹣1)(a﹣1+1)=a(a﹣1),故C符合题意;D、原式=(a﹣1)2,故D不符合题意;故选:C.10.(2分)设a,b是实数,定义关于“*”的一种运算如下:a*b=(a+b)2﹣(a ﹣b)2.则下列结论:①若a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④若ab≠0,a*b=8,则÷=.其中正确的是()A.①②③B.①③④C.①②④D.②③④【解答】解:①∵a*b=0,∴(a+b)2﹣(a﹣b)2=0,a2+2ab+a2﹣a2﹣b2+2ab=0,4ab=0,∴a=0或b=0,故①正确;②∵a*b=(a+b)2﹣(a﹣b)2=4ab,又a*b=a2+4b2,∴a2+4b2=4ab,∴a2﹣4ab+4b2=(a﹣2b)2=0,∴a=2b时,满足条件,∴存在实数a,b,满足a*b=a2+4b2;故②错误,③∵a*(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac,又∵a*b+a*c=4ab+4ac∴a*(b+c)=a*b+a*c;故③正确.④∵若ab≠0,a*b=8,∴4ab=8,∴ab=2,∴则÷=×==,故④正确,故选B.二、填空题(每小题3分,共30分)11.(3分)分解因式:ax+ay=a(x+y).【解答】解:ax+ay=a(x+y).故答案为:a(x+y).12.(3分)已知是方程2x+my=5的一个解,则m的值是3.【解答】解:∵是方程2x+my=5的一个解,∴代入得:﹣4+3m=5,解得:m=3,故答案为:3.13.(3分)已知:如图,直线a⊥m,直线b⊥m,若∠1=60°,则∠2的度数是120°.【解答】解:∵直线a⊥m,直线b⊥m,∴a∥b,∴∠1=∠3=60°,∴∠2=180°﹣∠3=120°,故答案为120°.14.(3分)如图,将边长为3cm的等边三角形ABC沿边BC向右平移2cm得到的周长是13cm.三角形A′B′C′,则四边形AA′C′B【解答】解:∵平移距离是2cm,∴AA′=BB′=2cm,∵等边△ABC的边长为3cm,∴B′C′=BC=3cm,∴BC′=BB′+B′C′=2+3=5cm,∵四边形AA′C′B的周长=3+2+5+3=13cm.故答案为:13.15.(3分)在样本容量为50的一个样本中,某组数据的频率是0.2,则这组数据的频数是10.【解答】解:根据题意得:50×0.2=10,则这组数据的频数是10,故答案为:1016.(3分)若a+b=2,且a≠b,则代数式(a﹣)?的值是2.【解答】解:原式=?=?=a+b.当a+b=2时,原式=2.故答案是:2.17.(3分)若x m=3,x n=﹣2,则x m+2n=12.【解答】解:∵x m=3,x n=﹣2,∴x m+2n=x m×x2n=3×(﹣2)2=12.故答案为:12.18.(3分)若a+b=10,ab=1,则多项式a3b+ab3的值为98.【解答】解:∵a+b=10,ab=1,∴a3b+ab3=ab(a2+b2)=ab[(a+b)2﹣2ab]=1×[102﹣2×1]=98,故答案为:98.19.(3分)如图,A类、B类卡片为正方形(b<a<2b),C类卡片为长方形,小明拿来9张卡片(每类都有若干张)玩拼图游戏,他发现用这9张卡片刚好能拼成一个大正方形(不重叠也不留缝隙),那么他拼成的大正方形的边长是2a+b (用a,b的代数式表示).【解答】解:如图,∵所求正方形的面积=4a2+b2+4ab=(2a+b)2,∴所求正方形的边长为2a+b.故答案为:2a+b.20.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),则a4=20.若+++…+=,则n的值为2017.【解答】解:∵a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),∴a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,…a n=n(n+1).∵+++…+=﹣+﹣+﹣+…+﹣=﹣=,∴=﹣,解得n=2017.故答案为20;2017.三、解答题(共50分)21.(8分)计算下列各题(1)+(﹣1)2017﹣(﹣3)0(2)4a2b?(﹣3b2c)÷(2ab3).【解答】解:(1)原式=32﹣1﹣1=9﹣2=7(2)原式=﹣12a2b3c÷(2ab3)=﹣6ac22.(8分)解方程(组)(1)(2)=3﹣.【解答】解:(1),①×3﹣②得:11y=﹣11,解得:y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为;(2)去分母得:x=3x﹣12+2,解得:x=5,经检验x=5是分式方程的解.23.(8分)分解因式(1)2x2﹣2(2)(a2+4)2﹣16a2.【解答】解:(1)原式=2(x2﹣1)=2(x+1)(x﹣1)(2)原式=(a2+4﹣4a)(a2+4+4a)=(a﹣2)2(a+2)224.(8分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【解答】解:(1)AC∥DG.理由:∵EF∥CD,∴∠1+∠ACD=180°,,又∵∠1+∠2=180°∴∠ACD=∠2,∴AC∥DG.(2)∵AC∥DG,∴∠BDG=∠A=40°,∵DG平分∠CDB,∴∠CDB=2∠BDG=80°,∵∠BDC是△ACD的外角,∴∠ACD=∠BDC﹣∠A=80°﹣40°=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.25.(8分)某学校为了了解该校学生对“社会主义核心价值观”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为A,B,C,D四类.A表示“非常熟悉”,B表示“比较熟悉”,C表示“不太熟悉”,D表示“不熟悉”.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)直接写出本次随机抽查的人数为50人,m=26%,n=14%.(2)补全条形统计图中“C类”的空缺部分.(3)若该校共有1200人,请你估计该校D类学生的人数,并给这些学生提一条建议.【解答】解:(1)由题意可得,本次随机抽查的人数为:20÷40%=50,m=13÷50=0.26=26%,n=7÷50=0.14=14%,故答案为:50,26,14;(2)C类的人数为:50﹣13﹣20﹣7=10,补全的条形统计图如右图所示;(3)由题意可得,该校D类学生的人数为:1200×14%=168,即该校D类学生的人数是168,建议是:这部分学生应该加强学习,明确什么是社会主义核心价值观.26.(10分)为了建设“美丽嵊州”,嵊义线两侧绿化提质改造工程如火如荼地进行.某施工队计划购买甲、乙两种树木,已知3棵甲种树木和2棵乙种树木共需700元;1棵甲种树木和3棵乙种树木共需700元.(1)求甲种树木、乙种树木每棵分别是多少元.(2)该施工队某天计划种植300棵树木,为了尽量减少对嵊义线交通的影响,实际劳动中每小时种植的数量比原计划多20%,结果提前1小时完成,求原计划每小时种植多少棵树.【解答】解:(1)设甲种树木每棵是x元,乙种树木每棵是y元,依题意有,解得.故甲种树木每棵是100元,乙种树木每棵是200元;(2)设原计划每小时种植z棵树,依题意有﹣=1,解得z=50,经检验,z=50是原方程组的解,且符合题意.故原计划每小时种植50棵树.四、附加题(每小题10分,共20分)27.(10分)已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:①的值不变;②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.【解答】解:(1)∠C=∠1+∠2.理由:如图1,过C作CD∥PQ,∵PQ∥MN,∴CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)结论①的值不变是正确的,设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2(定值),即的值不变,值为2.28.(10分)阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=(x+2)4.②已知关于x,y的方程组的解是,关于x,y的方程组的解是或.【解答】解:(1)设2x+2y=a,则原方程变为(a+3)(a﹣3)=27,整理,得:a2﹣9=27,即a2=36,解得:a=±6,6,则2x+2y=±∴x+y=±3;(2)①令a=x2+4x+3,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2+4x+4)2=(x+2)4;②由方程组得,整理,得:,∵方程组的解是,∴x﹣1=±3,且y=5,解得:或,故答案为:(x+2)4,或.。
2018-2019学年浙教版七年级下册期末数学测试卷及答案
2018-2019学年七年级(下)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+46.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A .8B .10C .12D .147.关于x 的方程=有增根,则k 的值是( )A .2B .3C .0D .﹣3 8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是( )A .B .C .D . 9.已知a ﹣b=3,b ﹣c=﹣4,则代数式a 2﹣ac ﹣b (a ﹣c )的值为( ) A .4 B .﹣4 C .3 D .﹣310.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当a=1时,方程组的解也是方程x +y=4﹣a 的解;④x ,y 的都为自然数的解有4对.其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= .12.分解因式:2x 3﹣8xy 2= .13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=度.15.已知﹣=3,则分式的值为.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共人.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)18.解方程或方程组:(1)(2)+=1.19.先化简代数式,再选择一个你喜欢的数代入求值.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=度.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:列各式从左到右的变形中,是因式分解的为x2+4x+4=(x+2)2,故选C2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°【考点】平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【解答】解:A、底数不变指数相减,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故B正确;C、底数不变指数相加,故C错误;D、负整指数幂与正整指数幂互为倒数,故D错误.故选:B.4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;12x3÷(﹣4x)=﹣3x2,﹣8x2÷(﹣4x)=2x,16x÷(4x)=﹣4.【解答】解:(12x3﹣8x2+16x)÷(﹣4x)=﹣3x2+2x﹣4;故选A.6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C7.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣3【考点】分式方程的增根.【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,列方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选C.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣3【考点】因式分解的应用.【分析】先分解因式,再将已知的a﹣b=3,b﹣c=﹣4,两式相加得:a﹣c=﹣1,整体代入即可.【解答】解:a2﹣ac﹣b(a﹣c),=a(a﹣c)﹣b(a﹣c),=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣4,∴a﹣c=﹣1,当a﹣b=3,a﹣c=﹣1时,原式=3×(﹣1)=﹣3,故选D.10.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二元一次方程组的解.【分析】①将x=5,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【解答】解:①将x=5,y=﹣1代入方程组得:,由①得a=2,由②得a=,故①不正确.②解方程①﹣②得:8y=4﹣4a解得:y=将y的值代入①得:x=,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:解此方程得:将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,,.故④正确.则正确的选项有②③④,故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= 1.36×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000136=1.36×10﹣6,故答案为:1.36×10﹣6.12.分解因式:2x3﹣8xy2=2x(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有48件.【考点】频数(率)分布直方图;频数与频率.【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.【解答】解:从左至右各长方形的高的比为2:3:4:6:1,即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;故则全班上交的作品有9÷=48.故答案为:48.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=70度.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.15.已知﹣=3,则分式的值为.【考点】分式的值.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共45或529人.【考点】分式方程的应用.【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n(m﹣1)然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n 人.依题意有22m+1=n(m﹣1).所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n(m﹣1)=45×1=45(人);当m=24时,n=23,n(m﹣1)=23×(24﹣1)=529(人).故答案为:45或529.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)【考点】多项式乘多项式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)首先计算负整数指数幂、零次幂、乘方,然后再计算有理数的加减即可;(2)利用完全平方公式计算)(2m﹣3)2,利用多项式乘以多项式法则计算(4m+1)(m﹣2),然后再合并同类项即可.【解答】解:(1)原式=9+1﹣8=2;(2)原式=4m2﹣12m+9﹣(4m2﹣8m+m﹣2),=4m2﹣12m+9﹣4m2+8m﹣m+2,=﹣5m+11.18.解方程或方程组:(1)(2)+=1.【考点】解分式方程;解二元一次方程组.【分析】(1)根据等式的性质把原方程组变形,利用加减消元法解方程组即可;(2)方程两边同乘以(x﹣3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:(1)原方程组变形为:,①﹣②得,﹣3n=6,解得,n=﹣2,把n=﹣2代入②得,m=,则方程组的解为:;(2)方程两边同乘以(x﹣3),得5﹣x﹣1=x﹣3,整理得,﹣2x=﹣7,解得,x=,检验:当x=时,(x﹣3)≠0,∴x=是原方程的解.19.先化简代数式,再选择一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的运算法则进行化简,再代入a的值求值即可.【解答】解:=÷(﹣)=÷=×=,取a=3,代入可得==2.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子2400个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C品牌粽子的个数除以C品牌粽子所占百分比可得商场今年端午节共销售粽子数;(2)首先利用粽子总数减去A、C品牌粽子数可算出B品牌粽子数,然后再画图即可;(3)利用A品牌粽子所占比例乘以360°即可;(4)利用样本估计总体的方法可得今年端午节期间销售B品牌粽子所占比例为,然后再乘以120000即可.【解答】解:(1)商场今年端午节共销售粽子数:1200÷50%=2400(个),故答案为:2400;(2)B品牌粽子数:2400﹣400﹣1200=800(个),如图所示;(3)A品牌粽子所对应的圆心角的度数:×360°=60°;(4)120000×=40000(个),答:估计B品牌粽子售出40000个.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=170度.【考点】平行线的性质;多边形内角与外角.【分析】(1)如图1,根据平角定义表示∠ECB=180°﹣α,由角平分线定义得:∠DCB=90°﹣α,最后根据平行线性质得结论;(2)作平行线,根据平行线的性质得:∠BAE=∠ABH=90°和∠1+∠CBH=180°,所以∠1+∠2=∠1+∠CBH+∠ABH=270°;(3)作辅助线,根据外角定理和四边形的内角和360°列式后可得结论.【解答】解:(1)如图1,∵∠ACE=α,∴∠ECB=180°﹣α,∵CD平分∠ECB,∴∠DCB=∠ECB==90°﹣α,∵FG∥CD,∴∠GFB=∠DCB=90°﹣α;(2)如图2,过B作BH∥AE,∵BA⊥AE,∴∠BAE=∠ABH=90°,∵CD∥AE,∴BH∥CD,∴∠1+∠CBH=180°,∴∠1+∠2=∠1+∠CBH+∠ABH=180°+90°=270°;(3)延长图中线段,构建如图所示的三角形和四边形,由外角定理得:∠9=∠1+∠2,∠BAC=∠9+∠8=∠1+∠2+∠8,∵∠5=50°,∠7=80°,∴∠6+∠GDH=130°,∵∠3=40°,∴∠AFE=140°,∵∠BAC+∠4+180°﹣∠GDH+140°=360°,∴∠BAC+∠4﹣∠GDH=40°,∴∠1+∠2+∠4+∠8﹣130°+∠6=40°,∴∠1+∠2+∠4+∠6+∠8=170°,故答案为为:170.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据完全平分公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.【考点】分式方程的应用;二元一次方程的应用.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.2017年4月18日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市拱墅区2017-2018学年七年级下学期期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为( ).A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是( ).A .100000B .3C .100D .3003.下列运算结果为6x 的是( ).A .33x x +B .33()xC .5x x ⋅D .122x x ÷4.下列式子直接能用完全平方公式进行因式分解的是( ).A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是( ).A .1∠B .2∠C .3∠D .4∠6.下列分式中,最简分式是( ). A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是( ).A .a b c >>B .a c b >>C .c b a >>D .c a b >>8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※, 123=※.则21※的值是( ). A .3 B .5 C .9 D .1112345l 2l 1l 39.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有( ).A .1个B .2个C .3个D .4个10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为( ).A .4台B .5台C .6台D .7台二、填空填(本大题有6小题,每小题4分,共24分)11.要使分式11x x +-有意义,x 的取值应满足__________. 12.已知二元一次方程142x y+=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).-0.15+0.14φ14.分解因式:34ab ab -=__________. 15.若分式方程23111k x x-=--有增根,则k =__________. 16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长 方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦DA BCE1234519.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.20.(10分)解方程(组)(1)5,325;x y x y +=-⎧⎨-=⎩ (2)2210442x x x x+-=-+-.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:图1图2①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.教师卷图1碳水化合物矿物质45%蛋白质脂肪55%图2杭州市拱墅区2017-2018学年七年级下学期期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为( ).A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯【答案】B 【解析】科学记数法:将数写成10n a ⨯,110a <≤.2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是( ). A .100000B .3C .100D .300【答案】D 【解析】3100300⨯=.3.下列运算结果为6x 的是( ).A .33x x +B .33()xC .5x x ⋅D .122x x ÷【答案】C 【解析】解析:3332x x x +=,339()x x =,56x x x ⋅=,12210x x x ÷=.4.下列式子直接能用完全平方公式进行因式分解的是( ).A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --【答案】A 【解析】221681(41)a a a ++=+.5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是( ).A .1∠B .2∠C .3∠D .4∠【答案】B 【解析】内错角的定义.6.下列分式中,最简分式是( ).A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+【答案】A12345l 2l 1l 3【解析】233x xy x yxy y--=,22214(2)(2)2x x x x x x ++==-+--,2211121(1)1x x x x x x --==-+--.7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是( ).A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D 【解析】21(3)9a -=-=,11(3)3b -=-=-,0(3)1c =-=,∴b a c <<.8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是( ). A .3 B .5 C .9 D .11【答案】C 【解析】114m n =+=※,1223m n =+=※, ∴5m =,1n =-,∴1292m n =+=※.9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】总数为50.150÷=(根), 20500.4b =÷=,10.10.420.40.040.04a =----=,0.44a b +=.b 对应20个,所以2x =,4x y +=,x y =,由表知,没有直径恰好100,15mm 的轴,合格率为0.420.40.8282%+==,-0.15+0.14φ生产1000根中不合格的估计有1000(182%)180⨯-=(根),不一定恰好, 故正确的为①②③,共3个.10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为( ). A .4台 B .5台 C .6台 D .7台【答案】D【解析】依题意:有30230,15315,a b a b +=⨯⎧⎨+=⨯⎩则30.1.a b =⎧⎨=⎩设需x 台机组,则55a b x +=,∴7x =.二、填空填(本大题有6小题,每小题4分,共24分)11.要使分式11x x +-有意义,x 的取值应满足__________. 【答案】1x ≠【解析】要使11x x +-有意义,则10x -≠,∴1x ≠.12.已知二元一次方程142x y+=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________. 【答案】22x -2x =,1y =【解析】∵142x y +=, ∴21242x x y ⎛⎫=⨯-=- ⎪⎝⎭,正整数解为2,1.x y =⎧⎨=⎩.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).【答案】②③【解析】平行线的判定.14.分解因式:34ab ab -=__________.DA BCE12345【答案】(21)(21)ab b b +-【解析】324(41)(21)(21)ab ab ab b ab b b -=-=+-.15.若分式方程23111k x x -=--有增根,则k =__________. 【答案】32-【解析】23111k x x-=--等式两边同乘(1)x -,231k x +=-得24x k =+, ∵方程有增根,∴10x -=即241k +=,∴32k =-.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】依题意,设小长方形的长为a ,宽为b , 则大长方形长为2a ,宽为2b a +, 则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 【答案】见解析【解析】解:(1)图略111342412234222DEF ABC S S ==⨯-⨯⨯-⨯⨯-⨯⨯=△△.(2)AD BE ∥且AD BE =. 18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦【答案】见解析【解析】解:(1)2222222323222x y x yx y x y x y --=. (2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦222(4446)2m mn n mn n m m =++--+÷2(46)223m m m m =+÷=+.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.【答案】见解析 【解析】解:原式2(1)(1)3(1)3(1)11x x x x x x +--=+++-198711111x x x x x x -+=+==+++++9101(3)33x ⎛⎫=-⨯-=- ⎪⎝⎭时,原式751312=+=--+.20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.【答案】见解析 【解析】解:(1)5,325,x y x y +=-⎧⎨-=⎩①②,【注意有①②】2⨯①+②得55x =-,∴1x =-,代入①得4y =-,∴1,4.x y =-⎧⎨=-⎩.(2)2210442x x x x+-=-+-.化简得2210(2)2x x x ++=--,左右同乘2(2)x -, 得220x x ++-=,∴0x =,经检验,0x =为原分式方程的解.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).【答案】25︒【解析】解:∵AB CD ∥,∴30MCD AMC ∠=∠=︒,同理,80NCD CNE ∠=∠=︒,∴110MCN MCD NCD ∠=∠+∠=︒. ∵CO 平分MCN ∠,∴1552NCO MCN ∠=∠=︒,∴25DCO NCD NCO ∠=∠-=︒.22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图 绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.【答案】见解析【解析】解:(1)1月份绘本类图书的销售额为706% 4.2⨯=(万元). (2)4月份绘本类图书销售总额占的百分比为4.2607%÷=.图略. (3)第一季度销售总额为706250182-+=(万元).①正确.1月份到2月份,绘本类图书销售额增长率为(628%706%) 4.20.76 4.218.1%⨯-⨯÷=÷≈.2月份到3月份增长率为(5010%628%)628%()0.8%⨯-⨯÷⨯≈.②错误. D A BC E FO MN 图1图223.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.【答案】见解析【解析】解:(1)由题可知,矿物质的质量为1.5(g)y .碳水化合物的质量为40045% 1.5180 1.5(g)y y ⨯-=-.(2)40055%,180 1.540080%,x y x y +=⨯⎧⎨+-=⨯⎩,解得188,32,x y =⎧⎨=⎩蛋白质质量为188g . 碳水化合物质量为180 1.532132g -⨯=,脂肪质量为32g ,矿物质质量为1.53248g ⨯= (3)蛋白质:188100%47%400⨯=,碳水化合物:80%47%33%-=, 脂肪:55%47%8%-=矿物质:45%33%12%-=.图略.图1碳水化合物矿物质45%蛋白质脂肪55%图2。