(整理)作用在飞机上的空气动力
飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应
飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。
作用于飞机的力至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。
飞行员必须控制的是这些力之间的平衡。
对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。
下面定义和平直飞行(未加速的飞行)相关的力。
推力是由发动机或者螺旋桨产生的向前力量。
它和阻力相反。
作为一个通用规则,纵轴上的力是成对作用的。
然而在后面的解释中也不总是这样的情况。
阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。
阻力和推力相反,和气流相对机身的方向并行。
重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。
由于地球引力导致重量向下压飞机。
和升力相反,它垂直向下地作用于飞机的重心位置。
升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。
它垂直向上的作用于机翼的升力中心。
在稳定的飞行中,这些相反作用的力的总和等于零。
在稳定直飞中没有不平衡的力(牛顿第三定律)。
无论水平飞行还是爬升或者下降这都是对的。
也不等于说四个力总是相等的。
这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。
这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。
例如,考虑下一页的图3-1。
在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。
象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。
必须理解这个基本正确的表述,否则可能误解。
一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。
简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。
必须强调的是,这是在稳定飞行中的力平衡关系。
总结如下:向上力的总和等于向下力的总和向前力的总和等于向后力的总和对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。
空气动力学在航空航天领域中的应用
空气动力学在航空航天领域中的应用引言空气动力学是研究流体运动和力学的分支学科,广泛运用于航空航天领域中。
随着科学技术的不断发展,空气动力学的应用也在不断扩展和深入。
本文将探讨空气动力学在航空航天领域中的应用,包括了空气动力学在飞行器设计、模拟和测试中所扮演的角色等。
飞行器设计飞行器的设计过程中,空气动力学是一个重要的因素。
在航空航天领域中,设计和制造飞行器的工程师需要利用空气动力学的知识,确保飞行器能够在高空环境中实现稳定的飞行。
空气动力学与航空航天领域的设计密切相关,其基础理论和实践应用使得工程师们能够预测和优化航空器在飞行过程中的性能。
一些空气动力学预测工具,并且在飞行器设计中得到广泛使用。
例如,计算流体力学(CFD)被用于分析飞机的空气动力学性能,这有助于工程师们为飞机的设计提供更加准确的数据。
模拟飞行在模拟飞行的过程中,空气动力学是必不可少的。
在飞行培训中,机长和飞行员们经常使用飞行模拟器,通过空气动力学分析得出飞机在虚拟空间中的行为如何,来模拟飞机的行为,实现在现实情况下迅速、准确和安全地采取正确的行动。
这就带来了一个深远的影响——在航空机侧飞行中,机长和飞行员们特别需要了解空气动力学方面的知识,以便如何正确处理侧飞行的飞行器。
这种知识可以通过多次的飞行模拟来实现,在没有实际飞行机会的情况下,提高飞行员的反应能力。
飞行测试在飞行测试过程中,空气动力学也是不可或缺的。
飞行测试旨在测试各种航空器的设计,并确定它们是否满足安全和性能要求。
空气动力学是对飞机的性能具有直接影响的因素之一,以至于只有经过牢固的空气动力学理论和计算,才能够建立精确的模型预测,从而决定飞机性能如何。
在飞行测试的过程中,工程师将观察和测量飞机在飞行期间受到的空气动力学力量。
在一些特殊情况下,为了使测试数据更加准确,只能在空中进行测试,这也需要飞行员具备良好的空气动力学知识和反应能力。
结论在航空航天领域中,空气动力学起到了至关重要的作用。
航空概论2-10 飞机的飞行原理
p
1
+
1 ρ v 2
2 1
+ ρ gh
1
= p
2
+
1 ρ v 2
2 2
+ ρ gh
2
又a1和a2是在流体中任取的,所以上式可 a1和a2是在流体中任取的, 是在流体中任取的 表述为 1
P + 2 ρ v
2
+ ρ
gh
= 常量
上述两式就是伯努利方程。 上述两式就是伯努利方程。 当流体水平流动时,或者高度的影响不显 当流体水平流动时, 著时, 著时,伯努利方程可表达为
飞机的飞行原理
主要内容
★ 气流特性
1.相对运动原理 1.相对运动原理 2.连续性定理 2.连续性定理 3.伯努利定理 3.伯努利定理
第二章飞机的飞行原理
第一节 气流特性 一.相对运动原理 相对运动原理: 相对运动原理:作用在飞机上的空气 动力不会因观察者的角度发生变化而变化。 动力不会因观察者的角度发生变化而变化。 飞机以速度v∞作水平直线飞行时, v∞作水平直线飞行时 飞机以速度v∞作水平直线飞行时,作 用在飞机上的空气动力大小与远前方空气 以速度v∞ 以速度v∞ 流向静止不动的飞机时所产生 的空气动力应完全相等。 的空气动力应完全相等。
①理想流体是不可压缩的 ②理想流体是没有粘滞性的 理想流体在流动时, ③理想流体在流动时,各层之间没有相互作 用的切向力, 用的切向力,即没有内摩擦 不可压缩的,没有粘滞性的流体,称为理想流体。 不可压缩的,没有粘滞性的流体,称为理想流体。 2、定常流动 (1)定常流动 (1)定常流动 流体质点经过空间各点的流速虽然可以不 但如果空间每一点的流速不随时间而改变, 同,但如果空间每一点的流速不随时间而改变, 这样的流动就叫定常流动。 这样的流动就叫定常流动。 举例:自来水管中的水流, 举例:自来水管中的水流,石油管道中石油的 流动,都可以看作定常流动。 流动,都可以看作定常流动。
飞行原理(升力和阻力)
• John Gay拍摄
1999年7月7日
• F/A 18-C Hornet 在- 航母附近低高度(75英尺)超音速飞行的场面
-
正激波和斜激波
Ma=1 Ma>1
正激波 钝头:正激波 尖头:斜激波
-
正激波的波阻大, 空气被压缩很厉害, 激波后的空气压强、 温度和密度急剧上 升,气流通过时, 空气微团受到的阻 滞强烈,速度大大 降低,动能消耗很 大,这表明产生的 波阻很大。
翼型的下表面→流管变化不大→压强基本不变 上下表面产生了压强差→总空气动力R R的方向向后- 向上→分力:升力L、阻力D
不同迎角对应的压力分布
-
失速
通常,机翼的升力与迎角成正比。迎角增加,升力随之 增大(图1、图2)。但是,当迎角增大到某一值时,则会 出现相反的情况,即迎角增加升力反而急剧下降。这个 迎角就称为临界迎角。
等音速点后面,由于翼型表面 的连续外凸,流管扩张,空气 膨胀加速,出现局部超音速区。
通常机翼上表面会首先达到当地音速, 局部激波首先出现在上翼面。随着速度 的增加,下翼面也会出现局部激波,而 且当速度进一步增加时,机翼上下表面 的局部激波还会向后移动,并且下翼面 的局部激波的移动速度比上翼面的大, 可能一直移到机翼后缘,同时激波的强 度也将增大,激波阻- 力将增大。
简单襟翼
-
富勒襟翼
-
Boeing 727 三缝襟翼
Boeing 727 Triple-Slotted Fowler Flap System -
F-14全翼展的前缘缝翼与后缘襟翼
-
前缘缝翼
-
缝翼和襟翼对升力系数的影响
-
阻力
• 摩擦阻力 • 压差阻力 • 干扰阻力
空气动力学在飞机中的应用
空气动力学在飞机中的应用一、飞机气动力性能研究飞机气动力性能是指飞机运动中的空气动力学问题,包括阻力、升力、稳定性和控制等方面。
在设计飞机时,需要通过气动力测试获得飞机的气动特性,如飞行速度、升力系数、阻力系数和滚转、俯仰和偏航的阻力、升力和动力系数等。
通过这些数据,可以进一步推导出飞机的稳定性和控制性能,从而精确地设计出符合需求的飞机。
二、飞机空气动力设计优化飞机的翼型、机身和尾翼等部件都需要经过空气动力设计优化,以满足对飞机某些特定要求,如高升力系数、低阻力系数等。
设计优化需要采用计算机辅助设计软件,模拟不同设计方案的气动力性能,并通过优化算法得出最优方案。
三、飞机气动噪声控制气动噪声是指飞机在飞行过程中由于空气流动引起的噪声,对周围环境和航空器本身都会产生影响。
控制气动噪声是飞机设计中一个重要的目标。
控制气动噪声需要从翼型、机身、发动机进气、襟翼等方面入手,采用减噪技术来减少气动噪声的产生。
四、飞机稳定性和控制性能研究飞机的稳定性和控制性能直接影响到飞行安全和操纵性,是飞机设计中的重要问题。
稳定性研究包括静态稳定、动态稳定和自稳性分析,控制性能研究包括操纵质量、慌张性、阶跃响应等方面。
通过空气动力学模拟和试验,可以获得精确的稳定性和控制性能参数,指导飞机设计和飞行测试。
五、飞机结构强度分析飞机的结构强度和气动性能紧密相关,因为飞机结构设计需要满足飞机在飞行过程中所受的各种气动载荷。
空气动力学模拟和试验可以为飞机结构强度分析提供载荷数据,指导各个部件的强度设计和选型。
空气动力学在飞机设计中的应用非常广泛,涉及到飞机气动力性能、设计优化、气动噪声控制、稳定性和控制性能研究以及结构强度分析等方面。
随着计算机技术和试验技术的不断发展,空气动力学在飞机设计中的应用将会越来越重要。
飞机飞行时,受到空气流动的影响,包括阻力、升力、推力和重力等,而这些力量的平衡和协调是保证飞机在空中稳定飞行和安全运作的重要因素。
(整理)空气动力学复习1
空气动力学复习一.大气物理构成成分:主要是氮气和氧气;按体积计算:氮气约78%;氧气约21%;其它约1%。
物理参数:温度、压力、密度;与飞行有关的其它参数:粘性、压缩性、湿度、音速;1.密度单位:公斤/平方米;大气密度随高度的变化规律:高度升高,密度下降;近似指数变化;2.温度单位:摄氏温度C、华氏温度F、绝对温度K;不同温度单位的对应公式:C=(F-32)*5/9; K=C+273.15大气温度与高度的关系,对流层每上升1000M,温度下降6.5摄氏度。
3.大气压力单位:毫米汞柱,帕,平方英寸磅,平方厘米千克,国际计量单位:帕.海平面15摄氏度时的大气压力:几种表示单位,数值;29.92inHg,760mmHg,1013.25hPa,14.6959psi,1.03323kg/cm2.4.粘性:特性;流体内两个流层接触面上或流体与物体接触面上产生相互粘滞和牵扯的力。
大气粘性主要是由于大气中各种气体分子不规则运动造成的.气体的粘度系数随温度升高而增大;没有粘性的流体称为理想流体。
5.可压缩性:一定量的空气在压力或温度变化时,其体积和密度发生变化的特性;6.湿度:相对湿度:大气中所含水蒸汽的量与同温度下大气能含有的水蒸气最大量之比。
温度越高,能含有的最大量越大,露点温度:大气中相对湿度为100%时的温度;7.音速:在同一介质中,音速的速度只与介质的温度有关;大气中的音速:V=20.1(T)1/2 M/S从地球表面到外层空间。
气层依次是:对流层、平流层、中间层、电离层和散逸层;对流层的高度:极地8KM,中纬度11KM,赤道12KM.二、空气动力学1基本概念1.1相对运动原理:1.2.连续性假设:1.3.流场、定流场、非定流场:流场:流体流动所占据的空间;定常流:流动微团流过时的流动参数(速度、压力、温度、密度等)不随时间变化的流动;非定常流:流动微团流过时的流动参数(速度、压力、温度、密度等)随时间变化的流动;与之对应的流场称为定流场和非定流场。
空气动力学复习(1)
空气动力学复习一.大气物理构成成分:主要是氮气和氧气;按体积计算:氮气约78%;氧气约21%;其它约1%。
物理参数:温度、压力、密度;与飞行有关的其它参数:粘性、压缩性、湿度、音速;1.密度单位:公斤/平方米;大气密度随高度的变化规律:高度升高,密度下降;近似指数变化;2.温度单位:摄氏温度C、华氏温度F、绝对温度K;不同温度单位的对应公式:C=(F-32)*5/9; K=C+273.15大气温度与高度的关系,对流层每上升1000M,温度下降6.5摄氏度。
3.大气压力单位:毫米汞柱,帕,平方英寸磅,平方厘米千克,国际计量单位:帕.海平面15摄氏度时的大气压力:几种表示单位,数值;29.92inHg,760mmHg,1013.25hPa,14.6959psi,1.03323kg/cm2.4.粘性:特性;流体内两个流层接触面上或流体与物体接触面上产生相互粘滞和牵扯的力。
大气粘性主要是由于大气中各种气体分子不规则运动造成的.气体的粘度系数随温度升高而增大;没有粘性的流体称为理想流体。
5.可压缩性:一定量的空气在压力或温度变化时,其体积和密度发生变化的特性;6.湿度:相对湿度:大气中所含水蒸汽的量与同温度下大气能含有的水蒸气最大量之比。
温度越高,能含有的最大量越大,露点温度:大气中相对湿度为100%时的温度;7.音速:在同一介质中,音速的速度只与介质的温度有关;大气中的音速:V=20.1(T)1/2 M/S从地球表面到外层空间。
气层依次是:对流层、平流层、中间层、电离层和散逸层;对流层的高度:极地8KM,中纬度11KM,赤道12KM.二、空气动力学1基本概念1.1相对运动原理:1.2.连续性假设:1.3.流场、定流场、非定流场:流场:流体流动所占据的空间;定常流:流动微团流过时的流动参数(速度、压力、温度、密度等)不随时间变化的流动;非定常流:流动微团流过时的流动参数(速度、压力、温度、密度等)随时间变化的流动;与之对应的流场称为定流场和非定流场。
飞机空气动力性能作用
飞机空气动力性能作用飞机空气动力性能作用衡量一架飞机的空气动力性能,不能单从升力,或单从阻力一个方面来看,必须把两者结合起来,分析升力和阻力之间的对比关系。
下面是店铺为大家分享飞机空气动力性能作用,欢迎大家阅读浏览。
一、飞机的升阻比衡量一架飞机的空气动力性能,不能单从升力,或单从阻力一个方面来看,必须把两者结合起来,分析升力和阻力之间的对比关系。
所谓升阻比,就是在同一迎角下升力与阻力之比。
升阻比也就是同一迎角下升力系数与阻力系数之比。
由于升力系数和阻力系数的大小主要随迎角而变,所以升阻比的大小也主要随迎角而变。
也就是说,升阻比与空气密度、飞行速度、机翼面积的磊小无关。
因为这些因素变了,升力和阻力都按同一比例随之改变,而不影响两者的比值。
升阻比大,说明在取得同一升力的情况下,阻力比较小。
升阻比越大,飞机的空气动力性能越好,对飞行越有利。
二、飞机的空气动力性能曲线(一)升力系数升力系数为零,这个迎角叫无升力迎角。
翼型不同,无升力迎角的大小也不同。
对称翼型的无升力迎角为零度,非对称翼型的'无升力迎角一般为负值。
从无升力迎角开始,迎角增加,升力系数增加,直到最大升力系数。
最大升力系数所对应的迎角,叫临界迎角。
超过临界迎角,迎角再增加,升力系数将急剧降低。
迎角从无升力迎角减小,升力系数将变为负值,也就是升力变成负升力了。
(二)阻力系数小迎角范围内时,迎角增加,阻力系数增加缓慢;迎角比较大时,迎角增加,阻力系数增加较快;接近或超过临界迎角时,迎角增加,阻力系数急剧增加。
应当注意,阻力系数永远不会为零,也就是说飞机上的阻力是始终存在的。
(三)升阻比升阻比有一个最大值,叫最大升阻比。
最大升阻比所对应的迎角叫有利迎角。
从无升力迎角开始,迎角增加,因升力系数比阻力系数增加的倍数多,所以升阻比是增大的,到有利迎角,升阻比达到最大值。
超过有利迎角,再增大迎角,因升力系数比阻力系数增加的倍数少,所以升阻比减小。
飞机在有利迎角下飞行是有利的,所以一般飞机飞行的迎角都不大。
空气动力学期末复习题1
第一章一:绪论;1.1大气的重要物理参数 1、最早的飞行器是什么?——风筝2、绝对温度、摄氏温度和华氏温度之间的关系。
——95)32(⨯-T =T F C15.273+T =T C K6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C ο F ο K ο 二:1.1大气的重要物理参数1、海平面温度为15C ο时的大气压力为多少?——29.92inHg 、760mmHg 、1013.25hPa 。
3、下列不是影响空气粘性的因素是(A)A 、空气的流动位置B 、气流的流速C 、空气的粘性系数D 、与空气的接触面积4、假设其他条件不变,空气湿度大(B)A 、空气密度大,起飞滑跑距离长B 、空气密度小,起飞滑跑距离长C 、空气密度大,起飞滑跑距离短D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是: (C)A 、只要空气密度大,音速就大B 、只要空气压力大,音速就大C 、只要空气温度高.音速就大D 、只要空气密度小.音速就大6、大气相对湿度达到(100%)时的温度称为露点温度。
三:1.2 大气层的构造;1.3 国际标准大气1、大气层由内向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。
2、对流层的高度.在地球中纬度地区约为(D)A 、8公里。
B 、16公里。
C 、10公里。
D 、11公里3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。
4、云、雨、雪、霜等天气现象集中出现于(对流层)。
5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。
6、国际标准大气规定海平面的大气参数是(B)A 、P=1013 psi T=15℃ ρ=1、225kg /m3B 、P=1013 hPA 、T=15℃ ρ=1、225 kg /m3C、P=1013 psi T=25℃ρ=1、225 kg/m3D、P=1013 hPA、T=25℃ρ=0、6601 kg/m37. 马赫数-飞机飞行速度与当地音速之比。
第三章 飞行空气动力学
第三章- 飞行空气动力学飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。
作用于飞机的力至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。
飞行员必须控制的是这些力之间的平衡。
对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。
下面定义和平直飞行(未加速的飞行)相关的力。
推力是由发动机或者螺旋桨产生的向前力量。
它和阻力相反。
作为一个通用规则,纵轴上的力是成对作用的。
然而在后面的解释中也不总是这样的情况。
阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。
阻力和推力相反,和气流相对机身的方向并行。
重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。
由于地球引力导致重量向下压飞机。
和升力相反,它垂直向下地作用于飞机的重心位置。
升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。
它垂直向上的作用于机翼的升力中心。
在稳定的飞行中,这些相反作用的力的总和等于零。
在稳定直飞中没有不平衡的力(牛顿第三定律)。
无论水平飞行还是爬升或者下降这都是对的。
也不等于说四个力总是相等的。
这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。
这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。
例如,考虑下一页的图3-1。
在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。
象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。
必须理解这个基本正确的表述,否则可能误解。
一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。
简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。
必须强调的是,这是在稳定飞行中的力平衡关系。
总结如下:向上力的总和等于向下力的总和向前力的总和等于向后力的总和对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。
空气动力学期末复习题 (2)
第一章一:绪论;1.1大气的重要物理参数 1、最早的飞行器是什么?——风筝2、绝对温度、摄氏温度和华氏温度之间的关系。
——95)32(⨯-T =T F C15.273+T =T C K6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C ο F ο K ο 二:1.1大气的重要物理参数1、海平面温度为15C ο时的大气压力为多少?——29.92inHg 、760mmHg 、1013.25hPa 。
3、下列不是影响空气粘性的因素是(A)A 、空气的流动位置B 、气流的流速C 、空气的粘性系数D 、与空气的接触面积4、假设其他条件不变,空气湿度大(B)A 、空气密度大,起飞滑跑距离长B 、空气密度小,起飞滑跑距离长C 、空气密度大,起飞滑跑距离短D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是: (C)A 、只要空气密度大,音速就大B 、只要空气压力大,音速就大C、只要空气温度高.音速就大D、只要空气密度小.音速就大6、大气相对湿度达到(100%)时的温度称为露点温度。
三:1.2 大气层的构造;1.3 国际标准大气1、大气层由内向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。
2、对流层的高度.在地球中纬度地区约为(D)A、8公里。
B、16公里。
C、10公里。
D、11公里3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。
4、云、雨、雪、霜等天气现象集中出现于(对流层)。
5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。
6、国际标准大气规定海平面的大气参数是(B)A、P=1013 psi T=15℃ρ=1、225kg/m3B、P=1013 hPA、T=15℃ρ=1、225 kg/m3C、P=1013 psi T=25℃ρ=1、225 kg/m3D、P=1013 hPA、T=25℃ρ=0、6601 kg/m37. 马赫数-飞机飞行速度与当地音速之比。
Aerodynamics_of_Flight-1_教材[1]
第2页
飞行空气动力学 Aerodynamics of Flight 作用在飞机上的力 Forces Acting on the Aircraft
• 推力 Thrust • 阻力 Drag • 重力 Weight • 升力 Lift
第3页
飞行空气动力学 Aerodynamics of Flight
第5页
飞行空气动力学 Aerodynamics of Flight
作用在飞机上的力 Forces Acting on the Aircraft
• 作用于不加速、直线平飞的飞机上的四个力为推力、阻 力、升力和重力。 • The four forces acting on an aircraft in straight-and-level, unaccelerated flight are thrust, drag, lift, and weighmics of Flight
作用在飞机上的力 Forces Acting on the Aircraft
• 升力——抵抗向下的重力,由作用于机翼上的空气的动 力效应产生,作用方向垂直于飞行轨迹,且通过升力中 心。
• Lift - opposes the downward force of weight, is produced by the dynamic effect of the air acting on the airfoil, and acts perpendicular to the flightpath through the center of lift.
作用在飞机上的力 Forces Acting on the Aircraft
• 飞行中的所有飞机都会受到推力、阻力、升力和重力。 理解这些力如何起作用、了解如何使用动力和飞行操纵 来控制它们对飞行很重要。
空气动力原理
空气动力原理
空气动力原理是指利用空气的流动特性来产生力的一种原理。
根据伯努利定律,当空气流动时,流速增加时压力降低,流速减小时压力增加。
这个原理可以应用于多种情况下,如飞机、汽车、船舶等。
在飞机上,翅膀的上表面相对平坦,而下表面则呈凹形,从而形成了不同的几何形状。
当飞机移动时,空气在翅膀上下表面同时流动,上表面的流速较快,而下表面的流速较慢。
根据伯努利定律,上表面的压力较低,而下表面的压力较高。
因此,形成了一个向上的升力,使得飞机能够离开地面并保持飞行。
这就是飞机利用空气动力原理产生升力的机制。
类似地,在汽车设计中也使用了空气动力原理。
例如,在高速行驶时,汽车的车身前部经常设计成流线型,以减小阻力。
通过这种设计,空气可以更顺畅地流过汽车,从而减少了飞禽走兽现象。
此外,通过设计汽车底部的空气导流板,也可以进一步减小阻力,提高汽车的稳定性和燃油效率。
在船舶设计中,空气动力原理同样发挥了重要作用。
例如,在船舶的船身设计中,通常会考虑到船体与水面之间的空气流动。
船体底部的凹陷设计可以减小船体与水面之间的接触面积,从而减小摩擦阻力。
此外,船体上方的船舱设计也经过优化,以减小空气流动的阻力,提高船舶的速度和操纵性。
综上所述,空气动力原理在不同的交通工具中发挥着重要作用。
通过合理的设计和利用空气流动的特性,可以最大限度地减小
阻力,提高速度和效率。
空气动力学的研究和应用不仅对于设计更高效的交通工具具有重要意义,也推动了科学技术的发展。
飞机机翼升力原理:气流在机翼上的作用
飞机机翼升力原理:气流在机翼上的作用飞机机翼升力的原理涉及到气流在机翼上的作用,主要基于空气动力学的原理。
以下是飞机机翼升力产生的基本过程:1. 空气动力学基础:卡门涡:当空气经过机翼表面时,由于机翼形状的变化,会形成卡门涡。
这些涡旋的形成导致了空气的局部流动变化。
升力和气动力:升力是垂直于飞机运动方向的力,是由于气体分子与机翼表面的相互作用而产生的。
气动力是与飞机运动方向平行的力,影响飞机的阻力。
2. 升力产生过程:上表面和下表面:机翼的上表面通常比下表面更为凸起,导致在上表面的气流速度较快。
伯努利定律:根据伯努利定律,气流速度增加时,气压降低。
因此,在机翼上表面,气压较下表面更低。
气压差:由于气压差异,产生了向上的升力。
这种升力是由于上表面的气流快、气压低,下表面的气流慢、气压高造成的。
3. 角度和攻角:攻角:攻角是指飞机机翼相对于飞行方向的角度。
攻角的改变可以影响升力的产生。
最大升力点:在某个特定攻角下,升力达到最大值,称为最大升力点。
过大或过小的攻角都会减小升力。
4. 襟翼和缝翼:襟翼和缝翼:飞机上通常配备有襟翼和缝翼,它们可以在飞机起飞、降落和机动时改变机翼的形状,调整升力的大小和方向。
5. 其他因素:速度和气密度:升力还受到飞机速度和空气密度的影响。
速度越快,升力越大;空气密度越大,升力也越大。
翼展和机翼形状:机翼的翼展和形状也对升力产生有影响。
不同类型的飞机采用不同形状和翼展的机翼,以满足不同的飞行需求。
飞机机翼升力的原理基于气流速度和气压差异,通过机翼形状的设计和攻角的调整来实现。
这一原理是飞机起飞、飞行和降落的基础,对飞行器的设计和性能至关重要。
无人机空气动力学-升力的产生
➢ 从右图可以看出,机翼 升力的产生主要靠机翼上 表面的吸力作用,尤其是 上表面前段,而不是靠机 翼下表面的正压作用。
2.4 作用在飞机上的空 气动力
2.4 作用在飞机上的空气动力
1.空气动力、阻力和升力 2.升力的产生 3.阻力 4.升力与阻力计算 5.升力、阻力和升阻比曲线 6.机翼的压力中心和焦点
2.4 作用在飞机上的空气动力
2.升力的产生
产生原理:连续性定理、伯努利定理
前方来流机翼分成上下 部分,一部分从机翼的上 表面流过,一部分从机翼 的下表面流过。
机翼升力的着力点, 称为压力中心。
2.4 作用在飞机上的空气动力
2.升力的产生
翼型压力分布 1)矢量表示法
➢ 如果机翼表面的压力低于大 气压力,称为吸力(负压)。
➢ 如果机翼表面的压力高于大 气压力,称为压力(正压)。
负压区
驻点 正压区
最低压力点
2.4 作用在飞机上的空气动力
2.升力的产生
由连续性定理可知,流 过机翼下边面的气流,比 流过下表面的气流速度更 快。
2.4 作用在飞机上的空气动力
2.升力的产生 产生原理:连续性定理、伯努利定理
由伯努利定理知:
2.4 作用在飞机上的空气动力
2.升力的产生 产生原理:连续性定理、伯努利定理
上下表面出现的压力差,在 垂直于相对气流方向的分量, 就是升力。
(整理)作用在飞机上的空气动力.
2.3 飞机的几何外形和作用在飞机上的空气动力2.3.1 飞机的几何外形和参数飞机的几何外形,由机翼、机身和尾翼(分为水平尾翼或平尾、垂直尾翼或垂尾)等主要部件的几何外形共同构成。
现代飞机的几何外形,必须保证满足空气动力特性和隐身特性等方面的要求。
飞机的几何外形也称为气动外形。
机翼的几何外形当飞机在空中飞行时,作用在飞机上的升力主要是由机翼产生;同时机翼上也会产生阻力。
机翼上的空气动力的大小和方向,在很大程度上又决定于机翼的外形,即机翼翼型(或翼剖面)几何形状、机翼平面几何形状等。
描述机翼的几何外形,主要从这两方面加以说明。
a. 机翼翼型的几何参数飞机机翼、尾翼,导弹翼面,直升机旋翼叶片和螺旋桨叶片上平行于飞行器对称面或垂直于前缘的剖面形状,称为翼型,又称为翼剖面。
翼型具有各种不同的形状,如图2.3.1所示。
图中(a)是平板剖面,它的空气动力特性不好。
后来人们在飞行实践的过程中,发现把翼剖面做成像鸟翼那样的弯拱形状——薄的单凸翼剖面(见图(b)),对升力特性有改进。
随着飞机的发展,人们认识到加大剖面的厚度,也会改善升力特性,因而就有了凹凸形翼剖面(见图(c)),这种翼剖面的升力特性虽然较好,但阻力特性却不好,只适用于速度很低的飞机上;另外,因为后部很薄而且弯曲,在构造方面不利,因而目前已很少应用。
至于平凸形翼剖面(见图(d)),在构造上和加工上比较方便,同时空气动力特性也不错,所以目前在某些低速飞机上还有应用。
不对称的双凸形翼剖面(见图(e))的升力和阻力特性都较好,在构造方面也有利,所以广泛应用在活塞发动机的飞机上。
图(f)中是S形翼剖面,这种翼剖面的中线呈S形的,它的特点是尾部稍稍向上翘,使得压力中心不会前后移动。
对称的双凸形翼剖面(见图(g)),通常用于各种飞机的尾翼面上。
图(h)是所谓“层流翼剖面”,它的特点是压强分布的最低压强点(即最大负压强)位于翼剖面靠后的部分,可减低阻力。
这种翼剖面常用于速度较高的飞机上。
飞机机电设备维修《流体流动的基本概念》
第三章空气动力学流体流动的根本概念相对运动原理作用在飞机上的空气动力取决于飞机和空气之前的相对运动情况,而与观察、研究时所选用的参考坐标无关。
也就是说,飞机以速度v在平静的空气中飞行时,作用在飞机上的空气动力与远方空气以速度v流过静止不动的飞机时所产生的空气动力完全相同。
这就是相对运动原理在空气动力学中的应用。
空气相对飞机的运动称为相对气流,相对气流的方向与飞机运动方向相反〔见图2-1〕。
只要相对气流速度相同,产生的空气动力也就相等。
将飞机的飞行转换为空气的流动,是空气动力问题的研究大大简化。
风洞实验就是根据这个原理建立起来的。
图3-1 飞机的运动方向与相对气流的方向连续性假设连续性假设是流体力学和固体力学中的根本假设之一。
它认为真实流体或固体所占有的空间可以近似地看作连续地无空隙地充满着“质点〞。
质点所具有的宏观物理量〔如质量、速度、压力、温度等〕满足一切应该遵循的物理定律,例如质量守恒定律、牛顿运动定律、能量守恒定律、热力学定律以及扩散、粘性及热传导等输运性质,但流体和固体的某些物理常数还必须由实验来确定。
连续性假设就是在进行空气动力学研究时,将大量的、单个分子组成的大气看成连续性的介质。
所谓连续介质就是组成介质的物质连成一片,没有任何空隙。
在其中任意去一个微团都可以看成是由无数分子组成,微团表现出来的特性表达了众多分析的共同特性。
对大气采用连续性假设的理由是与所研究的对象——飞机相比,空气分子的平均自由行程要比飞机的尺寸小的多。
空气流过飞机外表时,与飞机之间的相互作用不是单个分子所为,而是无数分子共同作用的结果。
流场、定常流和非定常流流体流动所占据的空间成为流场。
在流场中的任何一点处,如果流体微团流动时的流动参数——速度、压力、温度等随时间变化,这种流动就称为非定常流,这种流场被称为非定常流场。
反之,如果流体微团流过时的流动参数——速度、压力、温度等不随时间变化,这种流动就被称为定常流,这种流场被称为定常流场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 飞机的几何外形和作用在飞机上的空气动力2.3.1 飞机的几何外形和参数飞机的几何外形,由机翼、机身和尾翼(分为水平尾翼或平尾、垂直尾翼或垂尾)等主要部件的几何外形共同构成。
现代飞机的几何外形,必须保证满足空气动力特性和隐身特性等方面的要求。
飞机的几何外形也称为气动外形。
机翼的几何外形当飞机在空中飞行时,作用在飞机上的升力主要是由机翼产生;同时机翼上也会产生阻力。
机翼上的空气动力的大小和方向,在很大程度上又决定于机翼的外形,即机翼翼型(或翼剖面)几何形状、机翼平面几何形状等。
描述机翼的几何外形,主要从这两方面加以说明。
a. 机翼翼型的几何参数飞机机翼、尾翼,导弹翼面,直升机旋翼叶片和螺旋桨叶片上平行于飞行器对称面或垂直于前缘的剖面形状,称为翼型,又称为翼剖面。
翼型具有各种不同的形状,如图2.3.1所示。
图中(a)是平板剖面,它的空气动力特性不好。
后来人们在飞行实践的过程中,发现把翼剖面做成像鸟翼那样的弯拱形状——薄的单凸翼剖面(见图(b)),对升力特性有改进。
随着飞机的发展,人们认识到加大剖面的厚度,也会改善升力特性,因而就有了凹凸形翼剖面(见图(c)),这种翼剖面的升力特性虽然较好,但阻力特性却不好,只适用于速度很低的飞机上;另外,因为后部很薄而且弯曲,在构造方面不利,因而目前已很少应用。
至于平凸形翼剖面(见图(d)),在构造上和加工上比较方便,同时空气动力特性也不错,所以目前在某些低速飞机上还有应用。
不对称的双凸形翼剖面(见图(e))的升力和阻力特性都较好,在构造方面也有利,所以广泛应用在活塞发动机的飞机上。
图(f)中是S形翼剖面,这种翼剖面的中线呈S形的,它的特点是尾部稍稍向上翘,使得压力中心不会前后移动。
对称的双凸形翼剖面(见图(g)),通常用于各种飞机的尾翼面上。
图(h)是所谓“层流翼剖面”,它的特点是压强分布的最低压强点(即最大负压强)位于翼剖面靠后的部分,可减低阻力。
这种翼剖面常用于速度较高的飞机上。
菱形(见图(i))和双弧形(见图(j))翼剖面常用在超音速飞机上,它们的特点是前端很尖,相对厚度很小,也就是很薄,超音速飞行时阻力很小,比较有利,然而它在低速时的升力和阻力特性不好,使飞机的起落性能变坏。
图2.3.1 不同的翼型和翼型的几何参数翼型的主要几何参数有弦长、相对厚度、最大厚度位置等,见图2.3.1(k)。
弦长 连接翼型前缘(翼型最前面的点)和后缘(翼型最后面的点)的直线段称为翼弦(也称为弦线),其长度称为弦长,用c 表示。
相对厚度 翼型的厚度是垂直于翼弦的翼型上下表面之间的直线段长度。
翼型最大厚度t max 与弦长c 之比,称为翼型的相对厚度t/c 或t ,并常用百分数表示,即%100/max ⨯==ct c t t 低速飞机机翼的相对厚度大致为12~18%,亚音速飞机机翼的相对厚度大致为10~15%,超音速飞机机翼的相对厚度大致为3~5%。
最大厚度位置 翼型最大厚度离开前缘的距离x t ,称为最大厚度位置,通常也用弦长的百分数表示,即%100⨯=cx x t t 现代飞机翼型的最大厚度位置约为30%~50%。
b. 机翼平面形状的几何参数基本机翼在机翼基本平面上的投影形状称为机翼的平面形状。
基本机翼是指包括穿越机身部分但不包含边条等辅助部件的机翼,其穿越机身部分通常是由左右机翼的前缘和后缘的延长线构成,也可以由左右外露机翼根弦的前缘点连线和后缘点的连线构成。
机翼基本平面是指垂直于飞机参考面且包含中心弦线(位于飞机参考面上的局部弦线)的平面。
所谓飞机参考面就是机体的左右对称面,飞机的主要部件对于此面是左右对称布置的。
按照俯视平面形状的不同,机翼可分为平直翼、后掠/前掠翼和三角翼等3种基本类型,如图2.3.2所示。
(a)(b)(c)(d)图2.3.2 机翼的平面形状(a) 平直翼 (b) 后掠翼 (c) 三角翼 (d) 平面形状参数表示机翼平面形状的主要参数有:机翼面积、翼展、展弦比、梯形比和后掠角等。
机翼面积 基本机翼在机翼基本平面上投影面积,称为机翼面积,用S 表示。
翼展 在机翼之外刚好与机翼轮廓线接触,且平行与机翼对称面(通常是飞机参考面)的两个平面之间的距离称为机翼的展长,简称翼展,用b 表示。
展弦比 机翼翼展的平方与机翼面积之比,或者机翼翼展与机翼平均几何弦长(机翼面积S 除以翼展b )之比,称为机翼的展弦比A ,即Sb A 2梯形比 机翼翼尖弦长与中心弦长之比,称为机翼的梯形比,又称尖削比,用λ表示。
后掠角 描述翼面特征线与参考轴线相对位置的夹角称为后掠角。
机翼上有代表性的等百分比弦点连弦同垂直于机翼对称面的直弦之间的夹角称为机翼的后掠角,用Λ表示。
通常Λ0表示前缘后掠角,Λ0.25表示1/4弦线后掠角,Λ0.5表示中弦线后掠角,Λ1.0表示后缘后掠角。
后掠角表示机翼各剖面在纵向的相对位置,也即表示机翼向后倾斜的程度。
后掠角为负表示翼面有前掠角。
如果不特别指明,后掠角通常指1/4弦线后掠角。
平直翼的1/4弦线后掠角大约在20º以下,多用于亚音速飞机和部分超音速飞机上;后掠掠翼1/4弦线后掠角大多在25º以上,用于高亚音速和超音速飞机上;三角翼前缘后掠角约在60º左右,后缘基本无后掠,多用于超音速飞机,尤以无尾式飞机采用较多。
c. 机翼的前视形状机翼的前视形状通常用机翼的上反角来说明。
翼面基准(如翼弦平面)与垂直于飞机对称平面的平面之间的夹角,称为机翼的上反角Г(图2.3.3)。
通常规定上反为正,下反为负。
机翼上反角一般不大,通常不超过10º。
图2.3.3 上反角图2.3.4 机身参数以上所述翼型和机翼的各几何参数,对机翼的气动特性影响较大。
特别是机翼面积、展弦比、梯形比、后掠角以及相对厚度这五个参数,对机翼的空气动力特性有重大的影响。
如何合理地选择这些参数,以保证获得良好的空气动力特性,乃是飞机设计中的一项重要任务尾翼的几何外形及其参数与机翼相似。
不再赘述。
机身的几何外形机身的功用是装载有效载荷(旅客、货物等)、乘员、各种系统和设备等,并把组成飞机的各部件有效地连接在一起。
与机翼相比,机身的形状要复杂的多(图2.3.4)。
表示机身几何特征的参数主要有:(1) 机身长度L F;(2) 最大当量直径d F:把机身看成是当量旋成体,其横截面积对应的当量旋成体的直径称为机身当量直径,其中最大横截面积对应的当量旋成体的直径称为机身最大当量直径;(3) 长细比λF:机身长度与机身最大当量直径之比。
机身的主要空气动力是阻力,升力很小。
2.3.2 低速、亚音速飞机的空气动力翼型的升力和阻力飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。
而这种力量主要是靠飞机的机翼与空气的相对运动产生的。
迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。
当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。
如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。
图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力1—压力中心2—前缘3—后缘4—翼弦升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。
如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。
根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。
这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。
根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。
此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。
总空气动力R与翼弦的交点叫做压力中心(见图2.3.6)。
好像整个空气动力都集中在这一点上,作用在翼型上。
根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图2.3.7(a)所示。
图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。
箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。
由图可看出,上表面的吸力占升力的大部分。
靠近前缘处稀薄度最大,即这里的吸力最大。
(a) 翼型上的压力分布1—翼型 2—吸力 3—压力(b) 不同迎角下翼型压力分布的变化1—尾部漩涡图2.3.7 翼型的压强分布图(压力分布图)由图2.3.7(b)可见,机翼的压强分布与迎角有关。
在迎角为零时,上下表面虽然都受到吸力,但总的空气动力合力R 并不等于零。
随着迎角的增加,上表面吸力逐渐变大,下表面由吸力变为压力,于是空气动力合力R 迅速上升,与此同时,翼型上表面后缘的涡流区也逐渐扩大。
在一定迎角范围内,R 是随着迎角α的增加而上升的。
但当α大到某一程度,再增加迎角,升力不但不增加反而迅速下降,这种现象我们叫做“失速”。
失速对应的迎角就叫做“临界迎角”或“失速迎角”(见图2.3.8)。
图2.3.8翼型的L -α曲线 图2.3.9翼型的C L -α曲线R 随α的变化而变化,它在垂直于迎面气流方向上的分力L ——升力,也随α的变化而变化。
为了研究问题方便,我们采用无因次的升力系数C L 来表示升力与迎角的关系,即S v LC L 221ρ=升力系数C L 随迎角变化的曲线称为升力曲线(图2.3.9)。
在一定飞行速度下,在迎角较小的范围内,升力系数C L 由随迎角α的呈线性变化;随着迎角的继续增加,升力曲线逐渐变弯,到临界迎角时,升力系数达到最大值C Lmax ;之后再增大迎角,升力系数反而减小。
翼型的力矩特性及焦点图2.3.10气动合力及力矩图2.3.11 C m -C L 曲线当气流流过翼型时,可以把作用在翼型上的空气动力R 分解为垂直翼弦的法向力L 1和平行于翼弦的切向力D 1(图2.3.10)。
我们规定使翼型抬头的力矩为正,则空气动力对F 点的力矩可写为M yP =-L 1 (x P -x F )≈-L (x P -x F )改用力矩系数的形式表示为)()(221221F P L F P yPm x x C c x x S v L Sc v M C --=--==ρρ 式中P x 和F x 分别是压力中心和任意点F 到翼型前缘距离与弦长比的百分数(见图2.3.9)。