钢结构焊接裂纹的原因及防治措施

合集下载

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施

建筑钢结构焊接裂纹的产生机理及防治措施标签:焊接裂纹;建筑;防治现阶段,随着市场经济的不断发展,建筑行业市场的竞争压力逐渐增加,这对部分建筑企业来说是一个很大的挑战。

为在激烈的竞争当中得以生存,工程质量情况逐渐得到越来越多建筑企业的重视,工程质量的提升不仅可以实现企业价值的最大化,还能在一定程度上把握对成本的管控。

因此,本文以建筑钢结构为基础,对焊接中裂纹的产生机理和防治进行研究。

一、裂纹的产生机理及特征建筑钢在焊接的过程中很容易产生裂纹,主要分为三种形式:热裂纹、冷裂纹、层状撕裂。

(一)热裂纹热裂纹是复杂钢结构中较容易出现的一种裂纹形式,其产生的主要原因是在焊接后结晶的过程中受到高温。

热裂纹通常会出现在焊接缝当中,并在缝隙当中呈现纵向分布,是焊接过程中经常出现的一种裂纹。

根据所受温度的不同,热裂纹呈现的形式也有所差异,主要分为三种:凝固裂纹。

这种裂纹又称结晶裂纹,主要在焊接快结束前脆性温度间的焊缝金属凝固所形成。

焊缝金属结晶的过程中,由于液层之间存在韧性较低的杂质,金属在冷却不均的情况下拉伸超过临界值,即导致热裂缝的出现。

液化裂缝。

这种热裂缝的产生是由于一些低熔点的金属或金属化合物在焊接中产生的热量引起晶界焊接热,从而影响液化而产生的裂纹。

塑料裂纹。

又被称为多层焊接,其产生原因主要是受焊接热循环的影响,导致金属材料塑性降低,受到拉应力在晶界进行二次结晶而形成的裂纹。

(二)冷裂纹冷裂纹通常在焊接结束后冷却的过程中出现,有的是直接出现,也有一部分是在经过一段时间后出现,这种产生后不会立即出现而是随着时间的推移慢慢显露出来的裂纹,被称为延迟裂纹。

冷裂纹大多为延迟裂纹,通常产生在低、中合金钢焊接的热影响区域,很少部分在焊接缝上,裂纹横纵不一,由于大部分冷裂纹都不是直接出现,因此具有一定的隐蔽性。

经相关统计显示,冷裂纹产生的主要原因分为以下几种:钢的淬硬趋势焊接头氢含量焊接头拘束度。

(三)层状撕裂层状撕裂在钢结构焊接的过程中主要分为两种,一种裂点出现在焊缝的根部附近,由根部向四周蔓延,另一种是出现在含热区,主要是焊接过程中在收缩应力具有很强拉伸性的情况下,由一些非金属的杂质扩散而成。

钢结构焊接裂纹的种类及对策

钢结构焊接裂纹的种类及对策

钢结构焊接裂纹的种类及对策根据裂纹发生的时间大致可以将裂纹分成高温裂纹和低温裂纹两大类。

1、低温裂纹根据裂纹是低温裂纹常见的一种形态,其产生原因如下:(1)主要是由于焊接金属含氢量较高所致氢的来源有多种途径,如焊条中的有机物,结晶水,焊接坡口和它的附近粘有水份、油污及来自空气中的水份等。

(2)焊接拉头的约束力较大,例如厚板焊接时接头固定不牢、焊接顺序不当等均有可能产生较大的约束应力而导致裂纹的发生。

(3)当母材碳当量较高,冷却速度较快,热影响区的硬化从而导致裂纹的发生。

对于根部裂纹的防止措施:(1)选用低氢或超低氢焊条或其他焊接材料。

(2)对焊条或焊剂等进行必要的烘焙,使用时注意保管。

(3)焊前,应将焊接坡口及其附近的水份、油污、铁锈等杂质清理干净。

(4)选择正确的焊接顺序和焊接方向,一般长构件焊接时最好采用由中间向两端对称施焊的方法。

(5)进行焊前预热及后热控制冷却速度,以防止热影响区硬化。

2、高温裂纹焊道下梨状裂纹是常见的高温裂纹的一种,主要发生在埋弧焊或二氧化碳气体保护焊中,手工电弧焊则很少发生。

焊道下梨状裂纹的产生原因主要是焊接条件不当,如电压过低、电流过高,在焊缝冷却收缩时使焊道的断面形状呈现梨形。

防止措施:选择适当的焊接电压、焊接电流;焊道的成形一般控制在宽度与高度之比为1:1.4较适宜。

弧坑裂纹也是高温裂纹的一种,其产生原因主要是弧坑处的冷却速度过快,弧坑处的凹形未充分填满所致。

防止措施是安装必要的引弧板和引出板,在焊接因故中断或在焊缝终端应注意填满弧坑。

焊接裂纹的修补措施如下:(1)通过超声波或磁粉探险伤检查出裂纹的部位和界限。

(2)沿焊接裂纹界限各向焊缝两端延长50mm,将焊缝金属或部分母材用碳弧气刨等刨去。

(3)选择正确的焊接规范,焊接材料,以及采取预热、控制层间温度和后热等工艺措施进行补焊。

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施

建筑钢结构焊接裂纹的产生机理及防止措施建筑钢结构是目前常见的建筑结构之一,它具有高强、轻量、简洁美观等优点。

然而,在实际使用中,钢结构存在一些问题,其中之一就是焊接裂纹的产生。

本文将探讨建筑钢结构焊接裂纹的产生机理及防止措施。

一、焊接裂纹的产生机理焊接裂纹主要可分为热裂纹、冷裂纹、应力裂纹。

1.热裂纹焊接时,由于局部加热,使钢材产生热变形。

当其塑性变低且残余应力积累时,钢材易于出现裂纹。

热裂纹主要是由于热应力造成的。

2.冷裂纹一般在焊后自然冷却时出现,这种裂纹的发生对于焊接工艺、材料和钢结构的使用情况等很敏感。

冷裂纹主要是由于低温下的脆性造成的。

3.应力裂纹应力裂纹主要是由于因材料、尺寸和结构等造成永久性变形产生的应力,使焊缝发生断裂。

这种裂纹的主要表现是在进行负载、温度等变化时,在原有断口处产生裂纹。

二、焊接裂纹的防止措施1.材料选择焊接材料的选择并不是随便选用,应根据实际情况选择专业的材料并在正确的离子层选择。

2.焊接工艺合理的焊接工艺非常重要。

在焊接的过程中,应该注意控制焊接的速度和节奏,以避免局部高温、局部残余应力的发生。

此外,焊接的工艺应掌握得当,包括电极的选择、焊接电流、焊接时间、频率等,以确保焊接缝有足够的强度。

3.质量控制如果缺乏质量控制,很容易忽略焊接过程中的每个细节,如使用的电极、焊接速度和温度控制等,这将极大地影响焊接接头的质量。

因此,应及时检查焊缝的质量,减少焊接裂纹等质量问题的发生。

4.故障修复当发现要素问题后,应及时进行修复。

例如,当发现焊接过程中电极受到污染时,应停止焊接并更换电极。

当发现焊接过程中有缺陷时,应及时纠正,以确保焊接的质量。

5.不断改进工艺不断改进工艺也是防止焊接裂纹的重要措施。

随着科技的不断进步,随着工艺的提高,新的焊接方法和材料的出现,改进工艺是防止焊接裂纹的重要手段。

总之,建筑钢结构焊接裂纹对建筑钢结构的使用具有一定的影响,为防止焊接裂纹的发生,应注意材料的选择、焊接工艺的合理性、质量控制等多个方面,并不断改进工艺。

浅析钢结构焊接裂纹的产生原因及防止措施

浅析钢结构焊接裂纹的产生原因及防止措施

浅析钢结构焊接裂纹的产生原因及防止措施引言随着科学技术不断发展,科学技术不断提高,为了跟上社会的发展脚步,建筑钢结构得到了广泛的运用。

目前我国的建筑钢结构的造型越来越新颖,空间结构也越来越复杂,所以在选择材料的时候对钢材料的要求也是很高的,但是这些要求很高的钢材料运用到实际工作中,会给钢结构焊接技术造成很大的难度,相应的焊接缺陷发生可能性就会增加。

1、钢结构焊接的难点在钢材料的选材方面大多数采用的低合金高强钢作为材料,这类钢具有强度大,硬度大等特点,但是由于钢结构连接点之间形状复杂,焊缝密集,所以焊接接头的钢约束性大,使焊缝无法自由收缩[1]。

加上在焊接的过程中由于操作不当产生就会双向力或者三向力,可能刚开始力的作用不大,但是在钢结构持续的焊接过程中,很多的力集中在一起,就会行成一个很强的力,增加了焊接接头产生裂纹、层状撕裂的可能性。

另外低合金高强钢中的碳含量非常高,使钢的硬度非常大,焊接性能差,在焊接过程中很容易出现延迟性的裂纹,由于高空操作更加增强了焊接的难度。

2、裂纹的种类和产生原因在建筑钢结构中焊接裂纹的产生通常會有三种形式,其中冷裂纹和热裂纹主要出现在复杂钢结构中,还有一种层状撕裂主要在厚板工程中出现。

2.1冷裂纹冷裂纹一般是在焊接过程后的冷却过程中产生的,有些在焊接后很快就会出现,有的则要过一段时间才会出现。

冷裂纹大多数为延迟裂纹主要发生在低合金高强钢的焊接热影响区,很少出现在焊缝上,由于冷裂纹不是焊后立即出现,而是经过一段时间的冷却之后才出现,所以这类裂纹出现后具有很大的隐蔽性。

冷裂纹出现的原因主要有三个因素(1)钢材淬硬倾向,低合金高强钢的淬硬倾向主要取决于钢材的化学成分、焊接工艺、冷却条件。

钢材的淬硬倾向越大就越容易产生裂纹,由于焊接是一个加热--冷却的过程,对钢结构加热之后冷却就会使钢变得硬度高、脆性大,很容易产生裂纹。

(2)焊接接头含氢量,在焊接的过程中大量的溶解于熔池中,焊接结束之后进入冷却的环节,氢就会极力的逸出,但是由于冷却速度较快有些氢不能很快的逸出而保留在金属中,是钢内部出现中空的现象,也会导致钢结构脆性很大。

钢结构焊接工艺常见质量通病及控制措施

钢结构焊接工艺常见质量通病及控制措施

钢构造焊接工艺常见质量通病及控制措施未焊透、未熔合焊接时, 接头根部未完全熔透旳现象, 称为未焊透;在焊件与焊缝金属或焊缝层间有局部未熔透现象, 称为未熔合。

未焊透或未熔合是一种比较严重旳缺陷, 由于未焊透或未熔合, 焊缝会出现间断或突变, 焊缝强度大大减少, 甚至引起裂纹。

未焊透和未熔合旳产生原因是焊件装配间隙或坡口角度太小、钝边太厚、焊条直径太大、电流过小、速度太快及电弧过长等。

焊件坡口表面氧化膜、油污等没有清除洁净, 或在焊接时该处流入熔渣阻碍了金属之间旳熔合或运条手法不妥, 电弧偏在坡口一边等原因, 都会导致边缘不熔合。

防止未焊透或未熔合旳是对旳选用坡口尺寸, 合理选用焊接电流和速度, 坡口表面氧化皮和油污要清除洁净;封底焊清根要彻底, 运条摆动要合适, 亲密注意坡口两侧旳熔合状况。

焊接裂纹焊接裂纹是一种非常严重旳缺陷。

构造旳破坏多从裂纹处开始, 在焊接过程中要采用一切必要旳措施防止出现裂纹, 在焊接后要采用多种措施检查有无裂纹。

一经发现裂纹, 应彻底清除, 然后予以修补。

焊接裂纹有热裂纹、冷裂纹。

焊缝金属由液态到固态旳结晶过程中产生旳裂纹称为热裂纹, 其特性是焊后立即可见, 且多发生在焊缝中心, 沿焊缝长度方向分布。

热裂纹旳裂口多数贯穿表面, 展现氧化色彩, 裂纹末端略呈圆形。

产生热裂纹旳原因是焊接熔池中存有低熔点杂质(如FeS 等)。

由于这些杂质熔点低, 结晶凝固最晚, 凝固后旳塑性和强度又极低。

因此, 在外界构造拘束应力足够大和焊缝金属旳凝固收缩作用下, 熔池中这些低熔点杂质在凝固过程中被拉开, 或在凝固后很快被拉开, 导致晶间开裂。

焊件及焊条内含硫、铜等杂质多时, 也易产生热裂纹。

防止产生热裂纹旳措施是: 一要严格控制焊接工艺参数, 减慢冷却速度, 合适提高焊缝形状系数, 尽量采用小电流多层多道焊, 以防止焊缝中心产生裂纹;二是认真执行工艺规程, 选用合理旳焊接程序, 以减小焊接应力。

焊接热裂纹产生的原因

焊接热裂纹产生的原因

焊接热裂纹产生的原因一、引言焊接是现代工业生产中常用的加工方法之一。

在焊接过程中,热裂纹是一个常见的问题,会导致焊接件的损坏和失效。

因此,了解热裂纹产生的原因对于提高焊接质量和可靠性具有重要意义。

二、热裂纹的定义热裂纹是指在焊接过程中或后期使用过程中由于温度变化而引起的材料开裂。

它通常出现在高强度合金钢、不锈钢、铝合金等材料上。

三、热裂纹产生的原因1. 组织不均匀性组织不均匀性是导致热裂纹产生的主要原因之一。

当材料中存在缺陷或组织不均匀时,其内部应力分布也会不均匀。

在焊接过程中,由于受到加热和冷却的影响,这种应力分布会发生变化,从而导致材料出现开裂。

2. 焊接参数不当焊接参数包括电流密度、电压、速度等多个方面。

如果这些参数设置不当,就会导致局部过热或过快的冷却,从而引起热裂纹的产生。

3. 残余应力残余应力是指焊接后材料内部的应力。

在焊接过程中,由于加热和冷却的影响,焊接件内部会产生应力。

如果这些应力没有得到合理的处理,就会在后期使用中导致材料发生开裂。

4. 材料选择不当不同材料具有不同的物理性质和化学成分。

如果选择不当的材料进行焊接,就会导致组织不均匀、化学成分变化等问题,从而引起热裂纹的产生。

5. 焊接工艺不合理焊接工艺包括预热、焊接顺序、后续处理等多个方面。

如果这些工艺设置不当或者操作不规范,就会导致局部过热或者过快冷却等问题,从而引起热裂纹的产生。

四、热裂纹防治措施1. 优化组织结构通过对原材料进行特殊处理或者采用合适的退火工艺可以改善材料组织结构,并减少组织不均匀性带来的影响。

2. 合理设置焊接参数通过合理设置焊接参数,如电流密度、电压、速度等,可以控制焊接过程中的温度和冷却速度,减少热裂纹的产生。

3. 处理残余应力通过对焊接件进行退火或者热处理等工艺可以处理残余应力,并减少热裂纹的产生。

4. 合理选择材料在选择材料时应根据具体情况选择合适的材料,并进行必要的预热和后续处理等工艺,以减少热裂纹的产生。

焊接裂纹产生原因及防治措施

焊接裂纹产生原因及防治措施

焊接裂纹产生原因及防治措施焊接裂纹是指在焊接过程中,焊缝或焊接接头出现的裂纹现象。

焊接裂纹的产生原因有很多,主要包括材料选择不当、焊接工艺参数不合理、应力集中、焊接变形等因素。

为了防止焊接裂纹的产生,需采取相应的防治措施。

一、材料选择不当是造成焊接裂纹的主要原因之一。

不同材料的热膨胀系数、熔点和强度等性质差异较大,若选择不当,会导致焊接时产生较大的残余应力,从而引发焊接裂纹。

因此,在焊接前应对材料进行仔细选择,确保焊接材料的相容性和相似性。

二、焊接工艺参数不合理也是引起焊接裂纹的重要原因。

焊接过程中,焊接电流、电压、速度等参数的选择不当,容易造成焊接热输入过大或过小,从而导致焊接裂纹的产生。

因此,需要根据焊接材料的厚度、形状和焊接位置等因素,合理调整焊接工艺参数,以减少焊接残余应力的产生。

三、应力集中也是焊接裂纹的重要原因之一。

焊接过程中,由于材料的热膨胀和收缩不均匀,会导致焊接接头处应力集中,从而造成焊接裂纹的产生。

为了减少应力集中,可以采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少残余应力的产生。

四、焊接变形也是引起焊接裂纹的常见原因。

焊接过程中,由于热膨胀和收缩的影响,焊接接头会发生一定的变形,如果变形过大,就会产生焊接裂纹。

为了控制焊接变形,可以采用适当的夹具和焊接顺序,使焊接接头得到良好的约束,减少变形的发生。

为了预防焊接裂纹的产生,可以采取以下防治措施:1.合理选择焊接材料,确保材料具有相似的熔点和热膨胀系数,减少焊接时的残余应力。

2.合理调整焊接工艺参数,根据焊接材料的特性和焊接位置,确定合适的焊接电流、电压和速度等参数,以减少焊接热输入和残余应力。

3.采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少应力集中和残余应力的产生。

4.采用适当的夹具和焊接顺序,控制焊接变形,减少焊接裂纹的发生。

5.进行焊接前的材料表面处理,确保焊接接头的清洁度和表面质量,减少焊接缺陷的产生。

焊接裂纹产生原因及防治措施

焊接裂纹产生原因及防治措施

焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。

下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。

1.热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。

根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。

目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。

1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si 缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。

这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。

防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。

2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。

它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。

这一种裂纹的防治措施与结晶裂纹基本上是一致的。

特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。

3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。

这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。

2、再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。

焊接裂纹及防治措施

焊接裂纹及防治措施

1 焊接裂纹及防治措施焊接裂纹是焊接构件施工过程中最为严重的缺陷,轻则返修,重则构件报废。

焊接裂纹有焊缝或熔合线或热影响区裂纹,有表面或内部贯穿裂纹,有弧坑或焊址或焊缝根部裂纹,有层状撕裂等。

以焊缝冷却结晶时出现的时间阶段分,有热裂纹和冷裂纹或延迟裂纹。

(1)热裂纹的成因影响热裂纹形成的因素有:焊缝在冷却结晶过程中,由于快速冷却凝固收缩,晶粒截面间的液态金属补充不足,致使液态薄层开裂;母材热影响区和多层焊的根部焊缝易产生低熔点共晶物的熔解(即硫偏析),产生裂纹。

(2)冷裂纹的成因影响冷裂纹形成的因素有:焊接接头中金相组织的硬度、脆性较高;焊接接头中焊缝扩散氢的含量较高;焊接接头的拘束应力较大。

(3)焊接裂纹的防止措施1)控制焊材的化学成分由于钢材化学成分已经选定,因此焊材选配时应选硫、磷含量低、锰含量高的焊材。

使焊缝金属中的硫磷偏析减少,改善部分晶体形状,提高抗热裂性能。

2)控制焊接工艺参数、条件控制焊接电流与速度,使每一焊道的焊缝成形系数达到1、1~1、2,减少在焊缝中心形成硫磷偏析,提高抗裂性能。

避免采用小角度、窄间隙的焊缝坡口,致使焊缝成形系数过小。

加强焊前预热,降低焊缝在冷却结晶过程中的冷却速度。

采用合理的焊接顺序,使大多数焊缝在较小的拘束度下焊接,减少焊缝收缩拉力。

3)提高根部焊缝质量焊缝根部焊接是厚板焊接的起始点;是保证焊缝质量的根基;亦是产生裂纹的敏感区,因此焊缝根部的焊接措施必须慎之由慎。

加强焊缝坡口的清洁工作,清除一切有害物质;加强焊前预热温度的控制;焊前对坡口根部进行烘烤,去除一切水分、潮气,降低焊缝中氢含量。

使用小直径手工焊条打底,确保根部焊透;控制焊层厚度,适当提高焊道成形系数;控制焊接速度,适当增加焊接热输入量。

控制熔合比:在确保焊透的前提下,控制母材熔化金属在焊缝金属中的比例,减少母材中有害物质对焊缝性能的影响。

根部焊材可选用低配:根据根部焊缝的施焊条件与要求,在保证焊缝力学性能的条件下,根部焊缝的焊材可选用韧性好,强度稍低的焊材施焊,以增加其抗裂性。

钢结构焊接施工中裂纹和气孔的形成原因及预防方案

钢结构焊接施工中裂纹和气孔的形成原因及预防方案

焊接原理中裂纹和气孔地形成原因及预防措施摘要:本文通过阐述 ,详细介绍了焊接施工中焊缝常见地裂纹与气孔缺陷地分类以及产生原因 ,从而深入浅出地为上述缺陷提出较为详细地预防措施 ,并谨以此为焊接施工提供一点技术经验 ,以供各位同行批评指正 .关键词:热裂纹冷裂纹气孔产生原因防治措施一、裂纹它是焊接施工中比较普遍地而又十分严重地缺陷 ,它是在焊接应力及其他致脆因素共同作用下 ,焊接接头中局部区域地金属原子结合力遭到破坏而使焊接面产生裂纹 ,实质上 ,就是焊接后焊口在冷却过程产生地热应力超过材料强度所导致地裂纹 .裂纹地分类:裂纹地分法多 ,按其产生温度可分为热裂纹、冷裂纹、再热裂纹 .按部位可以分为纵裂纹、横裂纹、根部裂纹、弧坑裂纹、熔合线裂纹等等. 这里主要介绍一下冷裂纹和热裂地产生、特点和预防 .1、热裂纹地产生及预防1.1、热裂纹地产生原因:因为焊件及焊条内含硫、铜等低熔点杂质或多或少地存在 ,使得结晶凝固晚 , 凝固后地塑性和强度又极低 .因此 ,在焊接熔池在结晶过程中存在偏析现象 ,偏析出地这些低熔点共晶和杂质 ,由于低熔点共晶熔点低 ,往往是最后结晶 ,在晶界以液态夹层地方式存在 ,这时 ,当外界结构约束应力足够大和焊缝金属地凝固收缩作用下 ,熔池中低熔点杂质在凝固过程中被拉开 ,被拉开地液态夹层产生地间隙己没有足够地低熔点液态金属来填充形成了裂纹 ,或在是在凝固后不久被拉开 ,造成开裂 ,这就是热裂纹产生地机理 .1.2、热裂纹地特征:1.2.1、多贯穿在焊缝表面 ,裂口多数贯穿表面 ,并断口被氧化色彩 ,裂纹末端略呈圆形;1.2.2、多在焊缝中心位置 ,沿焊缝长度方向分布 ,极少数也产生在热影响区;1.2.3、微观特征一般是沿晶界开裂 ,故又称之为晶间裂纹;1.2.4、并在焊后立即可见 ,多可以用肉眼看见 ,1.3、热裂纹地防止措施:1.3.1、限制或减小硫、磷等有害元素地含量 ,用含碳量较低地焊条焊接;1.3.2、改善熔池地一次结晶 ,由于细化晶粒可以提高焊缝中地抗裂性 ,所以广泛采用向焊缝中加入细化晶粒地元素 ,如钛、铝、锆、硼、或稀土金属铈等 .1.3.3、控制焊接工艺参数 ,适当提高焊缝成形系数 ,如采用多层多道焊 ,避免偏析地产生等 .1.3.4、采用碱性焊条和焊剂 ,由于碱性焊条脱硫、磷效果好 ,抗热裂纹地效果好一般对于热裂纹倾向较大地构件 ,一般都采用碱性焊条进行焊接 .1.3.5、采用适当地断弧方式 ,如埋弧焊采用断弧板 ,焊条电弧焊采用断弧焊或填满弧坑地方法来防止热裂纹地产生 .1.3.6、合理选用焊接规范 ,严格控制焊接工艺参数 ,并采用预热和后热 ,减慢冷却速度 ,适当提高焊缝形状系数 ,尽可能采用小电流多层多道焊 ,以避免焊缝中心产生裂纹;1.3.7、采用熔深较浅地焊缝 ,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中;1.3.8、采用合理地装配次序 ,减小焊接应力 ,降低残余应力 ,避免应力集中 .2、冷裂纹地产生及预防:2.1、冷裂纹地产生原因:冷裂纹主要产生在中碳钢、高碳钢、低合金钢和中合金高强度钢中.产生冷裂地原因主要有三个方面:钢地淬硬倾向 ,焊接应力 ,较多地氢地存在和聚集 .许多情况下 ,氢是诱发冷裂纹最活跃因素之一 .当焊缝中淬硬倾向和焊接应力过大 ,使热影响区存在显微缺陷时 ,氢会在这些缺陷处聚集 ,并由原子态转为分子态 ,加上焊接应力地作用 ,使显微缺陷扩大 ,从而形成冷裂纹 .2.2、冷裂纹地特征:2.2.1、冷裂纹断面表面没有氧化色彩 ,它是较低温度产生地 ,(200~300度以下)一般不可以用肉眼看到 ,要做着色才可以看到 .2.2.2、冷裂纹一般产生在热影响区或焊缝与热影响区地熔合线上 ,也有极少数产生在焊缝上 .2.2.3、冷裂纹一般为穿晶裂纹 ,少数也有可能沿晶界发生 .2.2.4、冷裂纹一般在焊后并不立即出现 ,而是在焊后几小时、几天甚至更长时间才出现 .2.3、冷裂纹地防止措施:2.3.1、选用碱性低氢型焊条 ,减少焊缝中扩散氢地含量;2.3.2、严格遵守焊接材料(焊条、焊剂)地保管、烘焙、使用制度 ,焊条和焊剂应按规定烘干 ,随用随取 ,谨防受潮;2.3.3、保护气体要控制其纯度 ,严格清理焊条、焊件地油、锈、水分并控制焊接环境地湿度 ,从而减少氢地来源;2.3.4、改善焊缝金属性能 .如加入一些合金元素可以提高焊缝中地塑性.2.3.5、根据材料等级、碳当量、构件厚度、施焊环境等,正确地选择焊接工艺参数和线能量 ,例如:采用焊前预热 ,焊后缓冷 ,采取多层多道焊接 ,控制一定地层间温度等 ,改善焊缝热影响区地组织 ,去氢和消除焊接应力 . 2.3.6、焊后紧急热处理 ,以去氢、消除内应力和淬硬组织回火 ,改善接头韧性;2.3.7、采用合理地施焊程序 ,采用分段退焊法等 ,减少焊接变形和焊接应力 .二、气孔焊缝中地气孔是焊接缺陷之一 ,对一般非压力容器构件来说 ,不认为是重要缺陷 ,往往被人们所忽视 ,但气孔会降低焊接接头地机械性能 ,产生应力集中 ,它地存在减少了焊缝有效工作截面 ,降低了接头地机械强度 .严重时会造成脆性破坏 ,影响产品质量 .若是有穿透性或连续性气孔存在 ,将会严重影响焊件地密封性 .可是 , 在钢制结构地焊接中,若在几M或十几M乃至更长地焊缝上,要保证不出一个气孔,只有通过采取采性气体对焊缝正面形成良好保护,保证一次焊透 ,或采用带背面止口地接头形式 ,才可防止气孔地产生 .1、气孔地产生及预防1.1、气孔地产生原因:焊缝内部易形成气孔 ,主要原因是从熔池上方和熔池底部卷入空气所致 .具体地讲 ,就是在钢结构焊接施工中, 由于焊件表面地油、污、锈、垢及氧化膜没有清除干净、焊条受潮或质量不好、焊炬摆幅快而大、焊接现场周围风力较大、焊接速度过快、焊丝和母材地化学成分不匹配等诸多因素 ,造成焊缝金属在高温时,吸收了过多环境中地气体(如 02、H2、N2 )或由于溶池内部冶金反应产生地气体(如 CO) ,在溶池冷却凝固时来不及排出 ,而在焊缝内部或表面形成孔穴1.2、气孔地防止措施在焊接施工中,如何控制好过多地环境气体(如02、H2、N2、)及时排除才是气孔预防措施地关键之所在 ,下面将逐一进行介绍各种有害气体地来源、危害以及具体地控制措施 .1.2.1、氧在焊缝中地作用:1.2.1.1、氧地来源:焊接区地氧主要来自电弧中地氧化性气体(如二氧化碳、氧、水等)、焊剂、药皮中地水份和焊件表面地铁锈、水份 .1.2.1.2、氧对焊缝质量地影响:1)加速焊缝中有益元素地烧损 ,而使焊缝地强度、塑性、冲击韧性降低 .2)降低焊缝地物理性能和化学性能 ,如导电性、导磁性和抗腐蚀性等 .3)02与H2、C反应,形成不溶于金属地气体,如果结晶时来不及逸出焊缝,则形成气孔 .1.2.1.3、氧气孔在焊缝中地特征:氧气孔主要发生在碳钢焊缝中,一般情况下存在于焊缝地内部 ,气孔沿结晶方向分布 ,呈条状或不规则形状 ,表面光滑 .1.2.1.4、控制氧地措施:1)加强保护 ,如采用短弧焊 ,选用合适地气体流量 ,防止空气入侵 .2)清理焊件表面地水分、油污、铁锈 ,按规定烘干焊条、焊剂等焊接材料 .3)对焊缝采用一定地脱氧措施 .如采用含脱氧元素较高地焊条、焊剂 .1.2.2、氢对焊缝地作用:1.2.2.1、氢地来源:焊缝中地氢主要来自受潮地药皮或焊剂中水份、焊条、焊剂中地有机物、空气中地水份、焊件表面地铁锈、油脂及油漆 .1.2.2.2、氢对焊缝质地影响:1)形成气孔 ,焊缝中饱和地氢来不及逸出焊缝时 ,就形成了气孔 .2)产生氢白点和氢脆;3)氢也是产生冷裂纹地主要原因之一 .1.2.2.3、氢气孔在焊缝中地特征:在焊接碳钢和低合金钢时 ,氢气孔主要出现在焊缝表面,以单个出现,在返修磨刨时明显感觉很深 ,气孔内壁光滑 ,焊接铝、镁等有色金属时 ,主要了产生在焊缝地内部 .1.2.2.4、控制氢地措施:1)清理焊件及焊丝表面地油污 ,铁锈、水份 .2)焊前按规定烘烤焊条、焊剂 .气体保护焊对气体进行去水份、干燥处理 .3)尽量选用低氢型焊条 ,焊接时采用直流反接、短弧操场作 .4)对焊缝进行消氢处理 ,如焊前预热 ,焊后缓冷 .1.2.3、氮对焊缝地作用: 1.2.3.1、氮地来源:焊接时熔池中地氮主要来自空气中 . 1.2.3.2、氮对焊缝质量地影响:焊缝中饱和地氮来不及逸出焊缝时 ,就形成了气孔,同时也影响焊缝地力学性能 .1.2.3.3、氮气孔在焊缝中地特征:氮气孔一般发生有焊缝地表面(多层焊在每层地表面)成堆、蜂窝状出现 ,焊条电弧焊一般在接头引弧处出现较多 ,生产中也是出现得比较多地气孔 .1.2.3.4、控制氮地措施:1)清理焊件及焊丝表面地油污 ,铁锈、水份 ,焊前按规定烘烤焊条、焊剂 .2)气体保护焊对保护气体进行去水份、干燥处理 ,气体纯度要达到要求 ,有风时要有防风措施 .3)不得使用药皮开裂、药皮脱落、变质、偏心或生锈地焊条 .4)选用合适地焊接工艺参数 ,碱性焊条时要采用短弧焊 ,电流采用直反接 .三、结束语:综上所述:钢结构焊接施工中 , 裂纹和气孔缺陷均会导致焊缝出现应力集中缩短使用寿命 ,造成脆裂 ,降低结构断面尺寸 ,影响焊缝地力学性能 ,危及安全 .因此,在重要乃至关键部位地钢结构制作安装中 , 必须加强焊接工作中裂纹及气孔缺陷地数量控制 ,遵守焊接规范 , 严格施工工艺 , 保证焊缝质量 , 避免质量事故和危及到结构稳定和人民生民财产地事故发生 .参考文献:[1] 《金属工艺学》 .邓文英主编 . 高等教育出版社;[2] 《焊接工艺学》 . 机械工业出版社;课题:焊接原理中气孔产生地原因及防治措施学院:机械学院班级:13级焊接班专业:焊接技术与自动化姓名:缪国辉学号:2013229203日期:2014年12月5日。

焊接件断裂的原因及预防措施

焊接件断裂的原因及预防措施

某船舶焊接件断裂事故分析
事故概述
某船舶在航行过程中,焊接部位出现裂纹,导致船舶沉没。
事故原因
焊接过程中,存在夹渣、气孔等缺陷;同时,船舶运营过程中受到交变载荷、腐蚀等因素 的影响,导致裂纹扩展。
预防措施
加强焊接前准备,确保坡口和母材表面清洁;采用合理的焊接工艺参数,避免热影响区硬 化;进行无损检测,及时发现并处理缺陷;合理设计结构,避免交变载荷和腐蚀等因素的 影响。
对焊接设备进行定期维护和保养,确保设备的正常运行和使用寿 命。
建立完善的焊接质量管理体系
制定严格的质量管理制度
01
建立完善的焊接质量管理体系,制定严格的质量管理制度和操
作规程。
强化质量意识
02
加强员工的质量意识教育,让员工充分认识到焊接质量的重要
性。
质量检测与评估
03
对焊接件进行严格的质量检测和评估,确保符合标准和客户要
求。
04
典型焊接件断裂案例 分析
某压力容器焊接件断裂事故分析
事故概述
某压力容器在生产过程中,焊接 部位出现裂纹,导致容器破裂。
事故ห้องสมุดไป่ตู้因
焊接过程中,未能有效清理坡口 和母材表面,存在夹渣、气孔等 缺陷;同时,焊接工艺参数不合
理,导致热影响区硬化。
预防措施
加强焊接前准备,确保坡口和母 材表面清洁;采用合理的焊接工 艺参数,避免热影响区硬化;进 行无损检测,及时发现并处理缺
未焊透
未焊透是指在焊接过程中,接头根部未完全熔透的现象, 未焊透会导致焊接件承载能力下降,容易引发断裂。
夹渣
夹渣是指焊接过程中熔池中的熔渣未完全排除,残留在焊 缝中形成的夹杂物,夹渣的存在会降低焊缝的韧性和塑性 ,影响焊接件的承载能力。

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。

焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我司主要承担为安阳钢铁备件制造、安装及系统检测、修理,在钢结构的制造过程当中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程当中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程当中裂纹产生的原因及其防治措施进行分析。

1.内在原因分析及相应的预防措施一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。

1.1.热裂纹热裂纹是指在焊接过程当中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结晶过程当中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结晶过程当中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a)限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施发表时间:2019-09-11T13:43:12.627Z 来源:《基层建设》2019年第17期作者:张宁[导读] 摘要:对于建筑钢结构工程来说,最主要的连接方式之一就是焊接,在钢结构工程中焊接质量是非常关键的。

身份证号:37012319901228XXXX 250000摘要:对于建筑钢结构工程来说,最主要的连接方式之一就是焊接,在钢结构工程中焊接质量是非常关键的。

由于钢结构建筑的不断深入发展,钢结构焊接施工中产生的质量问题以及影响因素,都会使焊接缺陷形成,会导致灾难性工程质量事故的出现,所以,必须对这一内容高度重视。

关键词:钢结构;焊接裂纹;防治措施前言钢结构焊接过程中,焊接热源对结构的加热不均衡,使得钢结构形状、尺寸会发生改变,这就是我们所说的焊接变形。

在变形过程中,结构内部还会出现应力、应变,这是因为结构此时没有承受外载,就出现这些应力,因此,这些应力属于内应力的范围,也就是我们所说的焊接残余应力,这一应力是自平衡内应力,其分布是不均匀的。

在焊接过程中,焊接应力以及变形大多是不可避免的。

它们对焊接结构的尺寸精度有着直接的影响,对焊接接头的强度有着直接的影响,需要付出很多的人力、物力对其进行矫正,甚至还会使构件报废出现。

同时,焊接应力、变形会使今后应用钢结构过程中的承载能力产生不小的影响。

对于焊接变形和残余应力来说,它们是在同一构件中的两种能量的不同形式,对同一构件不同形式的能量服从,与能量守恒定律相符合;两者之间相互作用、互作影响和转化。

因此,对于技术人员来说,一定要对焊接变形、应力出现的原因、规律以及影响因素等进行了解和掌握,从而能够在安装时有效的对焊接质量进行控制。

1钢结构工程焊接质量的影响因素对于钢结构工程来说,焊接结构质量的形成与工程形成过程相渗透,例如设计、检验、验收等。

在制造过程中,都必然要有下料、成型、焊接、打砂渣等过程。

在这之中,焊接结构质量得以保证的重点是设计质量。

钢结构焊接裂纹的原因及预防措施

钢结构焊接裂纹的原因及预防措施

感谢您的观看
THANKS
焊接速度过快或过 慢,使得焊缝未能 充分熔合,容易产 生裂纹。
结构设计问题
结构设计不合理,如焊缝位置不当、焊缝数量过多等,导致焊缝受力不均,容易 产生裂纹。
构件制作过程中预留的应力没有得到有效释放,焊接过程中容易引起应力集中, 导致裂纹产生。
施工环境影响
施工环境温度过低,使得钢材 变脆,容易产生裂纹。
优化结构设计
在满足使用要求的前提下,尽量减少应力 集中部位的设计。
05
结论与展望
结论
焊接裂纹是钢结构中常见的缺陷之一,可能导致结构承载能力下降、安全性能降 低甚至发生事故。
分析了钢结构焊接裂纹的成因,主要包括材料、设计、施工和使用环境等因素。
针对不同的裂纹类型和成因,提出了相应的预防和补救措施,包括选用合适的材 料、优化结构设计、提高施工质量和加强定期检查等方面。
预热处理
在焊接前对钢材进行预热处理,降低因温差导致 的应力,减少裂纹产生的可能性。
后热处理
在焊接完成后进行后热处理,进一步消除焊接应 力,防止裂纹的产生。
04
案例分析
工程概况
项目名称
某大桥钢结构桥梁
工程背景
该大桥为城市主干道的重要组成部分,钢结构桥梁采用高强度钢 材焊接而成。
工程特点
钢结构构件多,焊接工作量大,对焊接质量要求高。
钢结构焊接裂纹的原因及预 防措施
2023-11-06
目 录
• 概述 • 钢结构焊接裂纹的原因 • 预防钢结构焊接裂纹的措施 • 案例分析 • 结论与展望
01
概述
钢结构焊接裂纹的定义
• 钢结构焊接裂纹是指在焊接过程中,由于受到材料、设计、 对钢结构的强度和稳定性产生严重影响。

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因及防治措施钢结构是现代建筑中常见的结构形式之一,它具有重量轻、强度高、施工速度快等优点,因此被广泛应用于各类建筑工程中。

然而,在钢结构的制造和施工过程中,焊接裂纹往往成为一个常见的质量问题。

本文将探讨钢结构焊接裂纹的形成原因,并提出相应的防治措施。

一、焊接裂纹的形成原因1.1 材料问题钢材的组织结构和化学成分不合理是导致焊接裂纹的主要原因之一。

当钢材中含有含碳、硫、磷等含量超过规定标准的元素时,焊接时易产生高硬度和脆性物质,从而引发裂纹的形成。

1.2 焊接参数不当焊接过程中,焊接电流、焊接速度、焊接温度等焊接参数的选择不当,都可能导致焊接裂纹的生成。

例如,焊接电流过大会导致材料过热,从而在焊接接头中产生裂纹。

1.3 体积收缩差异钢材在焊接过程中会受到热量的影响而发生热胀冷缩,而焊接接头中的同时发生焊接金属的热收缩和焊接基体的冷缩,而两者之间的体积收缩差异可能引起焊接裂纹的形成。

1.4 焊接应力焊接过程中,焊接热量引入工件,产生应力集中,而大的应力集中可能导致焊接裂纹的生成。

特别是当焊接接头应力集中点的应力超过材料的承载极限时,裂纹便会发生。

二、焊接裂纹的防治措施2.1 材料严格控制在钢结构的制造和施工过程中,应严格控制材料的质量。

选用质量合格、符合要求的钢材,特别是控制其中的碳含量、硫含量、磷含量等关键成分的含量。

2.2 合理选择焊接参数在焊接过程中,应根据具体的钢材和焊接需求,合理选择焊接参数。

通过调整焊接电流、焊接速度、焊接温度等参数,确保焊接接头的均匀加热,避免产生过度应力。

2.3 预热和后续热处理对于较大尺寸、厚度较大的焊接接头,应进行预热处理。

通过预热可以减少焊接接头的冷缩和应力积聚,从而减少焊接裂纹的产生。

同时,在焊接完成后,可采取适当的后续热处理,通过热处理来消除残余应力。

2.4 控制焊接应力在焊接过程中,应合理控制焊接应力。

可以通过选用合适的焊接顺序、采用适当的焊接顺序交替焊接等方法,来减少焊接接头中的应力集中,降低焊接裂纹的风险。

钢结构焊接工艺常见质量通病及控制措施

钢结构焊接工艺常见质量通病及控制措施

钢结构焊接工艺常见质量通病及控制措施在钢结构的制作过程中,焊接是其中一个关键的工艺。

尽管焊接是一个普遍采用的工艺,但仍然存在许多质量通病,例如裂纹、气孔、结构变形等。

在一个钢结构项目中,如果焊接制造不合格,这将会导致安全问题以及质量问题。

因此,钢结构焊接必须保证质量。

本文将讨论钢结构焊接工艺中的常见质量通病及控制措施。

裂纹裂纹是钢结构焊接的一个常见质量通病。

裂纹的主要原因是其焊接热影响区(HAZ)处的钢材变形和塑性变形,这会导致 HA Z出现冷裂纹和热裂纹。

这些裂纹不仅会导致制造不合格,还会降低钢结构的强度和稳定性。

针对裂纹的控制措施如下:•采用低氢电极,以降低氢的含量;•加强热控制,特别是对于材料的前热和焊接后的加热和冷却过程;•合理的焊接顺序和技术参数,避免过度的热影响区;•采用预加热的方法。

气孔气孔是钢结构焊接的另一个常见质量通病。

气孔的主要原因是焊接时的不良金属熔融和氧化还原反应。

这些小气泡将会形成焊接孔,而且加强了通孔的形成。

正确的焊接控制和维护,可以有效地控制气孔的生成:•采用良好的流体力学和电极加料控制;•避免油脂、腐蚀物和表面水分的污染;•加强预热、后热和热处理;•采用自动化焊接方法,以降低人为因素对气孔的影响。

结构变形钢结构焊接时,由于热的影响,容易导致结构变形。

在钢结构焊接制造过程中,因为需要保证钢材的尺寸精度和方向性,因此要控制结构变形。

以下是针对钢结构焊接时结构变形的控制措施:•提供适当的支撑设备,保证焊接质量;•聚焦于焊接顺序和技术参数;•采用较低的焊接电流和速度,进行轮廓加热;•加强热处理。

焊接脆化焊接脆化是钢结构焊接的一个常见质量通病。

焊接脆化的主要原因是钢材的化学成分和焊接的工艺参数不稳定。

这种焊接脆化是不允许存在的,因为它在使用中会逐渐变得更脆弱而最终断裂。

所以,针对焊接脆化的控制措施如下:•采用标准的焊接工艺,以保证焊接质量;•自动焊接方法;•选择具有补偿效应的材料,以提高焊接质量;•注意加工和设备维护,防止钢材的表面氧化。

焊接裂纹产生原因及防治

焊接裂纹产生原因及防治

焊接裂纹产生原因及防治焊接裂纹是在焊接过程中或焊接完成后在焊缝或母材中产生的开裂缺陷。

焊接裂纹的产生原因多种多样,主要包括以下几个方面:1.焊接过程中的温度应力:焊接时,因为焊接区域发生了局部加热和冷却,导致焊接接头中的温度差异,从而造成了焊接区域的应力。

如果这种应力超过了焊接材料的强度极限,就会产生裂纹。

2.冶金因素:焊接过程中,由于温度升高,焊接材料和母材之间发生相互作用,形成了互溶区。

如果溶液比较富含低熔点的物质,就会导致物质从高温区流向低温区,从而增大了焊接接头的收缩量,引起裂纹。

3.废气、含氧量过高:当焊接环境中的氧气含量过高时,焊接时会发生氧化反应,在焊接接头中产生大量的氧化物,增大了焊接接头的收缩量,从而导致了裂纹的产生。

4.焊接过程中的振动:焊接过程中的振动会使焊接接头中的晶粒发生变化,从而影响了焊接材料的性能,使其发生了裂纹。

针对焊接裂纹的防治措施主要包括以下几个方面:1.提高焊接工艺:合理选择焊接工艺参数,如焊接电流、焊接电压和焊接速度等,以控制焊接过程中的温度和应力。

2.控制焊接过程中的温度升降速度:控制焊接过程中的升温速度和冷却速度,以避免焊接接头产生过大的应力。

3.控制焊接环境:减少焊接环境中的含氧量,避免产生氧化反应和氧化物。

4.优化焊接材料:合理选择焊接材料,根据焊接接头的要求选择合适的材料,以提高焊接接头的性能。

5.加强材料的前处理:在焊接前进行必要的预处理工作,如去污、除锈、磷化等,以提高焊接接头的质量。

综上所述,焊接裂纹的产生原因多种多样,需要综合考虑多个方面的因素来进行防治。

通过合理选择焊接工艺参数、控制焊接过程中的温度和应力、控制焊接环境、优化焊接材料以及加强材料的前处理等措施,可以有效预防和防治焊接裂纹的产生,提高焊接接头的质量。

超全整理钢结构常见质量问题及防治措施

超全整理钢结构常见质量问题及防治措施

超全整理钢结构常见质量问题及防治措施范本一:钢结构常见质量问题及防治措施一、钢材质量问题1. 钢板表面出现凹凸不平现象- 问题原因:生产过程中的激光对切不均匀- 防治措施:优化设备维护保养和操作规范,确保切割质量。

2. 钢材表面爆皮、起疙瘩- 问题原因:材料在加工运输过程中碰撞引起- 防治措施:加强包装和运输过程中的保护措施,避免碰撞。

3. 钢材表面出现裂纹- 问题原因:冷却过程中温度变化不均匀引起- 防治措施:控制冷却速度,避免温度变化过快。

4. 钢材出现棱角剥蚀- 问题原因:镀锌层不均匀- 防治措施:优化锌液浓度和喷涂工艺,确保镀锌均匀。

二、焊接质量问题1. 焊缝出现裂纹- 问题原因:焊接参数设置不合理- 防治措施:调整焊接参数,确保焊接质量。

2. 焊接接头出现未焊透或焊透度不够- 问题原因:焊接操作不规范- 防治措施:加强焊工培训,确保焊接质量。

3. 焊接产生气孔- 问题原因:焊接材料含有水分或油污- 防治措施:使用干燥的焊接材料,确保焊接质量。

4. 焊缝出现焊渣、氧化物等杂质- 问题原因:焊接过程中未进行清洁- 防治措施:加强焊接前的工件清洁和焊后的清理工作。

三、涂装质量问题1. 涂层出现剥落- 问题原因:底材表面处理不当- 防治措施:加强底材表面处理和涂装工艺控制。

2. 涂层出现气泡、麻点等缺陷- 问题原因:涂料质量不合格或涂装过程中环境不良 - 防治措施:选择合格的涂料,确保涂装环境的干净和温湿度条件。

3. 涂层出现沙眼、流挂等瑕疵- 问题原因:喷涂过程中喷枪不正、喷涂速度不均匀 - 防治措施:培训涂装工人,确保喷涂操作规范。

四、其他质量问题1. 锚固点安装不牢固- 问题原因:锚固点设计不合理或安装不到位- 防治措施:加强设计和安装监管,确保锚固点牢固可靠。

2. 结构尺寸偏差超标- 问题原因:制造过程中测量错误或工艺控制不严格- 防治措施:加强测量过程和工艺控制,确保结构尺寸精确。

本文档涉及附件:1. 钢材质量检验报告2. 焊接工艺评定书3. 涂层质量检验报告本文涉及的法律名词及注释:1. 激光对切:使用激光切割技术将钢板切割成所需尺寸。

焊缝开裂原因

焊缝开裂原因

钢结构焊接裂纹的原因及预防措施(一)热裂纹热裂纹是指高温下所产生的裂纹,又称高温裂纹或结晶裂纹,通常产生在焊缝内部,有时也可能出现在热影响区,表现形式有:纵向裂纹、横向裂纹、根部裂纹弧坑裂纹和热影响区裂纹。

其产生原因是由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层形式存在从而形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂纹。

此外,如果母材的晶界上也存在有低熔点共晶和杂质,当焊接拉应力足够大时,也会被拉开。

总之,热裂纹的产生是冶金因素和力学因素共同作用的结果。

针对其产生原因,其预防措施如下:(1)限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素和有害杂质的含量,特别应控制硫、磷的含量和降低含碳,一般用于焊接的钢材中硫的含量不应大于0.04 5% ,磷的含量不应大于0.055% ;另外钢材含碳量越离,焊接性能越差,一般焊缝中碳的含量控制在0.10% 以下时,热裂纹敏感性可大大降低。

(2)调整焊缝金属的化学成分,改善焊缝组织,细化焊缝品粒,以提高其塑性,减少或分散偏析程度,控制低熔点共品的有害影响。

(3)采用碱性焊条或焊剂,以降低焊缝中的杂质含摄,改善结晶时的偏析程度。

(4)适当提高焊缝的形状系数,采用多层多道焊接方法,避免中心线偏析,可防止中心线裂纹。

(5)采用合理的焊接顺序和方向,采用较小的焊接线能超,整体预热和锤击法,收弧时填满弧坑等工艺措施。

(二) 冷裂纹冷裂纹一般是指焊缝在冷却过程中温度降到马氏体转变温度范围内(300—200℃以下)产生的,可以在焊接后立即出现,也可以在焊接以后的较长时间才发生,故也称为延迟裂纹。

其形成的基本条件有3个:焊接接头形成淬硬组织;扩散氢的存在和浓集;存在着较大的焊接拉伸应力。

其预防措施主要有:(1)选择合理的焊接规范和线能,改善焊缝及热影响区组织状态,如焊前预热、控制层问温度、焊后缓冷或后热等以加快氢分子逸出。

钢结构焊接质量缺陷及处理方法

钢结构焊接质量缺陷及处理方法

钢结构焊接质量缺陷及处理方法在钢结构的焊接过程中,如果焊接方法不正确,将会导致钢结构出现缺陷;钢结构焊接的缺陷主要有裂纹、未熔合及未焊透、气孔、固体夹杂、咬边、焊瘤、飞溅及电弧不稳定;接下来和大家一起看看这些缺陷是如何形成,又如何处理;1、裂纹原因:裂纹通常有冷、热之分;其中,产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等;产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等;处理办法:应在裂纹两端钻止裂孔或铲除裂纹的焊缝金属,进行补焊;预防措施:对于冷裂纹,应选择抗裂性好的钢材,采用低氢或超低氢、低强的焊条,并控制预热温度、线能量,以降低冷裂纹产生倾向;对于热裂纹,应选择含镍量高的钢材,采用精炼的方法,提高钢材的纯度,降低杂质的含量,并控制焊缝的凹度d小于1mm,降低线能量,以降低热裂纹产生倾向;2、未熔合及未焊透原因:未熔合及未焊透的产生原因基本相同,主要是工艺参数、措施及坡口尺寸不当,坡口及焊道表面不够清洁或有氧化皮及焊渣等杂物,焊工技术较差等;处理方法:对于未熔合应铲除未熔合处的焊缝金属后补焊;对于敞开性好的结构的单面未焊透可在焊缝背面直接补焊;对于不能直接补焊的重要焊件应铲去未焊透的金属,重新焊接;预防措施:焊前应确定坡口形式和装配间隙,并认真清除坡口边缘两侧的污物;合理选择焊接电流、焊条角度及运条速度;对于导热快、散热面积大的焊件,可在焊前预热或焊接的同时用火焰加热,焊缝的起头处与接头处,可选用长弧预热后再焊接;对于要求全焊透的焊缝,应尽量采用单面焊双面成形工艺;避免产生磁偏吹现象,使电弧不偏于一方,保证各处均匀加热;3、气孔原因:焊接时母材表面有污垢,铁锈、油漆、油渍等;焊条没有烘干,焊条药皮太潮;焊接速度过快,熔化的金属快速凝固而使溶液内气体来不及排出;焊接时操作不当,电弧拉得过长,使得有较多气体溶入金属溶液内;母材材质不佳或用错焊条;处理方法:铲去气孔处的焊缝金属,然后补焊;预防措施:控制气体的来源焊前严格清理母材及焊材表面的油污、铁锈,对焊接材料进行烘干一般碱性焊条的烘干温度为350450°C,酸性焊条的为200°C 左右;正确选择焊接材料、加强对焊接区的保护;排除熔池中已溶入的气体应采用适当的焊接工艺参数,优化焊接工艺,如对低氢型焊条,应尽量采用短弧焊,并适当配合摆动,有利于气体的逸出;4、固体夹杂原因:固体夹杂主要有夹渣和夹钨两种;产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清理干净等;产生夹钨的主要原因是氩弧焊时钨极与熔池金属接触;处理方法:对于夹渣应铲除夹渣处的焊缝金属,然后焊补;对于夹钨应挖去夹钨处缺陷金属,重新焊补;预防措施:焊前应对焊件认真清理,多层焊时须对前一层熔渣清除干净;正确选用焊接规范,焊接电流不应过小,焊接速度不宜过快;正确采用运条方法,且操作时要注意观察熔渣的流动方向,以防止形成固体夹杂;5、咬边原因:焊接工艺参数选择不当,如电流过大、电弧过长等;操作技术不正确,如焊枪角度不对,运条不当等;焊接时电流、电压过高或焊缝空间位置不合适造成熔化金属分布不均;焊条药皮端部的电弧偏吹;焊接零件的位置安放不当等;处理方法:轻微的、浅的咬边可用机械方法修锉,使其平滑过渡;严重的、深的咬边应进行焊补;预防措施:应选择适当种类及大小的焊条,并采用正确的焊条角度,适当电流,较慢的速度,较短的电弧及较窄的运行法和运条方法;6、焊瘤原因:焊接工艺参数选择不当,操作技术不佳,或角焊时焊丝对准位置不适当;电流过大,焊接速度太慢、电弧太短、焊道高;处理方法:可用铲、锉、磨等手工或机械方法除去多余的堆积金属;预防措施:应选择适当的焊接工艺,保证操作技术正确,并选用正确电流及焊接速度,提高电弧长度,且焊丝不可离交点太远;7、飞溅原因:焊条不良;焊接电流过大或过低;电弧太长,电弧电压太高或太低;焊枪倾斜过度,拖曳角太大;没有采取防护措施,或二氧化碳气体保护焊焊接回路电感量不合适;焊丝过度吸湿;处理方法:可采用涂白垩粉调整二氧化碳气体保护焊焊接回路的电感;预防措施:采用干燥合适的焊条、较短的电弧、适当的电流,尽可能保持垂直,避免过度倾斜,并注意仓库保管条件及平时的保养、修理;8、电弧不稳定原因:焊枪前端的导电嘴比焊丝心径大太多,导电嘴发生磨损,焊丝发生卷曲,焊丝输送机回转不顺,焊丝输送轮子沟槽磨损,加压轮压紧不良,导管接头阻力太大;处理方法:应调整使焊丝心径与导电嘴配合,且更换有问题的设备;预防措施:焊丝心径须与导电嘴配合,且更换导电嘴及输送轮,将焊丝卷曲拉直,并为输送机轴加油,使回转润滑,同时,压力要适当,太松送线不良,太紧焊丝损坏;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构焊接裂纹的原因
及防治措施
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。

焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我公司主要承担为安阳钢铁备件制造、安装及系统检修,在钢结构的制造过程中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程中裂纹产生的原因及其防治措施进行分析。

1.内在原因分析及相应的预防措施
一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。

1.1.热裂纹
热裂纹是指在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结
晶过程中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结
晶过程中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够
大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶
金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a)
限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。

1.2.冷裂纹
冷裂纹是焊接接头冷却到较低温度时产生的焊接裂纹.它与热裂纹不同,
是在焊后较低温度下产生的,可以焊后立即出现,有时要经过一段时间才
能出现,这种拖后一段时间才能出现的裂纹也称为延迟裂纹.冷裂纹主要
发生在中碳钢、高碳钢、低合金钢或中合金钢中,产生的原因主要有三个因素:1)钢的淬硬倾向大;2)焊接接头受到的拘束应力;3)较多的扩散氢的存在和浓集.这三个条件同时存在时,就容易产生冷裂纹.在许多情况下,
氢是诱发冷裂纹的最活跃的因素.冷裂纹的特征是断裂表面没有氧化色彩,这表明与热裂纹不一样,它多产生在热影响区或热影响区与焊缝交界的熔合线上,但也有可能发生在焊缝上.防止冷裂纹主要从降低扩散氢含量、
改善组织和降低焊接应力等几方面解决,主要的措施有:a)选用低氢型焊条,可减少焊缝的氢.b)焊条焊剂应严格按照规定进行烘干,碱性焊条要求300~350℃,烘熔1~2h;酸性焊条要求100~150℃,烘熔1~2h;熔炼焊剂要求200~250℃,烘熔1~2h;烧结焊剂要求200~250℃,烘熔1~2h.随取随用,严
格清理焊丝和工件坡口两侧的油绣,水分,控制环境温度.c)改善焊缝金属的性能,加入某些合金元素以提高焊缝金属的塑形.d)正确选用焊接工艺
参数、预热、缓冷、后热以及焊后热处理等,以改善焊缝及热影响区的组织,去氢和消除焊接应力.e)改善结构的应力状态,降低焊接应力等。

1.3.再热裂纹
再热裂纹是焊后焊件在一定温度范围再次加热(消除应力热处理或其他加热过程)而产生的裂纹,也称为焊后热处理裂纹或消除应力回火裂纹.在热裂纹具有晶界断裂的特征,大多发生在应力集中部位.它产生的原因一般
认为是在再次加热时,在第一次加热过程中过饱和和固溶的碳化物再次析出,造成晶内强化,使滑移应变集中于原先的奥氏体晶界,当晶界的塑形盈利能力不足以承受松弛应力过程中所产生的应变时,就会形成再热裂纹.
控制在热裂纹的措施是:a)减小焊接应力和应力集中,如提高预热温度、
焊后缓冷、使焊缝与母材平滑过渡等;b)在满足设计要求的前提下,选择
适当的焊接材料,使焊缝的强度稍低于母材,让应力在焊缝中松弛;c)在保证室温接头强度的情况下,提高消除应力退火温度,致使析出比较大有碳化物粒子,以改善高温延性。

2.外在原因及应对措施
焊接裂纹除以上工艺和原材料方面的原因外,人的因素和环境条件也是很关键的外因.如在实际焊接过程中,对以上产生焊接裂纹的原因及预防措施重视不够,制定的焊接工艺不详细过于简单,或操作人员责任心不强,不严格按照焊接工艺卡的要求实施;焊接工程师较少,在焊接过程中缺少焊接专业监督指导,对焊接后出现的问题不能及时处理;现场管理混乱,对原材料缺乏严格的质量检验制度而误用不合格材料或用错不同材料的钢材;天气气温低,没能按照要求进行预热、保温缓冷措施;不应涂漆的部位进行了油漆,部分施焊人员未经培训等种种原因导致有些预防措施不能落实到位,偶尔仍会出现个别裂纹。

3.实践效果
通过对钢结构焊缝裂纹产生的原因进行深入的分析,了解了其预防措施,理论联系实际,基本上掌握了控制焊缝裂纹的方法,如2011年在安钢3号高炉热风炉制造过程中,炉壳板(Q345)对接焊缝经无损检测发现有裂纹现象,经分析:冬季施工环境温度低,板材厚度较大,预热及层间温度措施不
当,将原来的烤枪火焰预热改为自动控温热电偶加热,解决了出现裂纹的现象。

经实践证明钢结构焊接时,按照以上分析的情况,严格执行相关的规定、规程,基本上可以避免裂纹的产生,实践效果良好。

相关文档
最新文档