材料力学习题册答案-第5章 弯曲应力

合集下载

刘鸿文《材料力学》(第5版)课后习题(弯曲应力)【圣才出品】

刘鸿文《材料力学》(第5版)课后习题(弯曲应力)【圣才出品】

图 5-10 解:对横梁进行受力分析,作出其受力简图,如图 5-11 所示。
图 5-11
7 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平


由梁结构和载荷的对称性可知,最大弯矩发生在梁跨中截面,且

抗弯截面系数:
由强度条件
则有 故许可顶压力:
,可得: 。
5.10 割刀在切割工件时,受到 F=1 kN 的切削力作用。割刀尺寸如图 5-12 所示。 试求割刀内的最大弯曲应力。

十万种考研考证电子书、题库视频学习平 台
图 5-8
解:根据梁的受力简图,由平衡条件可得支座反力: 由梁结构和载荷的对称性可知,梁上最大受的最大轧制力:
,可得: 907.4 kN。
5.8 压板的尺寸和载荷情况如图 5-9 所示。材料为 45 钢,σs=380 MPa,取安全因 数 n=1.5。试校核压板的强度。
图 5-9
解:由许用应力定义可知,该压板的许用应力:
6 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平


分析可知,压板上的最大弯矩发生在 m-m 截面,且:
m-m 截面的抗弯截面系数:
故最大正应力: 因此压板强度满足要求,是安全的。
5.9 拆卸工具如图 5-10 所示。若 l=250 mm,a=30 mm,h=60 mm,c=16 mm,d=58 mm,[σ]=160 MPa,试按横梁中央截面的强度确定许可的顶压力 F。
图 5-12 解:分析可知,最危险截面可能发生在 m-m 截面或 n-n 截面。 (1)m-m 截面:弯矩值 则该截面上正应力:
(2)n-n 截面:弯矩值 则该截面上正应力:

材料力学习题解答[第五章]

材料力学习题解答[第五章]

5-1构件受力如图5-26所示。

试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。

题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。

b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。

c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。

d) 1)危险点:杆件表面上各点;2)应力状态见下图。

5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。

10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。

试用解析法求指定斜截面上的正应力和切应力。

题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

05第五章 材料力学习题解答(弯曲内力)

05第五章 材料力学习题解答(弯曲内力)

a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a

qa
×
a 2
+
M
=

1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图

材料力学第五章 弯曲应力分析

材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学弯曲变形答案

材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( ) 1.2 内力只作用在杆件截面的形心处。

( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。

( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。

( ) 1.9 同一截面上各点的切应力η必相互平行。

( ) 1.10 应变分为正应变ε和切应变γ。

( ) 1.11 应变为无量纲量。

( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ) 1.13 若物体内各点的应变均为零,则物体无位移。

( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

1.9 根据固体材料的性能作如下三个基本假设 , , 。

材料力学课后习题答案5章

材料力学课后习题答案5章
(b)
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

河海大学-材料力学第5章弯曲应力作业参考解答

河海大学-材料力学第5章弯曲应力作业参考解答

IZ
=
2 × ( 1 × 60 ×1403 12
+ 60 ×140 × (70 - (76.82 - 50))2 )
+ 1 × 280 ×503 + 280 ×50 × (76.82 - 50 / 2)2 = 9.9´107 mm4 12
(3)b-b 处切应力
t b-b
=
FS
S
* z
Izb
=
27.5kN ´ (60 ´100 ´ 63.18mm3 ) 9.9 ´107 ´108 mm4 ´ 60mm
解:
A
A
z
z
A
z
y
y
y
5-23 求图所示梁的最大容许荷载 q。梁的容许正应力为 3.5MPa,容许切应力为 0.7MPa,胶 结处的容许切应力为 0.35MPa。
yc
解:(1)求内力
最大剪力为 Fs max
=
0.5ql
= 0.3q ,最大弯矩为 M z max
=
1 8
ql
2
= 0.045q 。
(2)确定形心位置及计算惯性矩
£ 0.7 ´106
解得: q £ 3.97kN / m 。
(5) 粘结处应力强度条件
t max
=
Fs
max
S
* z
Izb
=
0.3q ´ 25´ 25´ 25´10-9 3.32 ´10-6 ´ 25´10-3
£ 0.35´106
解得: q £ 6.2kN / m 。
最后容许荷载为 q £ 3.97kN / m 。
第 5 章作业参考解答
本章主要公式
梁平面纯弯曲时曲率与弯矩和弯曲刚度的关系: 1 = M r EI z

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学练习册5-6详细答案

材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。

试求金属丝内的最大正应变与最大正应力。

已知材料的弹性模量为E。

解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。

试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。

已知钢的弹性模量E =200GPa ,a =1m 。

解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。

若[]MPa 160=σ,试求许可载荷F 。

5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。

如已知AB 梁高为1h ,CD 梁高为2h 。

欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。

已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。

5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。

设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。

=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。

试校核梁的强度。

解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。

材料力学典型例题及解析 5.弯曲应力典型习题解析

材料力学典型例题及解析 5.弯曲应力典型习题解析

q
h1
h2
A

b l
题3图
解题分析:两板叠放在一起,在均布载荷 q 作用下,两梁一起变形,在任一截面上,两者弯 曲时接触面的曲率相等。小变形情况下,近似认为两者中性层的曲率相等。根据该条件,可 计算出各梁分别承担的弯矩。然后再分别计算两梁的最大应力。两板胶合在一起时,按一个 梁计算。 解:1、计算两板简单叠放在一起时的最大应力
= 0.5 m 2q ≤ σ Wz
解得 q ≤ W z [σ ] = 49 ×10−6 m 3 ×160 ×106 Pa = 15 680 N/m = 15.68 kN/m
0.5 m2
0.5 m2
3、BD 杆的强度条件
BD 杆横截面上各点拉伸正应力相同,强度条件为
σ
≤ [σ ] 或σ = F NBD =
F
Ay
=
3m 4
q

F
By
=
9m 4Leabharlann q2、梁的强度条件
画梁的弯矩图如图 b。显然,B 截面为危险截面。 M B = 0.5 m2 q ,查表知 10 号工 字钢 W z = 49 ×10−6 m 3 ,于是 B 截面上弯曲正应力强度条件为
[ ] [ ] σ m a x ≤ σ

σ ma x
=
M max Wz
=
I I
1 2
M
2
=( h1)3 h2
M
2
=
1M 8
2
梁中间截面弯矩为
M
=
M
1
+
M
2
=
1 ql 8
2
于是
M
1
=
1 72

材料力学简明教程(景荣春)课后答案第五章

材料力学简明教程(景荣春)课后答案第五章

材料力学简明教程(景荣春)课后答案第五章5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答不一定。

最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。

5-2 矩形截面简支梁承受均布载荷q作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。

5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。

设钢木之间胶合牢固不会错动,已知弹性模量EsEw,则该梁沿高度方向正应力分布为图a,b,c,d中哪一种。

思考题5-3图答(b)5-4 受力相同的两根梁,截面分别如图,图a中的截面由两矩形截面并列而成(未粘接),图b中的截面由两矩形截面上下叠合而成(未粘接)。

从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答(a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值理性和经济性。

比值请从W来衡量截面形状的合AW较大,则截面的形状就较经济合理。

图示3种截面的高度均为h,A W的角度考虑哪种截面形状更经济合理?A思考题5-5图答(c)5-6 受力相同的梁,其横截面可能有图示4种形式。

若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答(b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)*FSSz5-7 弯曲切应力公式τ=的右段各项数值如何确定?Izb答FS为整个横截面上剪力;Iz为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;Sz为横截面上距中性轴为y(所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。

5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形?答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。

材料力学第五章弯曲应力

材料力学第五章弯曲应力

注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max=⨯⨯⨯==-σ6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 五 章 弯 曲 应 力
一、是非判断题
1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )
2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )
3、 在非均质材料的等截面梁中,最大正应力max
σ
不一定出现在max
M
的截面上。

( × )
4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )
5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )
6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )
7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )
二、填空题
1、应用公式y I M
z
=
σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力
=S F
bh
F
23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为
226
1
61bH BH -、 H Bh BH 66132- 和 H
bh BH 66132
- 。

x
三、选择题
1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、
如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F
增大时,破坏的情况是( C )。

A 同时破坏;
B (a)梁先坏;
C (b)梁先坏
3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )
A B C D
A B
D
x
四、计算题
1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,
m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

解:MPa I y M Z C K
1.212
18
.012.006.021013
3=⨯⨯⨯⨯==σ 2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。

截面对形心轴z C 的惯性矩4
10181cm I Z =,
cm h 64.91=,kN P 44=,求梁内的最大拉应力和最大压应力。

44kN
44kN
35.2kNm
26.4kNm
A
:C :
解:内力图如上所示,A 截面和C 截面为危险截面,其应力分布如图所示。

A 截面:
MPa I h M Z A A
3.3310
10181106.9102.358
2
31=⨯⨯⨯⨯==--+
σ MPa I h M Z A A
1.5310101811036.1510
2.358
2
32=⨯⨯⨯⨯==---
σ
C 截面:
MPa I h M Z C C
83.3910101811036.15104.268
2
32=⨯⨯⨯⨯==--+
σ
MPa I h M Z C C
0.2510
101811064.9104.268
2
31=⨯⨯⨯⨯==---
σ 所以,最大拉应力:MPa 83.39max =+
σ
最大压应力:MPa 1.53m ax =-
σ
3、图示矩形截面梁。

已知MPa 160][=σ,试确定图示梁的许用载荷][q 。

第四题图
2.5q
1.5q 2q
3.125q
解:内力图如上所示。

[]σσ≤=
Z
I My
max []y
I M Z
σ≤
312
3
6
10
11010122208010160825--⨯⨯⨯⨯⨯≤q m kN q /33≤
故许用载荷[]m kN q /33=
4、图示T 形截面铸铁梁承受载荷作用。

已知铸铁的许用拉应力MPa 40][t =σ,许用压应力
MPa 160][c =σ。

试按正应力强度条件校核梁的强度。

若载荷不变,将横截面由T 形倒置
成⊥形,是否合理?为什么?
解:内力图如上所示,B 截面和E 截面为危险截面,其应力分布如图所示。

B :
E:
解:以截面最下端为z 轴,计算惯性矩。

mm y C 5.15730
20030200100
3020021530200=⋅+⋅⋅⋅+⋅⋅=
()4
5232
3100215.65.573020012
20030155.42302001230200m I I I II I Z -⨯=⋅⋅+⋅++⋅⋅+⋅=+= B 截面:
MPa I y M Z B B
12.24100215.6105.7210205
3
31=⨯⨯⨯⨯==--+
σ
MPa I y M Z B B
39.5210
0215.6105.15710205
3
32=⨯⨯⨯⨯==---
σ E 截面:
MPa I y M Z E E
19.2610
0215.6105.15710105
3
32=⨯⨯⨯⨯==--+
σ MPa I y M Z E E
06.12100215.6105.7210105
3
31=⨯⨯⨯⨯==---
σ
所以,最大拉应力:MPa 19.26max =+
σ
最大压应力:MPa 39.52max =-
σ
如果将T 形截面倒置,则:
[]MPa MPa I y M t Z B B
4039.5210
0215.6105.15710205
3
31=>=⨯⨯⨯⨯==--+
σσ 不满足强度条件,所以不合理。

5、图示工字形截面梁。

已知:m kN q /24=,m kN m o ∙=5.1,截面高mm H 180= 腹板高mm h 110=,腹板厚mm d 7=,截面面积231cm A =,2
1660cm I Z =,
cm S I Z Z 4.15/=,[]MPa 150=σ,[]MPa 130=τ。

试(1)按照梁的弯曲正应力强度校
核梁的强度;(2)按照弯曲剪应力强度校核梁的强度。

,试选择工字钢的型号。

18kN
22kN
16.2kNm
4kN
8kNm
解:内力图如上所示,剪力、弯矩最大截面为危险截面。

[]σσ≤=
Z
W M max
max []
36
3max
25.10110
160102.16cm M W Z =⨯⨯=≥
σ 选用14号工字钢,并用其计算剪应力。

此时,
cm b cm S I Z
Z
5.5,12*==
Z
Z
bI S Q *
max max
=
τ []MPa MPa 1003310
12105.51022233
max
=≤=⨯⨯⨯⨯=--ττ 说明14号工字钢剪应力强调满足强度要求,故选用14号工字钢。

相关文档
最新文档