第一章半导体基础知识(精)

合集下载

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

半导体基础知识

半导体基础知识

第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。

多子。

3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。

4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。

5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。

半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。

从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。

这一流动,就形成了一个Ib。

这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。

6、
展开。

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

半导体基础知识

半导体基础知识
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
结电容: C j Cb Cd
清华大学 华成英 hchya@
§2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
导通电压
0.6~0.8V 0.1~0.3V
反向饱 和电流
开启 电压
温度的 电压当量
开启电压
0.5V 0.1V
反向饱和电流
1µA以下 几十µA
从二极管的伏安特性可以反映出: 1. 单向导电性 u i IS (eU T 1) 正向特性为
指数曲线
若正向电压 UT,则i ISe u
u UT
3、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
二、杂质半导体
1. N型半导体
多数载流子 杂质半导体主要靠多数载流 子导电。掺入杂质越多,多子 浓度越高,导电性越强,实现 导电性可控。
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u )
i IS (e
u UT
1)
(常温下 UT 26m ) V
材料
硅Si 锗Ge

1.1 半导体基础知识

1.1 半导体基础知识

1.1 半导体基础知识1.1.1 半导体的特性自然界的各种物质,根据其导电能力的差别,可以分为导体、绝缘体和半导体三大类。

[下一页]半导体的特性硅原子的序数是14、原子核外有14个电子,最外层有4个电子,称为价电子,带4个单位负电荷。

通常把原子核和内层电子看作一个整体,称为惯性核。

惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。

[下一页]1.1.2 本征半导体在本征半导体的晶体结构中,每一个原子与相邻的四个原子结合。

每一个原子的价电子与另一个原子的一个价电子组成一个电子对。

这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓共价键的结构。

一般来说,共价键中的价电子不完全像绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,这种物理现象称作为本征激发,价电子受激发挣脱原子核的束缚成为自由电子的同时,在共价键中便留下了一个空位子,称“空穴”。

如图所示。

当空穴出现时,相邻原子的价电子比较容易离开它所在的共价键而填补到这个空穴中来,使该价电子原来所在共价键中出现一个新的空穴,这个空穴又可能被相邻原子的价电子填补,再出现新的空穴。

价电子填补空穴的这种运动无论在形式上还是效果上都相当于带正电荷的空穴在运动,且运动方向与价电子运动方向相反。

为了区别于自由电子的运动,把这种运动称为空穴运动,并把空穴看成是一种带正电荷的载流子。

在本征半导体内部自由电子与空穴总是成对出现的,因此将它们称作为电子-空穴对。

当自由电子在运动过程中遇到空穴时可能会填充进去从而恢复一个共价键,与此同时消失一个“电子-空穴”对,这一相反过程称为复合。

在一定温度条件下,产生的“电子空穴对”和复合的“电子空穴对”数量相等时,形成相对平衡,这种相对平衡属于动态平衡,达到动态平衡时,“电子-空穴对”维持一定的数目。

半导体基础知识

半导体基础知识

符号
1
+ W78XX +
2
_
3
_
W79XX
1 2
3
1.6.3 W78XX、W79XX系列 集成稳压器的使用方法
一、 组成输出固定电压的稳压电路
1. W78XX系列
+
1
W78XX
Co
2
+
Uo = 12V
改善负载 的暂态响 应,消除 高频噪声
注意 3 Ui 输入 Ci 电压 极性 抵消输入 长接线的 电感效, 防止自激 Ci : 0.1~1F
IR + +
R UR
IL

IZ RL
2、引起电压不 稳定的原因
UI
电源电压的波动 负载电流的变化
DZ
稳压二极管
+ UL

将微小的电压变化转 换成较大的电流变化
三端稳压器封装及电路符号
封装
塑料封装
金属封装
79LXX
W7805 1 3 2
W7905 1 3 2
78LXX
1
2
3
UI GND UO GND UI UO
空穴
负离子
电子
正离子
一、载流子的浓度差引 N型材料 起多子的扩散扩散使 交界面处形成空间电 荷区(也称耗尽层)
内电场方向
二、空间电荷区特点
基本无无载流子,仅 有不能移动的离子
三、扩散和漂移达到动态平衡
扩散电流= 漂移电流 总电流=0 利于少子的漂移
形成内电场
阻止多子扩散进行
1.2.2 PN结的单向导电性
外界条件决定半导体内部 载流子数量
三、本征半导体: 纯净的半导体

模电第一章半导体基础知识

模电第一章半导体基础知识

杂质能3
对电子的影响
施主杂质能级向导带提供 电子,使半导体呈现n型 导电性。
对空穴的影响
受主杂质能级接受价带的 电子成为空穴,使半导体 呈现p型导电性。
影响程度
杂质浓度越高,对电子和 空穴的影响越显著,半导 体的导电性能也越强。
06
半导体中的光电效应
光电效应的原理和分类
光电器件的特性
光电器件的主要特性包括光谱响应、光电灵敏度、响应速度和噪声等,这些特性决定了光电器件的应用范围和效 果。
光电器件的应用和发展趋势
光电器件的应用
光电器件在多个领域都有应用,如光电探测、光电转换、光通信等。
光电器件的发展趋势
随着科技的不断进步和应用需求的不断提高,光电器件的发展趋势包括高灵敏度、高速响应、高稳定 性、多功能化等。
半导体的热学性质
热导率
半导体的热导率取决于其材料 和结构,热导率越高,导热性
能越好。
热容
半导体的热容取决于其材料和 温度,它决定了半导体的耐热 性能。
热膨胀
半导体的热膨胀系数决定了其 在温度变化时的尺寸变化,对 器件的稳定性有影响。
温差电动势率
半导体的温差电动势率是指在 温度梯度下产生的电动势,它
05
半导体中的掺杂和杂质能级
掺杂的概念和分类
掺杂
在半导体材料中人为地加入某种元素,以改变其导电性能的过程。
分类
施主掺杂、受主掺杂、中性杂质掺杂。
杂质能级的形成和特性
形成
杂质原子在半导体晶体中占据了特定 的位置,这些位置上的电子能级与晶 体中的其他电子能级不同,形成了杂 质能级。
特性
杂质能级位于禁带中,其能量位置取 决于掺杂元素的种类和浓度,对半导 体的导电性能有重要影响。

半导体基础知识

半导体基础知识

现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。

第一章半导体基础知识

第一章半导体基础知识

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。

〖本章学时分配〗本章分为4讲,每讲2学时。

第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。

半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。

2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。

在热力学温度零度和没有外界激发时,本征半导体不导电。

3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合。

在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。

4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。

半导体基础知识

半导体基础知识

半导体基础知识(详细篇)2.1.1 概念根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。

1. 导体:容易导电的物体。

如:铁、铜等2. 绝缘体:几乎不导电的物体。

如:橡胶等3. 半导体:半导体是导电性能介于导体和半导体之间的物体。

在一定条件下可导电。

半导体的电阻率为10-3~109 Ω·cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体特点:1) 在外界能源的作用下,导电性能显著变化。

光敏元件、热敏元件属于此类。

2) 在纯净半导体内掺入杂质,导电性能显著增加。

二极管、三极管属于此类。

2.1.2 本征半导体1.本征半导体——化学成分纯净的半导体。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。

它在物理结构上呈单晶体形态。

电子技术中用的最多的是硅和锗。

硅和锗都是4价元素,它们的外层电子都是4个。

其简化原子结构模型如下图:外层电子受原子核的束缚力最小,成为价电子。

物质的性质是由价电子决定的。

外层电子受原子核的束缚力最小,成为价电子。

物质的性质是由价电子决定的。

2.本征半导体的共价键结构本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。

共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。

如下图所示:硅晶体的空间排列与共价键结构平面示意图3.共价键共价键上的两个电子是由相邻原子各用一个电子组成的,这两个电子被成为束缚电子。

束缚电子同时受两个原子的约束,如果没有足够的能量,不易脱离轨道。

因此,在绝对温度T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。

只有在激发下,本征半导体才能导电4.电子与空穴当导体处于热力学温度0°K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。

第一章半导体器件基础知识

第一章半导体器件基础知识

江西应用技术职业学院
16
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2. 最高反向工作电压 UR
工作时允许加在二极管两端的反向电压值。通常将击穿电
压 UBR 的一半定义为 UR 。


3. 反向电流 IR

通常希望 IR 值愈小愈好。
半 导
4. 最高工作频率 fM
体 二
如果给PN外加反向电压,即P区接电源的负极,N区接电源的
正极,称为PN结反偏,如图所示。
外加电压在PN结上所形成的外电场与PN结内电场的方向相同, 第
增强了内电场的作用,破坏了原有的动态平衡,使PN结变厚,加 强了少数载流子的漂移运动,由于少数载流子的数量很少,所以 只有很小的反向电流,一般情况下可以忽略不计。这时称PN结为
江西应用技术职业学院
22
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2.光电二极管 光电二极管又称光敏二极管,是一种将光信号转换为电信号的 特殊二极管(受光器件)。光电二极管的符号如图所示。
受光面
受光面




光电二极管工作在反向偏置下,无光照时,流过光电二极管的电 导

第五节
击穿并不意味管子损坏,若控制击穿电流,电
压降低后,还可恢复正常。
江西应用技术职业学院
15
第一章 半导体器件基础知识
三、温度对二级管特性的影响
本章概述
1.温度升高1℃,硅和锗二极管导通时的正向压降UF将
减小2.5mv左右。
第一节
2.温度每升高10℃,反向电流增加约一倍。

(完整word版)半导体基础知识

(完整word版)半导体基础知识

1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。

电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。

绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。

绝缘体导电性:极差。

如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。

载流子:运载电荷的粒子称为载流子。

导体电的特点:导体导电只有一种载流子,即自由电子导电。

本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。

第一章 半导体基础知识

第一章 半导体基础知识

稳定 电流IZ
U<UZ, 截止, UD= U U>UZ, 稳压, UD= UZ
U
U UZ R IZ
三、晶体管
(一)晶体管特性 输入特性
— iB=f1(uBE)∣UCE=常数
UCE≥1V
uBE > Uon , 发射结导通→ iB 导通后,uBE ≈ Uon 且Uon≈ 0.7 V 0.2V 硅 锗
VCC / Rc=12mA, ∴ T放大不成立。 或:设稳压管不导通, uo =Vcc-IcRc=12-24= - 12V<0.2V, T深度饱和, uo = UCES=0.1V 假设
成立
深度 饱和
习题1.18
T: 锗管, UCES=-0.1V;稳压管UZ=5V,求:
=50
IR IB IC
ui=0V和-5V时T的状态与uo值。
D
Uon + V ID R UR _
1.
V单独作用 --折线模型
0
求Q点
若V>Uon, D通
UD= Uon UR = V- Uon ID= (V- Uon)/R
V
+ D
UD
Uon

+ R UR _
ID
2.
交流量ui作用→微变等效模型 ur = ui /(R+rd)
0
3. 叠加
u R= U R+ u r
一、二极管的等效电路
(一)折线等效电路 实 际 模 型 u
考 虑 Uon 模 型
i
i
理 想 模 型 u
K
Uon
K
非理想二极管符号
理想二极管符号
+ u - 1. 理想二极管 u>0,D ?
K
+ u -
K

1.1 半导体基础知识

1.1 半导体基础知识

2. 本征半导体中的两种载流子 本征半导体中的两种载流子
运载电荷的粒子称为载流子。 运载电荷的粒子称为载流子。 无外加电场,电子和空穴运动是 无外加电场 电子和空穴运动是 随机、无规则的,不形成电流 不形成电流。 随机、无规则的 不形成电流。 有外加电场, 有外加电场,自由电子做定向 运动形成电子电流; 运动形成电子电流;价电子按 一定方向填补空穴,等效成空穴 一定方向填补空穴 等效成空穴 运动形成空穴电流。 运动形成空穴电流。 载流子 本征半导体中有两种载 本征半导体中有两种载 流子:自由电子和空穴。 流子:自由电子和空穴。
P区空穴 区空穴 浓度远高 于N区 区
N区自由动使靠近接触面P区的空穴浓度降低、靠近接触面 扩散运动使靠近接触面 区的空穴浓度降低、靠近接触面N 区的空穴浓度降低 区的自由电子浓度降低, 区出现负离子区, 区的自由电子浓度降低,P 区出现负离子区,N 区出现正离子 形成空间电荷区, 不利于扩散运动的继续进行。 区,形成空间电荷区,产生内电场 不利于扩散运动的继续进行。 形成空间电荷区 产生内电场,不利于扩散运动的继续进行
PN 结的形成
模拟电子技术基础
第四版 童诗白 华成英 主编
高等教育出版社
第一章 常用半导体器件
1.1 1.2 1.3 1.4 半导体基础知识 半导体二极管 晶体三极管 场效应管
1.1 半导体基础知识
1.1.1本征半导体 1.1.1本征半导体
一、半导体 自然界物质按其导电能力分为导体、半导体、绝缘体。 自然界物质按其导电能力分为导体、半导体、绝缘体。 1.导体 自然界中很容易导电的物质称为导体, 1.导体 自然界中很容易导电的物质称为导体,金属一般 都是导体。 都是导体。 2.绝缘体 有的物质几乎不导电,称为绝缘体, 2.绝缘体 有的物质几乎不导电,称为绝缘体,如惰性气 橡皮、陶瓷、塑料和石英。 体、橡皮、陶瓷、塑料和石英。 3.半导体 有一类物质的导电特性处于导体和绝缘体之间, 3.半导体 有一类物质的导电特性处于导体和绝缘体之间, 称为半导体,如锗、 砷化镓和一些硫化物、氧化物等。 称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。 常用的半导体材料是硅(Si)和锗(Ge)。 和锗(Ge) 常用的半导体材料是硅(Si)和锗(Ge)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。

〖本章学时分配〗本章分为4讲,每讲2学时。

第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。

半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。

2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。

在热力学温度零度和没有外界激发时,本征半导体不导电。

3、半导体的本征激发与复合现象当导体处于热力学温度0 K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合。

在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。

4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。

空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。

由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

5、杂质半导体掺入杂质的本征半导体称为杂质半导体。

杂质半导体是半导体器件的基本材料。

在本征半导体中掺入五价元素(如磷),就形成N 型(电子型)半导体;掺入三价元素(如硼、镓、铟等)就形成P 型(空穴型)半导体。

杂质半导体的导电性能与其掺杂浓度和温度有关,掺杂浓度越大、温度越高,其导电能力越强。

在N 型半导体中,电子是多数载流子,空穴是少数载流子。

多子(自由电子)的数量=正离子数+少子(空穴)的数量在P 型半导体中,空穴是多数载流子,电子是少数载流子。

多子(空穴)的数量=负离子数+少子(自由电子)的数量6、PN 结的形成及其单向导电性半导体中的载流子有两种有序运动:载流子在浓度差作用下的扩散运动和电场作用下的漂移运动。

同一块半导体单晶上形成P 型和N 型半导体区域,在这两个区域的交界处,当多子扩散与少子漂移达到动态平衡时,空间电荷区(亦称为耗尽层或势垒区)的宽度基本上稳定下来,PN 结就形成了。

当P 区的电位高于N 区的电位时,称为加正向电压(或称为正向偏置),此时,PN 结导通,呈现低电阻,流过mA 级电流,相当于开关闭合;当N 区的电位高于P 区的电位时,称为加反向电压(或称为反向偏置),此时,PN 结截止,呈现高电阻,流过μA 级电流,相当于开关断开。

PN 结是半导体的基本结构单元,其基本特性是单向导电性:即当外加电压极性不同时,PN 结表现出截然不同的导电性能。

PN 结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN 结加反向电压时,呈现高电阻,具有很小的反向漂移电流。

这正是PN 结具有单向导电性的具体表现。

7、PN 结伏安特性PN 结伏安特性方程:⎪⎭⎫ ⎝⎛-=1T U u S e I i式中:I s 为反向饱和电流;U T 为温度电压当量,当T =300K 时,T U ≈26mV 当u >0且u >>T U 时,T U u S e I i ≈,伏安特性呈非线性指数规律 ;当u <0且︱u ︱>>T U 时,0≈-≈S I i ,电流基本与u 无关;由此亦可说明PN 结具有单向导电性能。

PN 结的反向击穿特性:当PN 结的反向电压增大到一定值时,反向电流随电压数值的增加而急剧增大。

PN 结的反向击穿有两类:齐纳击穿和雪崩击穿。

无论发生哪种击穿,若对其电流不加以限制,都可能造成PN 结的永久性损坏。

8、PN 结温度特性当温度升高时,PN 结的反向电流增大,正向导通电压减小。

这也是半导体器件热稳定性差的主要原因。

9、PN结电容效应PN结具有一定的电容效应,它由两方面的因素决定:一是势垒电容C B ,二是扩散电容C D,它们均为非线性电容。

势垒电容是耗尽层变化所等效的电容。

势垒电容与PN结的面积、空间电荷区的宽度和外加电压等因素有关。

扩散电容是扩散区内电荷的积累和释放所等效的电容。

扩散电容与PN结正向电流和温度等因素有关。

PN结电容由势垒电容和扩散电容组成。

PN结正向偏置时,以扩散电容为主;反向偏置时以势垒电容为主。

只有在信号频率较高时,才考虑结电容的作用。

二、本讲重点1、PN结的单向导电性;2、PN结的伏安特性;三、本讲难点1、半导体的导电机理:两种载流子参与导电;2、掺杂半导体中的多子和少子3、PN结的形成;四、教学组织过程本讲宜教师讲授。

用多媒体演示半导体的结构、导电机理、PN结的形成过程及其伏安特性等,便于学生理解和掌握。

五、课后习题见相应章节的“习题指导”。

第二讲半导体二极管一、主要内容1、半导体二极管的几种常见结构及其应用场合在PN结上加上引线和封装,就成为一个二极管。

二极管按结构分为点接触型、面接触型和平面型三大类。

点接触型二极管PN结面积小,结电容小,常用于检波和变频等高频电路。

面接触型二极管PN结面积大,结电容大,用于工频大电流整流电路。

平面型二极管PN结面积可大可小,PN结面积大的,主要用于功率整流;结面积小的可作为数字脉冲电路中的开关管。

2、二极管的伏安特性以及与PN结伏安特性的区别半导体二极管的伏安特性曲线如P7图1.9所示,处于第一象限的是正向伏安特性曲线,处于第三象限的是反向伏安特性曲线。

1)正向特性:当V>0,即处于正向特性区域。

正向区又分为两段:(1)当0<V<U on时,正向电流为零,U on称为死区电压或开启电压。

(2)当V>U on时,开始出现正向电流,并按指数规律增长。

2)反向特性:当V<0时,即处于反向特性区域。

反向区也分两个区域:(1)当V BR<V<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流I S。

(2)当V≤V BR时,反向电流急剧增加,V BR称为反向击穿电压。

从击穿的机理上看,硅二极管若|V BR|≥7 V时,主要是雪崩击穿;若V BR ≤4V则主要是齐纳击穿,当在4V~7V之间两种击穿都有,有可能获得零温度系数点。

3)二极管的伏安特性与PN结伏安特性的区别:二极管的基本特性就是PN 结的特性。

与理想PN结不同的是,正向特性上二极管存在一个开启电压U on。

一般,硅二极管的U on=0.5 V左右,锗二极管的U on=0.1 V左右;二极管的反向饱和电流比PN结大。

3、温度对二极管伏安特性的影响温度对二极管的性能有较大的影响,温度升高时,反向电流将呈指数规律增加,硅二极管温度每增加8℃,反向电流将约增加一倍;锗二极管温度每增加12℃,反向电流大约增加一倍。

另外,温度升高时,二极管的正向压降将减小,每增加1℃,正向压降U D大约减小2mV,即具有负的温度系数。

4、二极管的等效电路(或称为等效模型)1)理想模型:即正向偏置时管压降为0,导通电阻为0;反向偏置时,电流为0,电阻为∞。

适用于信号电压远大于二极管压降时的近似分析。

2)简化电路模型:是根据二极管伏安特性曲线近似建立的模型,它用两段直线逼近伏安特性,即正向导通时压降为一个常量Uon;截止时反向电流为0。

3)小信号电路模型:即在微小变化范围内,将二极管近似看成线性器件而将它等效为一个动态电阻r D 。

这种模型仅限于用来计算叠加在直流工作点Q上的微小电压或电流变化时的响应。

5、二极管的主要参数1)最大整流电流IF:二极管长期工作允许通过的最大正向电流。

在规定的散热条件下,二极管正向平均电流若超过此值,则会因结温过高而烧坏。

2)最高反向工作电压U BR:二极管工作时允许外加的最大反向电压。

若超过此值,则二极管可能因反向击穿而损坏。

一般取U BR值的一半。

3)电流I R:二极管未击穿时的反向电流。

对温度敏感。

I R越小,则二极管的单向导电性越好。

4)最高工作频率f M:二极管正常工作的上限频率。

若超过此值,会因结电容的作用而影响其单向导电性。

6、稳压二极管(稳压管)及其伏安特性稳压管是一种特殊的面接触型半导体二极管,通过反向击穿特性实现稳压作用。

稳压管的伏安特性与普通二极管类似,其正向特性为指数曲线;当外加反压的数值增大到一定程度时则发生击穿,击穿曲线很陡,几乎平行于纵轴,当电流在一定范围内时,稳压管表现出很好的稳压特性。

7、稳压管等效电路稳压管等效电路由两条并联支路构成:①加正向电压以及加反向电压而未击穿时,与普通硅管的特性相同;②加反向电压且击穿后,相当于理想二极管、电压源U z和动态电阻r z的串联。

如P16图1.18所示。

8、稳压管的主要参数1)稳定电压U Z:规定电流下稳压管的反向击穿电压。

2)最大稳定工作电流I ZMAX 和最小稳定工作电流I ZMIN:稳压管的最大稳定工作电流取决于最大耗散功率,即P Zmax =U Z I Zmax 。

而I zmin对应U Zmin。

若I Z<I Zmin,则不能稳压。

3)额定功耗P ZM:P ZM=U Z I ZMAX,超过此值,管子会因结温升太高而烧坏。

4)动态电阻r Z:r z=∆V Z /∆I Z,其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。

R Z愈小,反映稳压管的击穿特性愈陡,稳压效果愈好。

5)温度系数α:温度的变化将使U Z改变,在稳压管中,当⎢U Z⎢>7V时,U Z具有正温度系数,反向击穿是雪崩击穿;当⎢U Z⎢<4 V时,U Z具有负温度系数,反向击穿是齐纳击穿;当4V<⎢V Z⎢<7V时,稳压管可以获得接近零的温度系数。

这样的稳压二极管可以作为标准稳压管使用。

9、稳压管稳压电路稳压二极管在工作时应反接,并串入一只电阻。

电阻有两个作用:一是起限流作用,以保护稳压管;二是当输入电压或负载电流变化时,通过该电阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。

相关文档
最新文档