多元函数微分学与应用PPT(30张)

合集下载

多元函数微分学的几何应用ppt课件

多元函数微分学的几何应用ppt课件

9.6 多元函数微分学的几何应用
2. 空间曲线的方程为 两个柱面 的交线
x
设曲线直角坐标方程为
x0 y y0 z z0
y z
y( x) ,
z( x)
x(t0 ) y(t0 ) z(t0 )
x x

x为参数,
曲线的参数方程是
y
y(
x)
z z( x) 由前面得到的结果, 在M(x0, y0, z0)处,
5
9.6 多元函数微分学的几何应用
(3)向量值函数的图像
设向量 r 的起点在坐标原点,则终
点M随t的改变而移动,点M的轨迹 Γ
称为向量值函数 r=f(t) 的终端曲 x
线,也称为该函数的图像,记作Γ
反过来,向量值函数
z
•M
rf
(t)
o
y
r f (t) ( f1(t), f2 (t), f3 (t))
f (2) (4,4,2), f (2) 42 42 22 6.
所求单位切向量一个是:(4,4,2) 2 , 2 , 1 6 3 3 3
另一个是: 2 , 2 , 1
其指向与t的增长方向一致
3 3 3 其指向与t的增长方向相反
16
9.6 多元函数微分学的几何应用
二、空间曲线的切线与法平面
lim
t t0
f
(t)
r0
7
9.6 多元函数微分学的几何应用
说明 设 f (t) ( f1(t), f2(t), f3(t))
r 0 (m, n, p),
则lim f (t) t t0
r0
lltt iimmtt00
f1(t) f3(t)
m,

《多元函数微分学》课件

《多元函数微分学》课件

第二章:多元函数的连续性
多元函数的连续性概念
解释多元函数连续性的定义和特 点。
多元函数的间断点
探讨多元函数可能出现的间断点 情况。
多元函数在点和区间上的 连续性
讲解多元函数在点和区间上连续 的条件和性质。
第三章:多元函数的偏导数与全微分
1
多元函数的偏导数
介绍多元函数的偏导数概念和计算方法。
偏导数的计算方法
3 二重积分与三重积分的转化
探讨二重积分与三重积分的相互转化和应用。
第五章:多元函数积分学
1
多元函数积分的概念
解释多元函数积分的定义和性质。
2
多元函数积分的性质
讨论多元函数积分的基本性质和计算方法。
3
多元函数积分的计算方法
探索多元函数积分的计算技巧和应用。
第六章:多元函数积分学应用
1 二重积分的应用
介绍二重积分在实际问题中的应用。
2 三重积分的应用
讲解三重积分在科学和工程领域的重要应用。
《多元函数微分学》PPT 课件
欢迎来到《多元函数微分学》PPT课件!本课程将深入讲解多元函数的各个方 面,帮助您全面掌握多元函数微分学的知识。
第一章:多元函数及其极限
多元函数的概念
介绍多元函数的基本概念和定义。
多元函数的极限
讨论多元函数的极限概念和计算方法。
多元函数极限的运算法则
探讨多元函数极限的运算法则和性质。
2
讨论多元函数偏导数的计算方法和应用。
3
多元函数的全微分及其计算方法
探索多ቤተ መጻሕፍቲ ባይዱ函数全微分的定义和计算方式。
第四章:多元函数的微分学应用
多元函数的极值及其判定方法
讲解多元函数极值的概念和判定方法。

《高等数学教学课件》9.1多元函数微分学法及其应用

《高等数学教学课件》9.1多元函数微分学法及其应用

在社会科学中的应用(如人口动态学、市场均衡分析等)
在工程科学中的应用(如机器人控制、信号处理等)
总结词:优化和控制
感谢观看
THANKS
全微分的定义
线性性质、可加性、全微分与偏导数的关系、全微分与方向导数的关系。
全微分的性质
全微分的定义与性质
03
梯度的性质
梯度与方向导数的关系、梯度的几何意义。
01
方向导数的定义
在某一方向上函数值的变化率。
02
梯度的定义
方向导数在各个方向上的最大值,表示函数值变化最快的方向。
方向导数与梯度
04
多元函数的极值
在物理科学中的应用(如流体动力学、热传导等)
总结词:揭示内在机制 总结词:预测和政策制定 总结词:复杂系统分析 详细描述:在人口动态学和市场均衡分析等社会科学领域,多元函数微分学也具有广泛的应用。通过建立微分方程模型,我们可以揭示人口动态变化和市场供需关系的内在机制,预测未来的发展趋势。此外,这些模型还可以为政策制定提供依据,帮助政府和企业制定有效的政策和措施。在复杂系统分析中,多元函数微分学也为我们提供了理解和预测系统动态行为的有力工具。
极值点处的函数一阶导数必须为零
如果一个多元函数在某点的所有偏导数都为零,并且该点的二阶导数矩阵正定,那么该点就是函数的极值点。
费马定理是判断多元函数极值点的充分条件,但在实际应用中,需要结合其他条件进行判断,例如函数的单调性、凹凸性等。
极值的充分条件(费马定理)
费马定理的应用
费马定理
最大值与最小值的定义
多元函数的表示方法
可以用数学符号表示,如$z = f(x, y)$,其中$x$和$y$是自变量,$z$是因变量。
多元函数的定义域

多元函数微分学的几何应用.ppt

多元函数微分学的几何应用.ppt
x1 y 1 z 1 , 123 法平面方程为
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束

二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0

《多元函数的微积分》课件

《多元函数的微积分》课件
最优化问题
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件

高等数学第九章第六节多元函数微分学的几何应用课件.ppt

高等数学第九章第六节多元函数微分学的几何应用课件.ppt

当J (F,G) 0时, 可表示为 (y, z)
, 且有
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
T 1, (x0 ), (x0 )
1 ,
1 J
(F,G) (z , x)
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
➢定义
设向量值函数 f (t )在点 t0的某一邻域内有定义, 如果
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
T
M
特别, 当光滑曲面 的方程为显式
F(x, y, z) f (x, y) z
时, 令
则在点 (x, y, z),
故当函数
在点 ( x0, y0 ) 有连续偏导数时, 曲面
f (t)的三个分量函数 f1(t), f2(t), f3(t)都在 t0 可导.
当f (t)在 t0 可导时, f (t) f1(t)i f2(t) j f3(t)k.
➢运算法则
设u(t), v(t),(t)可导, C是常向量, c是任一常数,则
(1) d C 0 dt
(2) d [cu(t)] cu(t) dt
例1. 求圆柱螺旋线

对应点处的切线方程和法平面方程.
解: 由于
对应的切向量为 T (R , 0, k), 故

高等数学 多元函数微分法及其应用ppt课件

高等数学 多元函数微分法及其应用ppt课件

其余类推
fxy( x,
y)
lim
y0
fx(x, y
y) y
fx(x, y)
(2) 同样可得:三阶、四阶、…、以及n 阶偏导数。
(3) 【定义】二阶及二阶以上的偏导数统称为高阶偏导数。
【例
1】设 z
x3
y2
3 xy 3
xy
1,求二阶偏导数及
3z x 3
.
【解】 z 3x2 y2 3 y3 y, x
x2 y2 sin x2 y2 ( x2 y2 )3 2
y0
换元,化为一元 函数的极限
机动 目录 上页 下页 返回 结束
【阅读与练习】 求下列极限
5/51
x2
(1)lim sin( xy) (a 0); (2) lim (1 1 )x2 y2 ;
x0 x
x
x
ya
ya
1
(3)lim(1 sin xy)xy; x0
(2) 【复合函数求导链式法则】
①z
u
v
t t
dz z du z dv dt u dt v dt
全导数
u
x z z u z v y x u x v x
②z
v
x z z u z v
y y u y v y
③ z f (u, x, y)
u x z f f u
y x x u x
(
x,
y,
z)
lim
z0
z
.
机动 目录 上页 下页 返回 结束
10/51
4. 【偏导数的几何意义】 设 M0( x0 , y0 , f ( x0 , y0 )) 为曲面 z f ( x, y) 上一点, 如图

《多元函数微分学》PPT课件

《多元函数微分学》PPT课件

0 V .
14
定义1 设D是xOy平面上的点集, 若变量z与D
多 元

中的变量x, y之间有一个依赖关系, 使得在D内
数 的

每取定一个点P(x, y)时,按着这个关系有确定的
本 概
z值与之对应, 则称z是x, y的二元(点)函数.记为 念
z f ( x, y) (或z f (P) )
称x, y为自变量,称z为因变量,点集D称为该函数
P0 称为 E 的内点:如果存在一个正数 使得U (P0 ) E P0 称为 E 的外点:如果存在一个正数 使得
U (P0 ) E
P0 称为 E 的边界点:如果对任意一个正数 使得
U (P0 ) 中即有E中点又有非E中点
P0 即不是E的内点也不是E的外点
闭区域: G G G
12
(3)Rn 中的集合到 Rm的映射
的 基 本
和方法上都会出现一些实质性的差别, 而多元
概 念
函数之间差异不大. 因此研究多元函数时, 将以
二元函数为主.
24
3、多元函数的极限

讨论二元函数 z f ( x, y),当x x0 , y y0 ,
元 函
即P( x, y) P0 ( x0 , y0 )时的极限.
数 的 基
怎样描述呢? 回忆: 一元函数的极限
多 元 函 数


解 定义域是 ( x 1)2 y2 1且x2 y2 1
本 概

y

O
1
x
有界半开半闭区域
18
3 求 f ( x, y) arcsin(3 x2 y2的) 定义域. x y2

3 x2 y2 1

多元函数微分学(共184张PPT)

多元函数微分学(共184张PPT)

z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )

P
于E的点,也有不属于E的点,

E
则称P为E的边界点(图8-2).

设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回

来,而且该折线上的点都属于D,

P 则称开集D是连通的.

连通的开集称为区域或开区域.

E
开区域连同它的边界一起,称

为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组

的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Fx2x, Fz2z4

z x
Fx Fz


z
x
2

x 2
z
四、 导数与微分的应用
1.导数的几何意义
例8.求曲线 y x3 6x 上切线平行于x轴的点。
解:由 y3x260 解得 x 2
代入 y x3 6x 得 y 4 2
所求点为: ( 2,42),(2,42)
.
解:
dy2sin1cos1(1)
dx
x x x2


1 x2
sin
2 x
例5. 求函数 y
x 在x处的微分 1 x2
解:
1x2 x x
dyf(x)dx
1x2 dx 1 x2

1 3 dx
(1 x 2 ) 2
三、多元函数微分法
1. 多元显函数求偏导和高阶偏导 将其余变量固定,对该变量求导。
微分学
一、函数、极限、连续 二、导数与微分 三、多元函数微分学 四、微分学应用
一、 函数、极限、连续
1. 一元函数
显函数 yf(x)xD
隐函数 F(x, y)0
参数方程所表示的函数
x (t)

y


(t)
y yf(x)
定义域:使表达式有意义的实 数全体或由实际意义确定。
o
D
a 2
f(0)lim ln(bx2)lnb
x 0
1cosx~ 1 x2
a
2
1 lnb
2
例2. 若 lxi m (axx2213bx2),求a与b的值。
二、 导数和微分
1. 有关概念 导数 定义:f(x 0 ) lx i0fm (x 0 x x ) f(x 0 ) x l x i 0fm (x x ) x f0 (x 0 )
2. 函数的性态: 函数单调性的判定及极值求法
定理 1. 设函数 f (x) 在开区间 I 内可导, 若 f(x)0 (f(x)0),则 f (x) 在 I 内单调递增 (递减) .
注意: 1) 函数的极值是函数的局部性质.
2) 对常见函数, 极值可能出现在导数 为 0 或不存在的点.
极值第一判别法
设函f数 (x)在x0的某邻域,内 且在连 空心续 邻域 内有导数, 当x由小到大x通 0时过 ,
(1) f (x) “左正右负” ,则f(x)在x0取极大 . 值 (2) f (x) “左负右正” ,则f(x)在x0取极小 ; 值
x2
x2
(x2)
f(2)lim f(x)f(2) x 2 x2
lim f (x) 3 x2 x 2
2.导数和微分的求法
正确使用导数及微分公式和法则 (要求记住!)
高阶导数的求法(逐次求一阶导数)
y
例4. x
1 x2
求函数
x
y sin 2 1 x
的导数
d d
y x
跳跃间断点
函数间断点
第二类(左右 极限至少有一 个不存在)
无穷间断点 振荡间断点
重要结论:初等函数在定义区间内连续
例1. 设函数 f (x)
a (1cosx) x2
,
x0
1,
x0
ln(bx2), x0
在 x = 0 连续 , 则 a =
2 , b=
e
.
提示:
f(0)xl i0m a(1xc2ox)s
1 2
x2
;
arctaxn~x ; arcsinx~x ; ln1(x)~ x ;
e x 1~ x ; a x 1~ x ln a; (1x) 1~x;
两个重要极限
lism x i n 1 , li(1 m 1 )x e , li(1 m x )1 x e
x 0 x
当 x0 时,为右导数 f(x)
当 x0 时,为左导数 f(x)
微分 :
df(x)f(x)d x
关系 : 可导
可微
导数几何意义:切线斜率
例3.设 f (x) 在 x2处连续,且 limf (x) 3, x2 x2
求 f (2).
解: f(2) limf (x) lim [(x2) f(x)] 0
x
函数的特性 有界性 , 单调性 , 奇偶性 , 周期性
复合函数(构造新函数的重要方法)
例如. 函数 f(x)3x1
f[f( x ) ] 3 f( x ) 1 3 ( 3 x 1 ) 1
基本初等函数: 常数、幂函数、指数函数、对数函数、三角函 数和反三角函数 初等函数 由基本初等函数 经有限次四则运算与有限次 复合而成且能用一个式子表示的函数.
2. 复合函数求偏导 注意正确使用求导符号
3. 隐函数求偏导
F(x,y,z)0 z Fx ,z Fy
x Fz y Fz
4. 全微分 (zf(x,y))
d z fx(x ,y )d xfy(x ,y )d y
5. 重要关系: 函数连续
函数可导
函数可微
偏导数连续
例6. 已知
2 极限
极限定义的等价形式 (以 xx0 为例 )
limf (x)A
f(x)A
xx0
f(x0)f穷小
极限运算法则
无穷小
无穷小的性质 ; 无穷小的比较 ; 等价无穷小代换
常用等价无穷小:
sinx~x ; tanx~ x ;
1coxs~
(洛必达法则)
说明: 定理中 x a换为 xa, xa, x , x , x 之一,
条件 2) 作相应的修改 , 定理仍然成立.
3. 连续与间断
函数连续的定义
xl ixm 0 f(x)f(x0)
第一类(左右
f(x0 )f(x0 )f(x0)
可去间断点
极限存在)
xy kz(k为正常数),求
z x y x y z
解: z y , x k
x y


kz y2
,
y k z x
zxykz 1 x y z xy
例7. 设 x2y2z24z0,求 z . x
解:设 F (x ,y ,z ) x 2 y 2 z 2 4 z
x x
x 0
洛必达法则
定理 1 )lifm (x ) liF m (x ) 0(或为)
x a x a

2) f(x)与 F(x)在 (a)内可 ,且 导 F(x)0
3) lim f (x) 存在 (或为)
xa F(x)
limf(x)limf(x) xaF(x) xaF(x)
相关文档
最新文档