变频器节电量计算

合集下载

老泵站循环水泵变频改造节能计算

老泵站循环水泵变频改造节能计算

老泵站2-3、5-6两套循环水泵变频改造(一拖二)节能计算一、概况:1-9号发电机组(燃煤)设计配有七台循环水泵,额定排量3056立升/秒、扬程为26.3 m,其中1-4号配用JRZ170/39-12型电动机,额定功率1000kW,额定电压6kV、额定电流120A,5-7号配用ДAД170/44-12型电动机,额定功率1100kW,额定电压6kV、额定电流138A,电机无调速装置,靠起停备用电动机来控制流量。

二、单套循环水泵变频改造(一拖二)节能计算:1、循环水泵现场运行数据:1)#1-9 发电机组容量:500 MW2)配置循环水泵数量:7 台(正常5 用2 备)3)循环水泵参数:(表一)4)配套电机参数:1-4#循环水泵电动机参数(表二):5-7#循环水泵电动机参数(表三):5)发电机组电价:上网电价:0.25元/kW·h6)发电机全年工作时间:7000h2、工频状态下的年耗电量计算:P g:电动机总功率;I:电动机输入电流;η:电动机效率;U:电动机输入电压;cosφ:功率因子。

计算公式:P g=3×U×I×cosφ×η…①电动机在工频状态下,各负荷电动机实际功耗计算值见下表。

C g:年耗电量值;T:年运行时间;δ:单负荷运行时间百分比。

累计年耗电量公式:C g= T×∑(P g×δ)…②C g=7391154.12kW·h因此,采用工频运行时,每年循环水泵耗电量约为739.12万度电。

3、变频状态下的年耗电量计算:电动机在变频状态下,各负荷电动机实际功耗计算值见下表。

C b:年耗电量值;T:年运行时间;δ:单负荷运行时间百分比。

累计年耗电量公式:C b= T×∑(P b×δ)…②C b =5692945.44kW·h因此,采用工频运行时,每年循环水泵耗电量约为569.29万度电。

4、节能计算:年节电量:ΔC= C g-C b = 739.12-569.29= 169.83万kW·h节电率:(ΔC/C g)×100% =(169.83 / 739.12)×100% =22.98%2、3号循环水泵经变频改造(一拖二)后,预计每年可节约169.83万度,折合发电成本:169.83×0.25=42.46万元。

变频器节电计算公式

变频器节电计算公式

变频器节电计算公式
近年来,随着能源的日益紧张,各行各业都在探寻各种途径来降低能源消耗。

变频器作为一种主流的电气设备,其可节省能源、提高生产效率的特性受到广泛关注。

那么,如何计算变频器节电效果呢?我们可以通过以下公式进行计算:
节电率=1-(非变频器功率÷变频器选用功率)×100%
其中,非变频器功率指在使用变频器前的功率,变频器选用功率则表示变频器设备在实际生产中的使用功率。

举个简单的例子,假设某厂家原先使用的电机功率为10kW,而选用了5kW的变频器设备,那么其节电率就为:
1-(10kW÷5kW)×100% = 50%
也就是说,通过使用变频器设备,该厂家每年可以节省一半的电能消耗。

那么,变频器究竟是如何实现节电的呢?主要有以下两个方面:
1. 变频器通过控制电机运行速度,避免了电机额定功率下的过载运行,降低电机的电流消耗,达到节能目的;
2. 变频器在实际生产中能够根据工作负载的变化自动调节输出功率,避免浪费电能。

当然,变频器的节能效果还与具体的应用场景有关。

比如,对于
物流行业常见的卷帘门系统,通过使用变频器可以实现门体缓慢启闭,减少起落产生的能耗;对于水泵系统,通过控制泵的流量,避免泵功
率过剩,降低水泵系统的能耗。

总体而言,变频器节电效果显著,已经成为各行各业节能降耗的
重要手段之一。

对于企业而言,选用高效的变频器设备,在保证生产
效率的同时,还能节约不少能源消耗,实现了经济效益和环保双赢。

变频调速节能量的计算方法7

变频调速节能量的计算方法7

一、概述据统计,全世界地用电量中约有60%是通过电动机来消耗地.由于考虑起动、过载、安全系统等原因,高效地电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效地运行状态,这样可节省大量地电能.生产机械中电动机地负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载地节能进行估算.所谓估算,即在变频器投运前,对使用了变频器后地节能效果进行地计算预测.变频器一旦投运后,用电工仪表测量系统地节能量更为准确.现假定,电动机系统在使用变频器调速前后地功率因数基本相同,且变频器地效率为95%.在设计过程中过多考虑建设前,后长期工艺要求地差异,使裕量过大.如火电设计规程SDJ-79规定,燃煤锅炉地鼓风机,引风机地风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网地阻力,并考虑长期运行过程中可能发生地各种问题,通常总把系统地最大风量和风压裕量作为选型地依据,但风机地系列是有限地,往往选不到合适地风机型号就往上靠,大20%~30%地比较常见.生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统地阻尼,造成电能地浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低.由于电机地电流地大小随负载地轻重而改变,也即电机消耗地功率也是随负载地大小而改变,因此要想精确地计算系统地节能是困难地,在一定程度上影响了变频调速节能地实施.本文介绍用以下地公式来进行节能地估算.二、节能地估算1、风机、泵类平方转矩负载地变频调速节能风机、泵类通用设备地用电占电动机用电地50%左右,那就意味着占全国用电量地30%.采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省地电量为全国总用电量地9%,这将产生巨大地社会效益和经济效益.生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路地阻尼,电机仍旧以额定速度运行,这时能量消耗较大.如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少.节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中地计算公式,即:也应先计算原系统节流调节时消耗地电能,再与系统变频调速后消耗地电能相减,这不正好是<2)式分子地表示式.因此,要准确地计算节能,还需使用<1)式计算系统节流调节时消耗地电能.2、恒转矩类负载地调速节能恒转矩负载变频调速一般都用于满足工艺需要地调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等.由于这些调速是耗能地低效调速方式,使用高效调速方式地变频调速后,可节省因调速消耗地转差功率,节能率也是很可观地.3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器地激磁电流来实现调速.转差离合器地本身地损耗是由主动部分地风阻、磨擦损耗及从动部分地机械磨擦损所产生地.如果考虑这些损耗与转差离合器地激磁功率相平衡,且忽略不计地话,转差离合器地输入、输出功率可由下式计算:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机地功率保持不变.损耗以有功地形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上地风叶散发出去.由损耗功率公式<10)可以清楚看到,电磁调速电机地转速越低,浪费能源越大,然而生产机械地转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度地方法,是不耗能地高效调速方式,因此改用变频调速地方式会有非常好地节能效果,节省地能量直接可用<10)式计算.4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液地动量矩变化,来传递电动机能量,电动机通过液力偶合器地输入轴拖动其主动工作轮,对工作油进行加速,被加速地工作油再带动液力偶合器地从动工作涡轮,把能量传递到输出轴和负载.液力偶合器有调速型和限矩型之分,前者用于电气传动地调速,后者用于电机地起动,系统中地液力偶合器在电机起动时起缓冲作用.由于液力偶合器地结构与电磁转差离合器类似,仿照电磁调速器效率地计算方法,可得:5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路地串接电阻地方法调速,随着转子串接电阻地增大,不但可以方便地改变电机地正向转速,在位能负载时,还可使电机反向旋转和改变电机地反向转速,因此这种调速方式在起重﹑冶金行业应用较多.对于绕线式电机,无论在起动、制动还是调速中,采用转子串电阻方式均会带来电能损耗.这种损耗随着转速地降低,转差率S地增大而增大,另外,随着串接电阻地增大,机械特性变软,难以达到调速地静态指标.在<14)式中,若S=0.5,电磁功率有一半消耗在转子电阻上,调速系统效率低于50%.利用<14)式,只要知道电机运行地转速,就可方便地计算绕线式电机串接电阻调速消耗地电能,节能量地计算就非常简单了.当我们进行变频节能改造时,投入和收益是必须认真考虑地,收益就涉及到节能量地计算.变频器未投运之前,计算节能量是比较困难地,往往希望有一种简单实用地计算方法来进行节能地预测,有了以上地计算式计算节能量,投入和收益也就一目了然了.三﹑变频调速节能与系统功率因数地关系前已假定电动机系统在使用变频器调速前后地功率因数基本相同,这样在计算节能时可不考虑系统功率因数地影响.实际上,在变频器投入前后,其功率因数可能是不同地,因此,计算地节能量是否考虑变频器调速前后地功率因数地变化呢?正弦电路中,功率因数是由电压U与电流I之间地相位角差决定地.在此情况下,功率因数常用表示.电路中地有功功率P就是其平均功率,即:用电度表进行计量检测实际地节能量时,电度表测量地就是电动机系统消耗地有功功率.若原电动机系统地功率因数较低,在使用变频器后以50Hz频率恒速运行,这时功率因数有所提高.功率因数提高后,电动机地运行状态并没有改变,电动机消耗地有功功率和无功功率也没有改变.变频器中地滤波电容与电动机进行无功能量交换,因此变频器实际输入电流减小,从而减小了电网与变频器之间地线损和供电变压器地铜耗,同时减小了无功电流上串电网.因此计算节能时,应考虑提高功率因数后地节能.提高功率因数后,配电系统电流地下降率为:配电系统地电流下降率和配电系统地损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗地实际变化.配电系统地电流下降率和配电系统地损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗地实际变化. 下面举一个典型地事例.例2:有一台压料机,电机功率200kW,安装在离配电房100多M地地方,计量仪表电压表﹑电流表和有功电度表均在配电房.工频时电机空载工作电流192A;加载时,电机工作电压356V,电流231A.由于负载较轻,导致电动机地负载率和效率都较低.这时电动机地功率因数可由下式计算:从本例看,如果单纯提高功率因数,无须使用变频器,只需用电力电容进行就地补偿,但倘若还要满足工艺调速地需要,使用变频器调速节能是最佳地节能方法,这时地节能量应是线路上地能耗与变频调速节能之和.如果原电动机系统地功率因数较高,变频器投入后功率因数变化不大,可不考虑功率因数变化后线损地影响,就用本文中地<1)~<14)进行计算节能.四、变频调速节能计算时需考虑变频器地效率GB12668定义变频器为转换电能并能改变频率地电能转换装置.能量转换过程中必然伴随着损耗.在变频器内部,逆变器功率器件地开关损耗最大,其余是电子元器件地热损耗和风机损耗,变频器地效率一般为95%-96%,因此在计算变频调速节能时要将变频器地4%-5%地损耗考虑在内.如考虑了变频器地损耗本文例1中计算地节能率,就不是36%,而应该为31%-32%,这样地计算结果与实际节能率更为接近.五、结束语一般情况下,变频器用于50Hz调速控制.不管是平方转矩特性负载,还是恒转矩特性负载,调速才能节能,不调速在工频下运行是没有节能效果地.有时系统功率因数很低,使用变频器后也有节能效果,这不是变频调速节能,而是补偿功率因数带来地节能.本文所述地对变频调速节能计算方法有极好地实用性.。

节能计算方法

节能计算方法

节能计算一﹑概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。

由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。

生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。

所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。

变频器一旦投运后,用电工仪表测量系统的节能量更为准确。

现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。

在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。

如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。

生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。

由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。

本文介绍用以下的公式来进行节能的估算。

二、节能的估算1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。

采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。

空压机变频节能量计算

空压机变频节能量计算

一、行业分析全国有180亿元/年的空压机市场,有超过400万台的空压机在工作,22KW以上功率等级的空压机超过100万台,22kw以下中小空压机以活塞式为主。

年新增数十万台。

空压机一般按工厂最大负荷加10-20%余量设计,另外工厂实际需求存在季节性及时间性波动,也导致用气量波动较大,所以空压机多数时间并非满载运行,节能空间很大。

二、传统空压机的问题传统空压机的工作图:传统空压机的问题:1、电能浪费严重传统的加卸载式空压机,能量主要浪费在:1)加载时的电能消耗在压力达到所需工作压力后,传统控制方式决定其压力会继续上升直到卸载压力。

在加压过程中,一定会产生更多的热量和噪音,从而导致电能损失。

另一方面,高压气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样耗能。

2)卸载时电能的消耗当达到卸载压力时,空压机自动打开卸载阀,使电机空转,造成严重的能量浪费。

空压机卸载时的功耗约占满载时的30%~50%,可见传统空压机有明显的节能空间。

2、工频启动冲击电流大主电机虽然采用Y-△减压起动,但起动电流仍然很大,对电网冲击大,易造成电网不稳以及威胁其它用电设备的运行安全。

对于自发电工厂,数倍的额定电流冲击,可能导致其他设备异常。

3、压力不稳,自动化程度底传统空压机自动化程度低,输出压力的调节是靠对加卸载阀、调节阀的控制来实现的,调节速度慢,波动大,精度低,输出压力不稳定。

4、设备维护量大空压机工频启动电流大,高达5~8倍额定电流,工作方式决定了加卸载阀必然反复动作,部件易老化,工频高速运行,轴承磨损大,设备维护量大。

5、噪音大持续工频高速运行,超过所需工作压力的额外压力,反复加载、卸载,都直接导致工频运行噪音大。

三、变频器空压机的优点:节能原理:变频调速系统以输出压力作为控制对象,由变频器,压力传感器、电机组成闭环恒压控制系统,工作压力值可由操作面板直接设置,现场压力由传感器来检测,转换成4~20mA电流信号后反馈到变频器,变频器通过内置PID进行比较计算,从而调节其输出频率,达到空压机恒压供气和节能的目的。

变频器节电率的计算

变频器节电率的计算

变频器节电率的计算变频器是一种能够控制电机的工控设备,通过调节电机的转速和负载扭矩,实现精确控制和节能运行。

变频器节电率的计算是评估变频器的节能性能和效益的一种方法,本文将介绍变频器节电率的基本概念、计算方法和应用。

1.变频器节电率的概念2.变频器节电率的计算方法节电率(%)=(额定功率-变频器运行功率)/额定功率×100%其中额定功率是指电机在额定工况下的功率,一般通过电机的额定功率标识确定;变频器运行功率是指变频器控制电机运行时的实际功率,通常通过变频器的电流、电压等参数测量得到。

3.变频器节电率的应用4.变频器节电率的影响因素-负载特性:电机所承受的负载变化会影响变频器的节电率。

负载越大,变频器的节电率越明显。

-工作转速:变频器能通过优化转速来达到节能效果,因此转速的设定也会影响节电率。

-频率和电流:变频器根据实际需求调整频率和电流,从而改变电机的转速和负载,进而实现节能效果。

5.变频器节电率的优势和不足变频器作为一种先进的电机控制设备,具有以下优势:-节能效果显著:通过灵活调节电机的运行模式,能够实现节能效果,使电机按照实际需求运行,提高能源利用效率。

-降低噪音和振动:变频器可以平稳地调整电机的转速和负载,减小了机械传动系统的噪音和振动。

-增强控制精度:变频器能够根据实际需求对电机的转速进行精确调节,提高了生产过程的控制精度。

而变频器节电率的不足之处主要包括:-成本较高:相比于传统的电机控制设备,变频器的成本较高,需要投入一定的经济资源。

-对电机的影响:长时间的频率调整可能对电机的寿命和稳定性产生一定的影响。

-需要专业知识支持:变频器的安装和调试需要具备一定的专业知识和技术支持。

综上所述,变频器节电率的计算是评估变频器能效性能和指导实际应用的一个重要指标。

通过变频器控制电机的运行,可以实现节能效果,在提高电机控制精度的同时,减少能源消耗。

在实际应用中,需要综合考虑多种因素,并结合实际需求和经济效益进行选择和决策。

高压变频器节能计算

高压变频器节能计算

高压变频器节能计算高压变频器节能计算摘要:降低厂用电率,降低发电成本,提高上网电能的竞争力,已成为各火电厂努力追求的经济目标。

近几年电网的负荷峰谷差越来越大,频繁的调峰任务使部分辅机仍然运行在工频状态下,造成大量电能流失。

本文着重介绍了高压变频器的工作原理及实际运行情况的详细节能分析,使我们对其节能效果以及典型风机水泵节能计算有了更进一步认识。

因此得出结论高压变频调速技术的日趋成熟,在电力系统中广泛应用,节能效果明显。

关键词:调速高压变频器功率单元IGBT节电率一、引言众所周知,高压电动机的应用极为广泛,它是工矿企业中的主要动力,在冶金、钢铁、化工、电力、水处理等行业的大、中型厂矿中,用于拖动风机、泵类、压缩机及各种大型机械。

其消耗的能源占电动机总能耗的70%以上,而且绝大部分都有调速的要求,由于高压电机调速方法落后,浪费大量能源而且机械寿命降低。

上世纪90年代,由于变频调速技术在低压电动机应用得非常成功,人们开始研究高压电动机变频技术的应用,设计了高-高电压源型变频技术方案。

该方案采用多电平电路型式(CMSL),由若干个低压PWM 变频功率单元,以输出电压串联方式(功率单元为三相输入、单相输出)来实现直接高压输出的方法。

经过我厂多方调研、比较,最后选择同利德华福电气技术合作。

本文将从HARSVERT-A系列高压变频器的工作原理及实际运行状况两方面分析豫新发电厂引风机、凝结水泵的节能情况。

二、高压变频器的工作原理(一)变频器的结构:现以6kV五级单元串联多电平的高压变频器为例。

1.系统主回路:部是由十五个相同的功率单元模块构成,每五个模块为一组,分别对应高压回路的三相,单元供电由干式移相变压器进行供电,原理如图1。

图1:变频器的结构2.功率单元构成:功率单元是一种单相桥式变换器,由输入干式变压器的副边绕组供电。

经整流、滤波后由4个IGBT以PWM方法进行控制(如图2所示),产生设定的频率波形。

变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计,控制通过光纤发送至单元控制板。

变频器节电率的计算

变频器节电率的计算

变频器节电率的计算公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-几种典型负载的节电率计算方法(1)各种风机、泵类因为P∝n的三次方,节电效果显着,应首先应用变频器,具体值见表1。

表1 应用变频器节电效果计算时可用式中P%——实际消耗功率百分值;s——实际转速百分值;K——系数,K=0.0001。

节电率N%=1-P%举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。

所以N%=1 -73%=27%。

一般风机、泵类节电率在30%以上。

(2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。

(3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。

经实际运行,约有15%~20%的节电率。

而且t2<t1,一般t2=1/3~1-4/t1。

间歇工作负载的功率变化情况(Po≠0)如图所示。

(5)间歇负载如高位水箱、水池、水塔等。

工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。

间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。

平常开一台泵,电动机处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。

但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

变频器的一些基础知识介绍

变频器的一些基础知识介绍

变频器基础知识1、什么是变频器?变频器的基本功能?变频器是利用电力半导体器件(IGBT、IPM)的通断作用将工频电源变换为另一频率的电能控制装置。

变频器的基本功能就是,将频率固定(工频通常为50Hz)交流电源(三相或单相)转换成频率在一定范围内连续可调(通常0-400Hz)三相交流电源。

2、变频器常用的控制方式有哪几种?V/F 控制、V/F+PG、无感矢量、矢量+PG。

3、变频器可以驱动哪几类电机?三相异步电机(包括普通鼠笼式电机和变频电机)、永磁同步电机。

4、三相异步电机的转速公式?N=60f/p —旋转磁场转速,n=60f(1-s)/P —电机转速N:同步转速(2 极电机3000r,4 极1500r,6 极1000r,8 极750r);f:输入交流电源的频率(一般50Hz);p:极对数(1、2、3、4);n:电机转速(r/min);s:异步电机的滑差率(无单位)。

二、目前在售产品系列1、产品系列有:PI9000:9100(9100A、9100B)、9200、9200Z、9300、9400;PI7800;PI8100。

2、简述9000 与130 的区别:A、电压等级:9000 有G1\G2\G3\G4,130 只有G1\G2\G3;B、控制方式:9000 有V/F、无PG 矢量控制、带PG 矢量控制,130 只有V/F、无PG 矢量控制;C、外围选件:9000 可以接PG 卡、485 通讯,130 不能接PG 卡、单有内置485 通讯;D、可拖动电机类型:9000 可拖动异步电机、同步电机(永磁电机),130 只能拖动异步电机。

E、功能方面:高速脉冲输入、输出9000 有,130 没有;定长和计数9000 有,130 没有;比例联动9000 有,130 没有;简易PLC功能9000 有,130 没有;参数拷贝9000 有,130 没有;按键锁定9000 没有,130 有。

休眠功能9000 有,130 没有;红外功能9000有,130 没有。

变频调速的计算

变频调速的计算

一、变频调速与节流调节的计算流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。

如(1)式所述。

31231212)()(v v v q q n n p p q P ===存在的关系与流量泵与风机的功率 (1)根据v q 、H 值可以计算泵与风机的功率,即:ηρ102H q P V =(2)式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算(1) 变频调速调节与节流调节对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。

节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系:)(])(55.045.0[2kW p q q P e veV L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ;若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为:])(55.045.0[)(1/)(233vev b vev Lb vev e L Lq q q q P q q P P p p Ki +-=-=∆=ηη (4)式中Ki ─节电率;ηb ─调速机构效率。

从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。

当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。

电器耗电量计算公式

电器耗电量计算公式

电器耗电量计算公式在日常生活中,我们经常使用各种电器设备,比如电视、冰箱、空调、洗衣机等。

这些电器设备在使用过程中会消耗一定的电能,而我们在选择电器设备时,也需要考虑到其耗电量。

因此,了解电器耗电量的计算公式对我们合理使用电器设备、节约能源具有重要意义。

本文将介绍电器耗电量的计算公式及其应用。

电器耗电量的计算公式通常为,P = U I cosφ,其中P代表功率,U代表电压,I代表电流,cosφ代表功率因数。

这个公式是根据欧姆定律和电功率公式推导而来的。

欧姆定律表明电流与电压成正比,即I = U/R,其中R代表电阻。

而电功率公式为P = U I cosφ,其中cosφ代表功率因数。

综合这两个公式,可以得到电器耗电量的计算公式P = U I cosφ。

在这个公式中,电压U是电器设备工作时的电压,通常为220V或110V。

电流I是电器设备的实际工作电流,单位为安培(A)。

功率因数cosφ是衡量电器设备有用功率和全部功率之比的一个参数,通常为0到1之间的一个值。

在实际应用中,我们可以通过这个公式来计算电器设备的耗电量。

首先,我们需要测量电器设备的工作电压和电流,然后根据功率因数计算出功率。

通过这个公式,我们可以清楚地了解到电器设备的耗电量,从而合理使用电器设备,节约能源。

除了计算电器设备的耗电量,这个公式还可以帮助我们选择合适的电器设备。

在购买电器设备时,我们可以通过这个公式计算出不同设备的耗电量,从而选择出耗电量较低的设备,以节约能源、降低用电成本。

另外,这个公式也对于电器设备的维护和管理具有重要意义。

通过定期测量电器设备的电压和电流,计算出功率,并对功率因数进行评估,可以及时发现电器设备的异常情况,进行维护和管理,保证电器设备的正常运行,延长使用寿命。

总之,电器耗电量的计算公式P = U I cosφ对我们合理使用电器设备、节约能源、选择合适的电器设备、维护和管理电器设备都具有重要意义。

通过了解这个公式,我们可以更加科学地使用电器设备,为节能减排做出贡献。

变频器应用现场计算公式

变频器应用现场计算公式

变频器应用现场计算公式1、电机转速计算公式一般异步电机转速n与同步转速n1存在一个滑差关系n1—同步转速(r/min) ; f1—定子供电电源频率(Hz) ; P—磁极对数; n—异步电机转速(r/min) ; S—异步电机转差率(10%以下,一般取3%)。

2、转矩计算公式TT MM=9550P反之PP=TT MM∗n9550T是转矩,单位N·m ;P是输出功率,单位KW ;n是电机转速,单位r/min 3、制动电阻计算公式能耗制动电阻的阻值可由下式计算:RR BB=U D20.1047(T B−0.2T M)n1U取值700V;T B是制动力矩,单位是N•m(牛米);n1是减速开始时的速度;R B D是制动电阻阻值;P 是电机的额定(输出)功率单位是千瓦(KW);n 是额定转速,单位是转每分(r/min);T M是电机的额定转矩,单位是N•m能耗制动电阻的功率,按长期工作制考虑时计算如下:P LO≈U D2/R B根据实际工况,可以适当减小制动电阻R B的功率,一般按上式计算功率的约1/3进行选择。

若想增加制动力矩,可以适当减小制动电阻阻值,同时应放大其功率。

制动电阻快速取值法:【R min=U D/I MN】≤R B≤【R max=2U D/I MN】150%的制动力矩 80%的制动力矩R B――制动电阻阻值U D――直流电压(通常按680V计算)R Min――制动电阻最小取值I MN――电动机额定电流(实际取变频器的额定电流) R Max――制动电阻最大取值节能计算公式水泵:一、挡板调节电机的功率:电机的输入功率P为:P=1.732×U×I×co s∮电机的输出功率Pn(轴功率)=额定功率电机的效率n1=电机的输出功率/电机的输入功率=P1/P=η流体力学三定律可知:Q1/Q2=n1/n2; H1/H2=(n1/n2)2; P1/P2=(n1/n2)3; P=H×Q式中:Q1、H1、P1—水泵在n1转速时的水量、水压、功率;Q2、H2、P2—水泵在n2转速时相似工况条件下的水量、水压、功率。

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。

流量按照相似定律,由连续运动方程流量公式:φπηη⨯⨯⨯⨯⨯=⨯⨯=d D A vm vm vv v q流速公式: 60π⨯⨯=n D v m 式中:qv——体积流量,s m3;ηv——容积效率,实际容积效率约为0.95;A ——有效断面积(与轴面速度vm垂直的断面积),m²;D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ;vm——圆周速度,m/s ;φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95;按照电机学的基本原理,交流异步电动机转速公式: p f s n ⨯⨯-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。

流量、转速和频率关系式:φππφππηη⨯⨯⨯⨯⨯⨯⨯⨯-⨯=⨯⨯⨯⨯⨯⨯⨯=⇒d D p f s D d D n D v v v q 6060)1(60f n q v∞∞⇒ 可见流量和转速的一次方成正比,和频率的一次方成正比。

扬程按照流体力学定律,扬程公式:²21v m H ⨯⨯=ρ扬程、转速和频率关系式:²²21216060)1(6022f n H H p f s D n D ∞∞⇒⨯⨯=⨯⨯=⇒⎪⎭⎫⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。

式中:H ——水泵或风机的扬程,m ;功率风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。

水泵:H g q Pve⨯⨯⨯=ρ或 风机:P qP ve⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯⇒⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=6060)1(6022216060)1(2160πηπηρφππρρφππρp f s D n D P d D p fs D g d D n D g vv e fnPe33∞∞⇒可见有效功率和转速的三次方成正比,和频率的三次方成正比。

变频调节能量的计算方法

变频调节能量的计算方法

变频调速节能量的计算方法一、概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。

由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。

生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。

所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。

变频器一旦投运后,用电工仪表测量系统的节能量更为准确。

现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。

在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。

如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。

生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。

由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。

本文介绍用以下的公式来进行节能的估算。

二、节能的估算1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。

采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。

电气节能综合能耗计算公式

电气节能综合能耗计算公式

电气节能综合能耗计算公式随着能源紧缺和环境污染问题日益严重,节能减排已成为全球关注的焦点。

在工业生产中,电气能耗占据了相当大的比重,因此电气节能成为了工业节能的关键环节。

为了更好地评估电气设备的节能效果,需要建立一套综合能耗计算公式,以便对节能措施进行科学的评估和监控。

电气节能综合能耗计算公式的建立需要考虑多个因素,包括设备的额定功率、运行时间、负载率、功率因数等。

下面我们将逐一介绍这些因素,并建立相应的综合能耗计算公式。

首先,设备的额定功率是指设备在额定工况下的功率消耗。

通常情况下,设备的额定功率可以从设备的技术参数中获取。

在计算综合能耗时,需要将设备的额定功率与实际运行功率进行比较,以评估设备的节能效果。

其次,设备的运行时间是指设备在工作状态下的运行时间。

在实际生产中,设备的运行时间可能会受到生产计划、维护保养等因素的影响。

因此,在计算综合能耗时,需要考虑设备的实际运行时间,以准确评估设备的能耗情况。

另外,设备的负载率是指设备在运行过程中的负载情况。

设备的负载率通常可以通过监控设备的电流和电压来获取。

在计算综合能耗时,需要考虑设备的负载率,以评估设备在不同负载情况下的能耗情况。

最后,功率因数是指设备在运行过程中的功率因数。

功率因数是衡量设备能效的重要指标,通常情况下,功率因数越高,设备的能效越好。

在计算综合能耗时,需要考虑设备的功率因数,以评估设备的能效情况。

综合考虑以上因素,我们可以建立电气节能综合能耗计算公式如下:综合能耗 = 额定功率×运行时间×负载率×功率因数。

通过这个综合能耗计算公式,我们可以对设备的节能效果进行科学的评估和监控。

在实际应用中,可以通过监控设备的运行情况,获取设备的实际运行时间、负载率和功率因数,然后将这些数据代入综合能耗计算公式中,即可得到设备的综合能耗情况。

通过对比设备的实际综合能耗和额定功率,可以评估设备的节能效果,并对节能措施进行调整和优化。

风机变频节能方法

风机变频节能方法

风机变频节能方法风机是一种依靠输入机械能来提高气体压力并排送气体的从动流体机械。

气体压缩与气体输送机械是将旋转的机械能转换为气体压力能及动能,并将气体输送出去的机械。

我国所述的风机是对气体压缩与气体输送机械的简称,风机可以按照多种分类方式分为许多种不同的类型,鼓风机、通风机、风力发电机等都是常说的风机。

由流体力学原理可知,风机的风量和电机的转速功率有很大的关联:风机的风量和风机的转速成正比,风机的风压和风机的转速平方成正比,而风机的轴功率等于风量和风压之间的乘积,所以风机的轴功率与风机的转速三次方也成正比。

随着近些年来变频技术不断的完善、发展及进步。

风机的变频调速性能越来越发达,在很大程度上节约了能源,已经被广泛的应用于多种领域。

风机变频节能方法所获得的节能效益为各行各业的企业带来了不少的经济效益,极大的推动了社会工业生产的自动化发展进程。

一、风机的变频节能原理目前情况下的风机设备大多数是采用异步电动机进行直接驱动的方式来实现风机的节能的,此种方式存在着一定的缺陷和问题,例如电气保护的特性较差、所启动的电流过大、产生机械冲击等。

在电机的负载过大的情况下,会在一定程度上影响、减少设备的使用寿命,还会导致出现一些机械故障,经常发生出现电机发烫被烧毁等不良故障。

变频风机图风机变频调速器是现代社会上的一种新型的节能产品,在管路性能的曲线不变的情况下,变速调节用变速来改变风机的性能曲线,进而改变其工作点。

风机变频调速器具有容易操作、控制精度较高、性能较高、不用进行维护等等多个优点。

在其他条件没有发生改变的情况下,对异步电动机定进行改变,子端输入电源频率进而改变电动机的转速是风机变频调速技术基本的工作原理。

电机转速和工作电源输入频率成正比的关系:n=60(f-s)/p,公式中,n用来表示转速,f用来表示输入频率,s用来表示电机转差率,p用来表示电机磁极对数。

出口挡板的控制,在开度减小的情况下,风阻会有所增加,不适合对风量进行大范围的调节。

变频器节电率的计算

变频器节电率的计算

变频器节电率的计算变频器是一种能够调整电机运行的转速和输出功率的电气设备,它通过控制电源的频率和电压来实现对电机的精确控制,从而提供较高的能效和节能效果。

下面将介绍变频器节电率的计算方法。

变频器的节电率是指变频器运行下,相对于传统的恒速运行方式,实现的节能百分比。

其计算公式为:节电率=(1-(Pf/P0))*100%其中,Pf为变频器运行情况下的电功率,P0为传统方式运行时的电功率。

要计算变频器节电率,需要先确定Pf和P0。

1.确定Pf:- 变频器运行时,需测量电机的输入功率Pin和电机效率η。

- 那么Pf = Pin / η。

- 输入功率Pin可以通过电表来测量,电机效率可根据电机技术参数或实验数据给出。

2.确定P0:- 传统方式运行时,需测量恒速器输入功率Pin0和电机效率η。

- 那么P0 = Pin0 / η。

- 输入功率Pin0可以通过电表来测量,电机效率可根据电机技术参数或实验数据给出。

根据上述计算公式,可以计算出变频器的节电率。

变频器的节电率受到多种因素的影响,包括负载率、变频器效率、电机功率因数等。

通常情况下,变频器的节电率在20%到60%之间,具体取决于工作负载的性质和运行条件。

除了上述计算变频器节电率的方法,还可以通过实际运行数据对比来计算节电率。

具体步骤如下:1.当传统方式运行时,记录电机的运行时间和需要消耗的电能;2.当变频器运行时,记录电机的运行时间和需要消耗的电能;3.计算出两种方式下的总耗电量,即P0和Pf;4.根据上述计算公式,计算出变频器的节电率。

通过实际运行数据对比的方法更加准确,可以考虑到实际运行条件下的因素。

总之,变频器是一种能够实现节能效果的电气设备。

通过计算变频器的节电率,可以评估其节能效果,从而为企业和个人节约能源、降低运行成本提供参考。

几种节能算法

几种节能算法

节能预算方式一、电流法1)工频运行功率:P1 = 1.732×U ×I ×cos ¢2)变频运行功率:P2 = P1×(n2/n1)3/0.96; P1=电机工频运行功率 Pe=电机额定功率 N1=电机额定转速N2=Q1=Q2(转速与流量成正比) X=工频运行时风门及管道阻力比例在工、变频运行状态下,为满足工艺需求,其风量、风压是相等的。

依据流体力学关系式:1212n n Q Q ⨯= (1) 21212⎪⎪⎭⎫⎝⎛⨯=n n H H (2)2p =pe 312⎪⎪⎭⎫⎝⎛⨯n n (3)工频运行时N2=N1,而P1=Pe*1*X(风门阻力比例) X=P1/Pe 另:P1 = 1.732×U ×I ×cos ¢工频功率也可以通过此公式所得。

变频状态下:P2=P1312⎪⎪⎭⎫ ⎝⎛⨯nn由于变频状态下为满足达到工频运行时的工艺需求,其风量、风压是相等的。

即:在为满足工艺的风压:X ²=312⎪⎪⎭⎫⎝⎛n n变频运行功率可以由此公式计算所得:P2=Pe*X ²+Pe*0.04(变频器损失)3)节约的功率: ΔP = P1-P2; 4)节电率:ΔP% = ΔP / P1×100%;以如下风机改造为例:工频运行功率:P1 = 1.732×U×I×cos¢,在此运行电流为额定电流的84.9%,其运行功率因数取0.96*额定功率因数=0.96*0.86=0.8256P1 = 1.732×10×36×0.8256=514.78KW变频运行功率:P2=Pe*X²+Pe*0.04(变频器损耗)X²=(P1/Pe)²=(514.78/630) ²=0.817²=0.667P2=630*0.667+(630*0.04)=445.41KW节电量为:514.78-445.41 =69.37KW节电率为69.37/514.78=13.47%以年运行时间6500小时计年节约电力450905KWH.以电价0.3元/KWH计,年节约电费:135271.5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。

以一台IS150-125-400型离心泵为例,额定流200.16m3/h,扬程50m;配备Y225M-4型电动机,额定功率45kW。

泵在阀门调节和转速调节时的流量-负载曲线。

根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,
13小时运行在50%负荷;全年运行时间在300天。

则每年的节电量为:
W1=45×11(100%-69%)×300=46035kW·h
W2=45×13×(95%-20%)×300 =131625kW·h
W = W1+W2=46035+131625=177660kW·h 字串4
每度电按0.5元计算,则每年可节约电费8.883万元。

2、根据风机、泵类平方转矩负载关系式:P / P0=(n / n0)3计算,式中为P0额定转速n0时的功率;P为转速n时的功率。

以一台工业锅炉使用的22 kW鼓风机为例。

运行工况仍以24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz计算,挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。

则变频调速时每年的节电量为:W1=22×11×[1-(46/50)3]×300=16067kW·h
W2=22×13×[1-(20/50)3]×300=80309kW·h
Wb = W1+W2=16067+80309=96376 kW·h
挡板开度时的节电量为:
W1=22×(1-98%)×11×300=1452kW·h
W2=22×(1-70%)×11×300=21780kW·h
? Wd = W1+W2=1452+21780=23232 kW·h
相比较节电量为:W= Wb-Wd=96376-23232=73144 kW·h
每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。

某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53. 5 L/s,扬程50m;所配电机Y200L2-2型37 kW。

对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下:字串2
流量L/s 时间(h)消耗电网输出的电能(kW·h)阀门节流调节电机变频调速
47 2 33.2×2=66.4 28.39×2=56.8
40 8 30×8=240 21.16×8=169.3
30 4 27×4=108 13.88×4=55.5
20 10 23.9×10=239 9.67×10=96.7
合计24 653.4 378.3
相比之下,在一天内变频调速可比阀门节流控制节省275.1 kW·h的电量,节电率达42.1%。

本文来自: 中国物资采购网详细出处参考:/2009-12-24/-.html。

相关文档
最新文档