高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程课堂导学案

合集下载

高中数学第二章圆锥曲线与方程2-2-1双曲线及其标准方程预习导学案新人教B版选修1

高中数学第二章圆锥曲线与方程2-2-1双曲线及其标准方程预习导学案新人教B版选修1

高中数学第二章圆锥曲线与方程2-2-1双曲线及其标准方程
预习导学案新人教B版选修1
预习导航
思考1在双曲线的定义中,若去掉条件0<2a<|F1F2|,则点的轨迹是怎样的?
提示:在双曲线的定义中,若去掉条件0<2a<|F1F2|,
(1)当2a等于|F1F2|时,动点的轨迹是以F1,F2为端点的两条射线(包括端点).
(2)当2a大于|F1F2|时,动点的轨迹不存在.
(3)当2a等于零时,动点轨迹为线段F1F2的垂直平分线.
思考2在双曲线的定义中,若去掉“绝对值”,其轨迹还是双曲线吗?
提示:不是.去掉“绝对值”后,点的轨迹是双曲线的一支.
2.双曲线的标准方程
思考3在双曲线的标准方程中,怎样判断焦点在哪条坐标轴上?
提示:如果含x2项的系数是正的,那么焦点在x轴上;如果含y2项的系数是正的,那么焦点在y轴上.
名师点拨双曲线与椭圆的比较。

高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程学案含解析

高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程学案含解析

2.3.1 双曲线及其标准方程[提出问题]问题1:平面内,动点P 到两定点F 1(-5,0),F 2(5,0)的距离之和为12,动点P 的轨迹是什么?提示:椭圆.问题2:平面内,动点P 到两定点F 1(-5,0),F 2(5,0)的距离之差的绝对值为6,动点P 的轨迹还是椭圆吗?是什么?提示:不是,是双曲线. [导入新知]双曲线的定义把平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.[化解疑难]平面内到两定点F 1,F 2的距离的差的绝对值为常数,即||MF 1|-|MF 2||=2a ,关键词“平面内”.当2a <|F 1F 2|时,轨迹是双曲线;当2a =|F 1F 2|时,轨迹是分别以F 1,F 2为端点的两条射线; 当2a >|F 1F 2|时,轨迹不存在.[提出问题]问题1:“知识点一”的问题2中,动点P 的轨迹方程是什么? 提示:x 29-y 216=1.问题2:平面内,动点P 到两定点F 1(0,5),F 2(0,-5)的距离之差的绝对值为定值6,动点P 的轨迹方程是什么?提示:y 29-x 216=1.[导入新知]双曲线的标准方程[化解疑难]1.标准方程的代数特征:方程右边是1,左边是关于x ,y 的平方差,并且分母大小关系不确定.2.a ,b ,c 三个量的关系:标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中,a ,b 大小不确定.[例1] 已知方程k -5-|k |-2=1对应的图形是双曲线,那么k 的取值范围是( )A .(5,+∞)B .(-2,2)∪(5,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)[解] ∵方程对应的图形是双曲线, ∴(k -5)(|k |-2)>0.即⎩⎪⎨⎪⎧k -5>0,|k |-2>0,或⎩⎪⎨⎪⎧k -5<0,|k |-2<0.解得k >5或-2<k <2. [答案] B [类题通法]将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.[活学活用]若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 解析:选C 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.[例2] (1)a =4,经过点A ⎝ ⎛⎭⎪⎫1,-4103;(2)经过点(3,0),(-6,-3). [解] (1)当焦点在x 轴上时,设所求双曲线的标准方程为x 216-y 2b2=1(b >0),把A 点的坐标代入,得b 2=-1615×1609<0,不符合题意;当焦点在y 轴上时,设所求双曲线的标准方程为y 216-x 2b2=1(b >0),把A 点的坐标代入,得b 2=9, ∴所求双曲线的标准方程为y 216-x 29=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0), ∵双曲线经过点(3,0),(-6,-3),∴⎩⎪⎨⎪⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,∴所求双曲线的标准方程为x 29-y 23=1.[类题通法]1.双曲线标准方程的两种求法(1)定义法:根据双曲线的定义得到相应的a ,b ,c ,再写出双曲线的标准方程.(2)待定系数法:先设出双曲线的标准方程x 2a 2-y 2b 2=1或x 2b 2-y 2a2=1(a ,b 均为正数),然后根据条件求出待定的系数代入方程即可.2.求双曲线标准方程的两个关注点(1)定位:“定位”是指确定与坐标系的相对位置,在“标准方程”的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;(2)定量:“定量”是指确定a 2,b 2的具体数值,常根据条件列方程求解. [活学活用]根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上.解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-152b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2),∴25λ-46-λ=1, ∴λ=5或λ=30(舍去). ∴所求双曲线方程是x 25-y 2=1.[例3] 设P 为双曲线x 2-12=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则△PF 1F 2的面积为( )A .6 3B .12C .12 3D .24[解] 如图所示,∵|PF 1|-|PF 2|=2a =2, 且|PF 1|∶|PF 2|=3∶2, ∴|PF 1|=6,|PF 2|=4. 又∵|F 1F 2|=2c =213, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴S V 12PF F =12|PF 1|·|PF 2|=12×6×4=12.[答案] B [类题通法]在解决双曲线中与焦点有关的问题时,要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;与三角形有关的问题要考虑正弦定理、余弦定理、勾股定理等.另外在运算中要注意一些变形技巧和整体代换思想的应用.[活学活用]若把本题中的“|PF 1|∶|PF 2|=3∶2”改为“PF 1―→·PF 2―→=0”,求△PF 1F 2的面积. 解:由题意PF 1―→·PF 2―→=0, 得PF 1⊥PF 2,∴△PF 1F 2为直角三角形, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=|F 1F 2|2. 又∵||PF 1|-|PF 2||=2a =2, |F 1F 2|2=4c 2=4(a 2+b 2) =4(1+12)=52, ∴4+2|PF 1|·|PF 2|=52, ∴|PF 1|·|PF 2|=24,∴S △PF 1F 2=12|PF 1|·|PF 2|=12.5.双曲线的定义理解中的误区[典例] 已知定点A (-3,0)和定圆C :(x -3)2+y 2=16,动圆和圆C 相外切,并且过定点A ,求动圆圆心M 的轨迹方程.[解] 设M (x ,y ),设动圆与圆C 的切点为B ,|BC |=4.则|MC |=|MB |+|BC |,|MA |=|MB |,所以|MC |=|MA |+|BC |, 即|MC |-|MA |=|BC |=4<|AC |.所以由双曲线的定义知,M 点轨迹是以A ,C 为焦点的双曲线的左支,设其方程为x 2a 2-y 2b2=1(x <0),且a =2,c =3,所以b 2=5.所以所求圆心M 的轨迹方程是x 24-y 25=1(x ≤-2).[易错防范]1.求解中易把动点的轨迹看成双曲线,忽视了双曲线定义中“距离的差的绝对值是常数”这一条件,动点轨迹实际上是双曲线的一支.2.在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能保证解题的正确性.当||PF 1|-|PF 2||=2a <|F 1F 2|(a >0),即|PF 1|-|PF 2|=±2a (0<2a <|F 1F 2|)时,P 点的轨迹是双曲线,其中取正号时为双曲线的右支,取负号时为双曲线的左支.[成功破障]求与⊙C 1:x 2+(y -1)2=1和⊙C 2:x 2+(y +1)2=4都外切的动圆圆心M 的轨迹方程. 解:∵⊙M 与⊙C 1,⊙C 2都外切, ∴|MC 1|=r +1,|MC 2|=r +2. 从而可知|MC 2|-|MC 1|=1<|C 1C 2|.因此,点M 的轨迹是以C 2,C 1为焦点的双曲线的上支,且有a =12,c =1,b 2=c 2-a 2=34.故所求的双曲线的方程为4y 2-4x 23=1⎝ ⎛⎭⎪⎫y ≥12.[随堂即时演练]1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( ) A .双曲线 B .双曲线的一支 C .直线D .一条射线解析:选D F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线方程是x 22-y 2=1.法二:设所求双曲线方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1, 解得λ=2(λ=-2舍去), 所以所求双曲线方程为x 22-y 2=1.3.若方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是________.解析:由题意知,(1+k )(1-k )>0,即-1<k <1. 答案:(-1,1)4.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.答案:45.求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)经过点(3,-42),⎝ ⎛⎭⎪⎫94,5. 解:(1)由题设知,a =3,c =4, 由c 2=a 2+b 2得,b 2=c 2-a 2=42-32=7. 因为双曲线的焦点在x 轴上, 所以所求双曲线的标准方程为x 29-y 27=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,-42),⎝ ⎛⎭⎪⎫94,5,所以⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎪⎨⎪⎧m =-19,n =116.故所求双曲线的标准方程为y 216-x 29=1.[课时达标检测]一、选择题1.已知双曲线的a =5,c =7,则该双曲线的标准方程为( ) A.x 225-y 224=1 B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1 D.x 225-y 224=0或y 225-x 224=0 解析:选 C 由于焦点所在轴不确定,∴有两种情况.又∵a =5,c =7,∴b 2=72-52=24.2.已知m ,n ∈R ,则“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若方程x 2m +y 2n =1表示双曲线,则必有m ·n <0;当m ·n <0时,方程x 2m +y 2n =1表示双曲线.所以“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的充要条件.3.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A.12 B.32 C.72 D .5解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当点P 在点M 处时,|PA |最小,最小值为a +c =32+2=72.4.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到焦点F 1的距离是12,则点P 到焦点F 2的距离是( )A .17B .7C .7或17D .2或22解析:选D 依题意及双曲线定义知,||PF 1|-|PF 2||=10,即12-|PF 2|=±10,∴|PF 2|=2或22,故选D.5.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1C .y 2-x 23=1 D.x 22-y 22=1 解析:选A 由双曲线定义知, 2a =+2+32--2+32=5-3=2,∴a =1.又∵c =2,∴b 2=c 2-a 2=4-1=3, 因此所求双曲线的标准方程为x 2-y 23=1.二、填空题6.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:167.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是______________.解析:设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.答案:y 225-x 275=18.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1―→·PF 2―→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.解析:由题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由PF 1―→·PF 2―→=0,得PF 1⊥PF 2.根据勾股定理得 |PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20. 根据双曲线定义有|PF 1|-|PF 2|=±2a . 两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1, 所以双曲线方程为x 24-y 2=1.答案:x 24-y 2=1三、解答题9.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝ ⎛⎭⎪⎫-52,-6,求该双曲线的标准方程.解:已知双曲线x 216-y 29=1.据c 2=a 2+b 2, 得c 2=16+9=25,∴c =5. 设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0). 依题意,c =5,∴b 2=c 2-a 2=25-a 2, 故双曲线方程可写为x 2a 2-y 225-a 2=1. ∵点P ⎝ ⎛⎭⎪⎫-52,-6在双曲线上, ∴⎝ ⎛⎭⎪⎫-522a 2--6225-a2=1. 化简,得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254. 又当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24. ∴所求双曲线的标准方程为x 2-y 224=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C . (1)求线段AB 的长度; (2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1. ∴a 2=5,b 2=1,c 2=a 2-b 2=4,则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C , ∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4, 即动点C 到两定点A ,B 的距离之差为定值.∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为 x 2-y 23=1(x >1).。

高中数学 第二章 圆锥曲线与方程 2.2.2 双曲线的简单几何性质导学案 新人教A版选修1-1(2

高中数学 第二章 圆锥曲线与方程 2.2.2 双曲线的简单几何性质导学案 新人教A版选修1-1(2

河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1的全部内容。

双曲线的简单几何性质1.类比椭圆的性质,能根据双曲线的标准方程,讨论双曲线的几何性质.2.能运用双曲线的性质解决一些简单的问题.重点:双曲线的几何性质.难点:双曲线性质的应用,渐近线的理解.方法:合作探究一新知导学1。

在双曲线方程中,以-x、-y代替x、y方程不变,因此双曲线是以x轴、y轴为对称轴的__________图形;也是以原点为对称中心的__________图形,这个对称中心叫做__________ ________.2.双曲线与它的对称轴的两个交点叫做双曲线的____,双曲线错误!-错误!=1(a〉0,b>0)的顶点是________,这两个顶点之间的线段叫做双曲线的________,它的长等于__________.同时在另一条对称轴上作点B1(0,-b),B2(0,b),线段B1B2叫做双曲线的_________,它的长等于________,a、b分别是双曲线的__________和__________.3。

设P(x,y)是双曲线错误!-错误!=1(a>0,b>0)上一点,则x ,y .4.双曲线的半焦距c与实半轴长a的比值e叫做双曲线的_________,其取值范围是_____ .e越大,双曲线的张口越_________.5.双曲线错误!-错误!=1(a〉0,b〉0)位于第一象限部分上一点P(x,y)到直线y=错误!x的距离d=________________ (用x 表示),d随x的增大而__________.这表明,随着x的增大,点P到直线y=错误!x的距离越来越______,称直线y=错误!x为双曲线错误!-错误!=1的一条_________由对称性知,直线____________也是双曲线错误!-错误!=1的一条__________.课堂随笔:6.过双曲线实轴的两个端点与虚轴的两个端点分别作对称轴的平行线,它们围成一个矩形,其两条__________所在直线即为双曲线的渐近线.“渐近"两字的含义:当双曲线的各支向外延伸时,与这两条直线__________接近,接近的程度是无限的 7。

高中数学《抛物线的简单几何性质》(导学案)

高中数学《抛物线的简单几何性质》(导学案)

第二章 圆锥曲线与方程 2.3.2抛物线的简单几何性质一、学习目标1.掌握抛物线的性质、焦半径、焦点弦的应用. 2.掌握直线与抛物线位置关系的判断. 【重点难点】1.会用抛物线的性质解决与抛物线相关的综合问题.(重点)2.直线与抛物线的位置关系的应用.(难点) 二、学习过程 【问题导思】类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质? 【提示】 范围、对称性、顶点、离心率. 【导入新课】标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py(p >0)x 2=-2py(p >0)图形性质焦点 (p2,0) (-p2,0) (0,p2)(0,-p2)准线x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈R x ≤0,y ∈R________________对称轴 ____________顶点 ______ 离心率 ______ 开口方向向右 向左向上向下特征:1.2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1. 【典型例题】例1. 已知抛物线的顶点在原点,对称轴重合于椭圆x 29+y 216=1短轴所在的直线,抛物线的焦点到顶点的距离为5,求抛物线的标准方程.例2 斜率为1的直线l 经过抛物线24y x 的焦点F ,且与抛物线相交于A,B 两点,求线段AB 的长.例3 求过点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.【变式拓展】1.已知抛物线的顶点在原点,对称轴为y轴,顶点到准线的距离为4,求该抛物线的方程并指出焦点坐标与准线方程.2.直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点.3.求顶点在原点,焦点在x轴上且截直线2x-y+1=0所得弦长为15的抛物线方程.三、总结反思(1)本节课我们学习了抛物线的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义. (2)了解了研究抛物线的焦半径,焦点弦和通径这对我们解决抛物线中的相关问题有很大的帮助.(3)在对曲线的问题的处理过程中,我们更多的是从方程的角度来挖掘题目中的条件,认识并熟练掌握数与形的联系.在本节课中,我们运用了数形结合,待定系数法来求解抛物线方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想.求抛物线弦长问题的方法:(1)一般弦长公式|AB|=|x1-x2|·1+k2=|y1-y2|·1+1k2.(2)焦点弦长设AB是抛物线y2=2px(p>0)的一条过焦点F的弦,A(x1,y1),B(x2,y2),则弦长:|AB|=|AF|+|BF|=x1+x2+p.即求抛物线的焦点弦长,通常是利用焦半径,把点点距转化为点线距(点到准线的距离)解决,这体现了抛物线的特殊性以及求抛物线焦点弦的便捷特点.四、随堂检测1.抛物线x2=-8y的通径为线段AB,O为抛物线的顶点,则AB长是( )A.2B.4C.8D.12.(2015·兰州高二检测)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|= ( )A.6B.8C.9D.103.(2015·阜新高二检测)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,点P为C的准线上一点,则△ABP的面积为( )A.18B.24C.36D.484.已知过抛物线y2=6x焦点的弦长为12,则该弦所在直线的倾斜角是( )A.错误!未找到引用源。

高中数学第二章圆锥曲线与方程2.3.2双曲线的标准方程教案新人教B1新人教B数学教案

高中数学第二章圆锥曲线与方程2.3.2双曲线的标准方程教案新人教B1新人教B数学教案
3.双曲线的标准方程中a、b、c之间的关系是。
二、简单应用
例1.求符合下列条件的双曲线的标准方程
(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8
(2)双曲线的一个焦点坐标是(0,-6),经过点A(-5,6)
教学过程设计
教材处理
师生活动
例2.相距2000m的两个哨所A,B听到远处传来的炮弹爆声,已知当时的声速是330m/s,在A哨所听到爆声的时间比在B哨所听到时迟4s,是判断爆炸点在什么样的曲线上,并求出曲线方程。
例3.(1))已知双曲线 与椭圆 有相同的焦点,求m的值。
(2)双曲线 的一个焦点坐标是(-2,0),求m的值。
板书设计:
教学日记:
双曲线的标准方程
教学
目标
1.了解双曲线的定义,几何图形,和标准方程
2.通过双曲线的标准方程的推导,使学生进一步掌握求曲线方程的一般方法
重点
难点
重点:双曲线的定义及其标准方程
难点:双曲线标准方程的推导
教法
尝试、变式、互动
教具
教学过程设计
教材处理
师生活动
一、新知探究
1.叫做双曲线,叫做双曲线的焦点,叫做双曲线的焦距
2.方程,叫做ቤተ መጻሕፍቲ ባይዱ曲线的标准方程。

高中数学选修2-1《圆锥曲线》教案

高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1的全部内容。

2.3。

2 双曲线的几何性质学习目标1。

了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等)。

2。

理解离心率的定义、取值范围和渐近线方程。

3。

掌握标准方程中a,b,c,e间的关系.知识点一双曲线的性质标准方程错误!-错误!=1(a〉0,b〉0)错误!-错误!=1 (a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c间的关系c2=a2+b2(c〉a〉0,c>b>0)知识点二等轴双曲线思考求下列双曲线的实半轴长、虚半轴长,并分析其共同点.(1)x2-y2=1;(2)4x2-4y2=1.答案(1)的实半轴长为1,虚半轴长为1(2)的实半轴长为错误!,虚半轴长为错误!。

它们的实半轴长与虚半轴长相等.梳理实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y=±x,离心率为 2.1.双曲线错误!-错误!=1与错误!-错误!=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-错误!=1与错误!-错误!=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的离心率为错误!。

2.3.1双曲线及其标准方程公开课教学设计

2.3.1双曲线及其标准方程公开课教学设计

§2.3.1双曲线及其标准方程海南华侨中学王芳文1.教学背景1.1 学生特征分析我授课班级是海南侨中理科班,方法储备上,学生经过学习,已经基本适应高中数学学习规律,但是学习方法还是停留在简单模仿,反复练习层次上,对知识的生成与发展,区别与联系认识不深,缺少抽象概括及分析综合能力。

知识储备上,学生已经系统的学习了直线方程,圆的方程以及椭圆的相关知识,学生熟知椭圆的定义,会根据题目条件求简单的椭圆的标准方程。

但是由于接触学习椭圆的时间还相对较短,对椭圆的基本性质了解不深,而且理性思维比较欠缺,且计算能力的短板约束使得在处理直线与椭圆等综合问题时还存在困难。

把新问题转化为已解决问题的能力有待提高,缺乏选择、调整解决问题策略的能力。

1.2教师特点分析自己教学中的优势:注重问题引导、思路分析、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。

不足:课堂教学语言相对不够准确简练、板书不够清晰美观。

1.3 学习内容分析1、内容分析:学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。

如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。

所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。

从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。

正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。

而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。

在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。

2、例题分析:温故:帮助学生复习椭圆的定义,提出问题。

探究:如图,实验操作:1.取一条拉链,拉开一部分;2.在拉开的两边各选择一点,分别固定在点F1,F2上;3.把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,画出一条曲线.点M在运动过程中满足什么几何条件?(如图(A)、(B))点M满足的几何条件:点M满足的几何条件:从直观上让学生认识双曲线,分析双曲线上动点所满足的几何关系,类比椭圆定义,帮助学生归纳双曲线的定义。

双曲线及其标准方程教学设计

双曲线及其标准方程教学设计

《2.3.1 双曲线及其标准方程》教学设计一、教学内容解析(一)课标要求:《双曲线及其标准方程》是人教A版普通高中课程选修2-1第二章的第三节内容. 课程标准对本节内容的要求是:了解双曲线的定义、几何图形和标准方程.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.(二)教材地位双曲线与科研、生产以及人类生活有着密切的关系,因此,研究它的几何特征及其性质有着极其现实的意义。

学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步巩固、深化和提高.如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章.所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质以及进一步学习抛物线,解决更复杂的解析几何综合问题奠定良好的基础.教学重点:理解和掌握双曲线的定义及其标准方程.突出重点的手段:通过画图揭示出双曲线上的点所满足的条件,再通过讨论归纳得出双曲线的定义;对于双曲线的方程,可类比椭圆方程的推导得出方程并加以比较,加深认识.二、教学目标设置依据教材的地位与作用,以及新课改对教学目标的要求,确定本节课的教学目标为:1、理解双曲线的定义并能独立推导标准方程;2、通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力;3、通过教师指导下的学生交流探索活动,让学生体会数学的理性和严谨,培养学生实事求是和锲而不舍的钻研精神,形成学习数学知识的积极态度.三、学生学情分析授课班级为宁夏吴忠市吴忠中学高二年级学生。

从知识方面来说,学生从必修“平面解析几何初步”到选修“圆锥曲线”,已经学习直线、圆和椭圆,较为系统地研究了他们的性质,对解析几何的基本思想方法有了一定的认识,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,并对数形结合、类比推理的思想方法有一定的体会.从能力方面来说,作为高二年级的学生,其学习能力与理性思维都达到了一定的水平.具备一定的计算、推理、知识迁移、归纳概括和分析问题、解决问题的能力等能力,并对数形结合、类比等思想方法有了一定的感悟.教学难点:双曲线定义的得出和标准方程的建立.突破难点的策略:始终以“类比”作为主线,引导学生动手实验、观察、交流、归纳定义;回顾坐标法求椭圆方程的步骤,亲自体验建立双曲线标准方程的过程.四、教学策略分析著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现.”双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验,所以本节课采用了“启发探究”、“类比教学”的教学方式,重点突出以下两点:1、以类比思维作为教学的主线2、以自主探究作为学生的学习方式授之以“鱼”不如授之以“渔”,教师只是课堂教学的引导者、启发者,在新课程改革理念的指导下,要注重突出学生的主体作用.因此,在学习方法的制定上,将充分发挥学生在学习活动中的作用,通过学生主动探索、动手实践调动学生学习的积极性,转变学生的学习方式,形成理性、严谨的解决问题的态度.五、教学过程设计(一)回顾旧知,实验探索师:前面我们学习了椭圆,回顾一下,椭圆是如何定义的?(请一位同学回答.)生:平面内与两个定点F1 、F2. 的距离的和等于常数2a (2a >| F1 F2 | )的点的轨迹叫做椭圆.师:若将椭圆定义中的“距离之和”改为“距离之差”.即平面内与两个定点21,F F 的距离的差等于非零常数的点的轨迹是什么?学生表示不知道.师:我们不妨通过画图来探究.教师借助于拉链来说明作图方法.(如图)师:取一条拉链,拉开它的一部分,在拉链拉开的两边上各选择一点,分别固定在纸板上的点F 1 ,F 2处,取拉头处为M 点,由于拉链两段是等长的,则221FF MF MF =-,把笔尖放在点M 处,随着拉链的拉开或闭拢,M 点到F 1 ,F 2的距离的差为常数.这样的动点M 的轨迹是什么呢?【学生活动】请一位同学上黑板演示(用两段绳子来模拟拉链,进行作图),其他同学观察、思考.学生画出一条曲线(如图1).教师带领学生分析:这条曲线就是满足下面条件的点的集合:12P={M||MF |-|MF |=}常数师:如果使点M 到F 2的距离减去到点F 1的距离所得的差等于同一个常数,就得到另一条曲线(图2).这条曲线是满足什么条件的点的集合?生:21P={M||MF |-|MF |=}常数.师:现在我们知道,平面内到两定点距离的差为常数的点的轨迹是这样的两条曲线. 这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.它是满足这两个条件 ①12MF -MF =常数②21MF -MF =常数的点的集合.能不能将这两个条件统一起来呢? 生:用绝对值.即12MF MF = 常数.师:很好.下面我们借助于几何画板来更直观地感受一下双曲线的形成.【师生活动】 教师用多媒体演示双曲线的形成,引导学生观察,在点M 运动的过程中, 12MF MF 与的差有什么特征?学生不难发现,这个差是一组相反数,即动点M 满足条件12MF -MF =常数.再次验证画图结果.师:双曲线在科研和日常生产生活中应用广泛.(出示双曲线相关图片——冷却塔、立交 图1 图2桥、广州塔、埃菲尔铁塔) 这是继椭圆之后我们要学习的第二种圆锥曲线.(板书课题:2.3.1 双曲线及其标准方程 指明本节课的学习内容.)【设计意图】通过复习回顾椭圆概念,引出新问题.从学生认知的最近发展区入手,激发学生的求知欲.通过画图让学生直观地感受双曲线的形成,并通过优美图片的展示,渗透数学美的教育,让学生感受数学美的同时体会数学的应用价值. 再次激发学生的学习兴趣.(二)抽象概括,归纳定义提出问题:刚才我们通过直观演示,观察到动点的轨迹是双曲线.你们能根据刚才画双曲线的过程,类比椭圆的定义,归纳概括出双曲线的定义吗?(出示椭圆图形及定义,引导学生类比.)学生讨论交流,很快可以得出结果:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于21F F )的点的轨迹叫做双曲线.两个定点12F ,F 叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.记为21F F =2c .[师生活动]若学生能够得出常数小于21F F ,继续后续问题,如果学生没有发现,教师需要引导学生观察、分析.师:我们通常将定义中的常数记为2a,也就是说,双曲线就是点集:1212P={M |MF |-|MF |=202F F }<<a a ,.【设计意图】本环节在学生经历双曲线形成的基础上,类比椭圆定义,归纳概括双曲线定义,有助于学生对双曲线定义的理解.在这个过程中,培养学生的动手实验能力、归纳概括能力、对比分析能力,体会类比和数形结合思想方法.同时渗透数学美的教育,让学生感受数学美的同时体会数学的应用价值. 再次激发学生的学习兴趣.(三)类比椭圆,建立方程师:得到了双曲线的定义,知道了它的基本几何特征,这只是一种“定性”的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究. 根据解析几何的基本思想方法,我们需要利用坐标法先建立双曲线的方程“定量”的描述,然后通过对双曲线的方程的讨论,来研究其几何性质.师:坐标法建立椭圆标准方程的步骤有哪些?[师生活动]请学生回顾坐标法建立椭圆方程的步骤,分析双曲线的几何特征.请一位同学回答.提出探究内容:你能类比椭圆标准方程的建立过程,建立适当的坐标系,推导双曲线的标准方程吗?【师生活动】这一环节是本节课的难点,但前面经历了椭圆标准方程的建立过程,学生不会感到太困难,因此本环节放手让学生去尝试,有困难可以互相讨论.教师教师巡视、个别予以点拨指导.绝大多数学生会选择建立焦点在x 轴上的双曲线方程.分析如下:(1)建系设点:取过焦点12F ,F 的直线为x 轴,线段12F ,F 的垂直平分线为y 轴(如图所示)建立直角坐标系,设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么12F ,F 的坐标分别是1F (-c,0),2F (c,0).又设点M 与F1、F2的距离的差的绝对值为2a .(2)写动点满足的集合:由定义可知,点M 满足集合:1212P={M |MF |-|MF |=2}={M |MF |-|MF |=2}±a a .(3)列方程(用坐标表示条件):1||MF =,2||MF =2=±a(4)化简方程:将这个方程移项,使式子两边平衡,再两边平方得:2222222222222()44(),:(c -)x -y =(c -)++=±+-+x c y a x c y a a a a 移项整理两边平方可得类比椭圆的标准方程的处理方式进行简化,使其简洁美观 ,即22222x y 1c --=a a(教师待学生得到以上的结论时,请学生展示成果.讲评关键点. 特别强调在方程的形式上可以仿照椭圆的标准方程的处理方式:由双曲线定义2c >2a , 即c >a ,设222c -=b (b >0)a ,代入上式22222x y -=1c -a a ,将式子进一步简化,使其简洁、对称,得到方程:()2222x y -=1>0,b >0ba a . (5)验证说明(由教师带领学生分析.) 师:由推导过程可知,双曲线上任意一点的坐标都满足方程()2222x y -=1>0,b >0ba a ,同时,以方程的解为坐标的点到双曲线的两个焦点1F (-c,0),2F (c,0)的距离之差的绝对值为2a,即以方程的解为坐标的点都在双曲线上.由曲线与方程的关系可知,该方程就是双曲线的方程,我们把它叫做双曲线的标准方程.它表示的双曲线焦点在x 轴上,焦点坐标分别为1F (-c,0),2F (c,0),这里222c +b =a .(教师板书两种形式的标准方程)师:你能得到焦点在y 轴上的双曲线的标准方程吗?生:类比椭圆,只要交换方程中的x 和y 即可.这样就得到了焦点在y 轴上的双曲线的标准方程, 即为()222210,0-=>>y x a b a b.(教师板书) 得到了双曲线的定义和方程.借助于表格进行双曲线再认识.强化概念.【设计意图】这一过程由学生自主完成,这样设计使学生完全成了学习的主人,由被动的接受变成主动的获取.通过双曲线标准方程的建立过程,训练学生的运算能力、推理论证能力、探究能力、分析问题、解决问题的能力,培养学生的合作意识和严谨的学习态度,渗透数形结合的数学思想.并感受双曲线方程、图形的对称美,获得成功的喜悦!(四)初步应用,例题讲析师:学习了新知识,就要应用,来看习题.练习:(1)已知两定点)0,5()0,5(21F F -若动点P 到21,F F 的距离的差的绝对值等于6,则动点P 的轨迹是 ( )A 双曲线 B圆 C射线 D 线段(2)已知两定点)0,5()0,5(21F F -若动点P 满足621=-PF PF ,则动点P 的轨迹是( )A. 双曲线的右支B. 双曲线的左支C. 以1F 为顶点的射线D. 以2F 为顶点的射线例1、已知双曲线两个焦点的坐标为 F1 (-5,0) F2(5,0) ,双曲线上一点P 到F1、F2 的距离之差的绝对值等于6,求双曲线标准方程.【师生活动】先由学生独2立去做,待大部分同学完成后,由学生叙述,教师板书.例1要强调待定系数法求双曲线方程的步骤:先确定焦点位置,再待定出方程,然后求解方程中的a 和b ,最后写出所求方程.例2、求适合下列条件的双曲线的方程(1)a=4,b=5,焦点在x 轴上;(2)a=3,c=5.练习是属于概念辨析题,可以进一步理解双曲线的定义.例1主要是运用待定系数法求解双曲线的标准方程.例2在例1的基础上再次强化待定系数法的应用,同时对学生进行分类讨论数学思想的渗透,达到拓展知识、提高能力的目的.【设计意图】 数学概念是要在运用中得以巩固的,通过例题使学生进一步理解双曲线的定义,掌握双曲线标准方程的求解方法,并在解题过程中渗透数形结合的数学思想.通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识的再次深化.(五)知识总结,形成体系出示问题:1.本节课你学到了什么知识?2.研究双曲线用到了什么思想方法?让学生自己进行总结,相互补充,教师点评:本节课首先通过画图揭示出双曲线上的点所满足的条件,由此归纳概括出双曲线的定义,运用坐标法建立了双曲线的标准方程,在习题中应用待定系数法求双曲线的标准方程.在整个过程中,类比椭圆的定义、图象和标准方程的探究思路来处理双曲线的类似问题.在这一学习过程中也进一步体会了数形结合的思想.【设计意图】以问题形式来引导学生自我总结.通过总结使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力.同时,通过提炼数学的基本思想方法,提高学生的数学素养.(六)布置作业,巩固提高必做题: 课本55页练习2,3题选做题: 课本61页习题A 组2题课外作业:查阅资料:GPS中的双曲线导航原理.【设计意图】作业设计有梯度,分为必做题和选做题,注重不同层次的学生的认知水平,学生可以根据自己的实际学习情况完成作业,尽量做到让不同层次的学生都能有所收获.课外作业为学生利用双曲线性质解决实际问题做准备,既可以拓展学生的知识,又可以让学生体会到数学在现实中的广泛应用.板书设计:板书力求重点突出,结构清晰,美观整齐.六、教学设计说明1. 本节课以新课程的教学理念为指导,充分体现素质教育的重点:培养学生的创新精神和实践能力.2.本节课不仅重视结论,也重视知识的生成过程,整个教学过程注重启发探究、类比教学方式的应用,是研究性教学的一次有益尝试.在教学过程中,教师作为引导者、参与者、合作者,努力引导学生动手、探索、分析,亲身经历知识形成的过程.在整个教学过程中渗透了类比、数形结合等数学思想.3.在教学过程中通过学生动手实践、自主探索,培养其分析、交流、抽象概括及数学表达的能力. 在建立双曲线的标准方程的过程中,提高学生运用坐标法解决几何问题的能力及运算能力.以上就是我对这节课的设计和说明,敬请指正,谢谢!。

高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程课堂导学案新人教B版选修1_1

高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程课堂导学案新人教B版选修1_1

2.2.1 双曲线及其标准方程课堂导学三点剖析一、双曲线的定义【例1】 已知双曲线的两个焦点F 1、F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.解析:若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则双曲线的方程为标准形式.由题意得2a =24,2c =26,∴a =12,c =13,b 2=132-122=25.由于双曲线的焦点在x 轴上,双曲线的方程为2514422y x -=1. 若以线段F 1、F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系,则双曲线的方程为2514422x y -=1. 温馨提示求轨迹方程时,如果没有直角坐标系,应先建立适当的直角坐标系,求双曲线的标准方程就是求a 2、b 2的值,同时还要确定焦点所在的坐标轴.双曲线的焦点所在的坐标轴,不像椭圆那样看x 2、y 2的分母的大小,而是看x 2、y 2的系数的正、负.二、求双曲线的标准方程【例1】 求满足下列条件的双曲线的标准方程.(1)经过点A (1,3104),且a =4; (2)经过点A (2,332)、B (3,-22). 解析:(1)若所求双曲线方程为12222=-by a x (a >0,b >0),则将a =4代入,得22216b y x -=1,又点A (1,3104)在双曲线上,∴29160161b -=1, 解得b 2<0,不合题意,舍去.若所求双曲线方程为2222bx a y -=1(a >0,b >0),同上,解得b 2=9,∴双曲线的方程为91622x y -=1. (2)设双曲线方程为mx 2+ny 2=1(mn <0),∵点A (2,332)、B (3,-22)在双曲线上, ∴⎪⎪⎩⎪⎪⎨⎧-==⎪⎩⎪⎨⎧=+=+.41,31.189,1344n m n m n m 解之,得 ∴所求双曲线的方程为4322y x -=1. 温馨提示求双曲线的标准方程首先要做的是确定焦点的位置.如果不能确定,解决方法有两种:一是对两种情形进行讨论,有意义的保留,无意义的舍去;二是设双曲线方程为mx 2+ny 2=1(mn<0),解出的结果如果是m >0,n <0,那么焦点在x 轴上,如果m <0,n >0,那么焦点在y 轴,在已知双曲线的两个焦点及经过一个点时,可以用双曲线的定义,直接求出a .应加强练习,注意体会.三、确定方程表示的曲线类型【例3】 已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.解析:(1)当k =0时,y =±2,表示两条与x 轴平行的直线.(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆.(3)当k <0时,方程为kx y 4422--=1,表示焦点在y 轴上的双曲线. (4)当0<k <1时,方程为4422y kx +=1,表示焦点在x 轴上的椭圆. (5)当k >1时,方程为4422y kx +=1,表示焦点在y 轴上的椭圆. 温馨提示本题是判定方程所表示的曲线类型.对参数k 讨论时首先要找好讨论的分界点,除了区别曲线类型外,同一类曲线还要区别焦点在x 轴和y 轴的情况.各个击破类题演练1已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2,当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A.26B.23C.3D.2解析:由题意知,P 点的轨迹是双曲线的左支,c =2,a =1,b =1,∴双曲线的方程为x 2-y 2=1.把y =21代入双曲线方程,得x 2=1+41=45,∴|OP |2=x 2+y 2=,464145=+∴|OP |=.26 答案:A变式提升1在△MNG 中,已知NG =4.当动点M 满足条件s in G -s in N =21s in M 时,求动点M 的轨迹方程. 解析:如右图所示,以NG 所在的直线为x 轴,以线段NG 的垂直平分线为y 轴,建立直角坐标系.∵sin G -sin N =21sin M ∴由正弦定理,得|MN |-|MG |=21×4 ∴由双曲线的定义知,点M 的轨迹是以N 、G 为焦点的双曲线的右支(除去与x 轴的交点) ∴2c =4,2a =2,c =2,a =1,∴b 2=c 2-a 2=3.∴动点M 的轨迹方程为x 2-32y =1(x >0,且y ≠0)类题演练2 双曲线2222by a x -=1(a >0,b >0)与直线x =6的一个交点到两焦点的距离分别是30和20,求该双曲线的方程.解:将x =6代入双曲线方程,得22226by a -=1. 则y =±226a ab -, 设一个交点P 的坐标为(6,226a ab -),则由题意,得⎪⎪⎩⎪⎪⎨⎧+==-++-=,,30)6()6(,20302222222222b a c a a b c a 解之得a =5,b 2=.3658925⨯ 故所求的双曲线方程为.136589252522=⨯-y x变式提升2在面积为1的△PMN 中,tan∠PMN =21,tan∠MNP =2,建立适当坐标系,求以M 、N 为焦点且过点P 的双曲线方程.解:以MN 所在直线为x 轴,M N 的中垂线为y 轴建立直角坐标系,设P (x 0,y 0)、M (-c ,0)、N(c ,0)(y 0>0,c >0),如图.则⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯⨯=-=+,1221,2,2100000y c cx y c x y 解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==--==.23,143,332,635222200c a y a x y x 设双曲线方程为 将点P (332,635)代入,可得a 2=125.∴所求双曲线方程为13112522=-y x =1(y >0).类题演练3已知F 1(-8,3),F 2(2,3),动点P 适合|PF 1|-|PF 2|=2a ,当a 为3和5时,P 点的轨迹为( )A.双曲线和一直线B.双曲线和一射线C.双曲线一支和一直线D.双曲线一支和一射线解析:当a =3时,2a =6<|F 1F 2|=10,点P 的轨迹是双曲线的右支.当a =5时,2a =10=|F 1F 2|,点P 的轨迹是以F 2为端点的一条射线.故选D.答案:D变式提升3 如果112||22-=-+-ky k x 表示焦点在y 轴上的双曲线,那么它的半焦距C 的取值范围是( )A.(1,+∞)B.(0,2)C.(2,+∞)D.(1,2) 解析:由题意得,02||01⎩⎨⎧>-<-k k 解得k >2,则c =.132)2|(|)1(>-=-+-k k k 答案:A。

高中数学第二章圆锥曲线与方程2.4.1抛物线的标准方程课堂导学案新人教B版选修2-1(2021学年)

高中数学第二章圆锥曲线与方程2.4.1抛物线的标准方程课堂导学案新人教B版选修2-1(2021学年)

高中数学第二章圆锥曲线与方程2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章圆锥曲线与方程 2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章圆锥曲线与方程 2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1的全部内容。

2。

4。

1 抛物线的标准方程课堂导学三点剖析一、求抛物线的方程【例1】 分别求适合下列条件的抛物线方程。

(1)顶点在原点,以坐标轴为对称轴,且过点A(2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25。

(3)顶点在原点,以坐标轴为对称轴,焦点在直线x +3y+15=0上。

解:(1)由题意,方程可设为y 2=mx 或x 2=ny,将点A (2,3)的坐标代入,得32=m\52或22=n \53,∴m=29或n =34.∴所求的抛物线方程为y 2=29x 或x 2=34y.(2)由焦点到准线的距离为25,可知p=25,∴所求抛物线方程为y 2=5x 或y 2=—5x 或x2=5y 或x2=—5y 。

(3)令x=0得y=—5;令y=0得x =—15.∴抛物线的焦点为(0,—5)或(—15,0).∴所求抛物线的标准方程为y2=60x 或x 2=-20y 。

温馨提示(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程中只有一个参数p,即焦点到准线的距离,常称为焦参数。

二、求动点的轨迹方程【例2】 平面上动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程。

2019-2020学年浙江高二人A数学选修2-1第二章 圆锥曲线与方程_2.3.1 双曲线及其标准方程(讲义)

2019-2020学年浙江高二人A数学选修2-1第二章 圆锥曲线与方程_2.3.1 双曲线及其标准方程(讲义)

2.3.1 双曲线及其标准方程课标要求:1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线定义的集合表示设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由双曲线的定义可知,双曲线可以视为动点M的集合,即点集P={M|||MF1|-|MF2||=常数,常数大于0且小于|F1F2|}.注意:(1)距离的差要加绝对值,否则只是双曲线的一支,若F1,F2表示双曲线的左、右焦点,有两种情形:①若点P满足|PF2|-|PF1|=2a(a>0),则点P在左支上.如图①所示.②若点P满足|PF1|-|PF2|=2a(a>0),则点P在右支上.如图②所示.(2)注意定义中的“小于|F1F2|”这一限制条件,其根据是“三角形两边之差小于第三边”.①若2a=2c,即||PF1|-|PF2||=|F1F2|,根据平面几何知识,当|PF1|-|PF2|=|F1F2|时,动点轨迹是以F2为端点向右延伸的一条射线;当|PF2|-|PF1|=|F1F2|时,动点轨迹是以F1为端点向左延伸的一条射线.②若2a>2c,即||PF1|-|PF2||>|F1F2|,根据平面几何知识,动点轨迹不存在.3.双曲线的标准方程注意:(1)标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,它们恰好为一个直角三角形的三条边,其中c为斜边.注意与椭圆中b2=a2-c2相区别,在椭圆中a>b>0,而双曲线中,a,b大小则不确定.(2)焦点F1,F2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.可以根据项的正负来判断焦点所在的位置,即x2项的系数是正的,那么焦点在x轴上;y2项的系数是正的,那么焦点在y轴上.简言之,“焦点跟着正项走”.4.双曲线的一般方程当ABC ≠0时,方程Ax 2+By 2=C 可以变形为2x C A +2y C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB<0),将其化为标准方程,即21x A +21y B=1.因此,当A>0时,表示焦点在x 轴上的双曲线;当B>0时,表示焦点在y 轴上的双曲线. 5.共焦点的双曲线系方程 与双曲线22x a -22y b =1(a >0,b >0)有公共焦点的双曲线的方程为22x a λ+-22y b λ-= 1(a>0,b>0,-a 2<λ<b 2);与双曲线22y a -22x b =1(a>0,b>0)有公共焦点的双曲线的方程为22x a λ+-22y b λ-=1(a>0,b>0,-a 2<λ<b 2).6.双曲线的焦点三角形问题如图,P 是双曲线22x a -22yb =1上任意一点,当点P,F 1,F 2不在同一条直线上时,它们构成一个三角形——焦点三角形.设∠F 1PF 2=θ,则由双曲线的定义及余弦定理得, ||PF 1|-|PF 2||=2a ⇔|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,① |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos θ=|F 1F 2|2=4c 2,② 由②-①得2|PF 1|·|PF 2|·(1-cos θ)=4c 2-4a 2,则|PF 1|·|PF 2|=221cos bθ-. 又12PF F S=12|PF 1|·|PF 2|·sin θ, 从而12PF F S =b2·sin 1cos θθ-=2tan2b θ.1.已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P 的轨迹是( A ) (A)一条射线 (B)双曲线 (C)双曲线左支 (D)双曲线右支解析:如果是双曲线,那么|PM|-|PN|=4=2a, a=2.而两个定点M(-2,0),N(2,0)为双曲线的焦点, c=2.而在双曲线中c>a,所以把后三个关于双曲线的答案全部排除. 故选A.2.(2018·和平区三模)设F 1和F 2分别为双曲线22x a -22y b =1(a>0,b>0)的左、右焦点,若F 1,F 2,P(0,2b)为等边三角形的三个顶点,且双曲线经过点则该双曲线的方程为(D)(A)x 2-23y =1 (B)22x -22y =1(C)23x -29y =1 (D)24x -212y=1解析:F 1和F 2分别为曲线22x a -22y b =1(a>0,b>0)的左、右焦点,F 1,F 2,P(0,2b)构成正三角形, 所以c,即有3c 2=4b 2=3(a 2+b 2), 所以b 2=3a 2.双曲线22x a -22y b =1过点),所以25a -233a=1,解得a 2=4, 所以b 2=12, 所以双曲线方程为24x -212y =1.故选D.3.(2018·肇庆三模)已知定点F 1(-2,0),F 2(2,0),N 是圆O:x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M,线段F 1M 的中垂线与直线F 2M 相交于点P,则点P 的轨迹是( B ) (A)椭圆 (B)双曲线 (C)抛物线 (D)圆解析:连接ON,由题意可得ON=1,且N 为MF 1的中点, 所以MF 2=2.因为点F 1关于点N 的对称点为M,线段F 1M 的中垂线与直线F 2M 相交于点P,由垂直平分线的性质可得PM=PF 1,所以|PF 2-PF 1|=|PF 2-PM|=MF 2=2<F 1F 2,由双曲线的定义可得点P 的轨迹是以F 1,F 2为焦点的双曲线. 故选B.4.若双曲线2x m -23y =1的右焦点坐标为(3,0),则m= . 解析:由已知a 2=m,b 2=3, 所以m+3=9,所以m=6. 答案:65.一动圆过定点A(-4,0),且与定圆B:(x-4)2+y 2=16相外切,则动圆圆心的轨迹方程为 .解析:设动圆圆心为点P,则|PB|=|PA|+4即|PB|-|PA|=4<|AB|=8. 所以点P 的轨迹是以A,B 为焦点,且2a=4,a=2的双曲线的左支. 又因为2c=8,所以c=4. 所以b 2=c 2-a 2=12, 所以动圆圆心的轨迹方程为24x -212y =1(x ≤-2).答案:24x -212y =1(x ≤-2)题型一 双曲线定义的理解及应用[例1] (1)已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )(A)双曲线 (B)双曲线的一支(C)直线 (D)一条射线 (2)如图,若F 1,F 2是双曲线29x -216y =1的两个焦点,P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,则△F 1PF 2的面积为 .解析:(1)F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.故选D.(2)由双曲线方程29x -216y=1,可知=5.因为P 是双曲线左支上的点, |PF 2|-|PF 1|=2a=6, (*) 将(*)式两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2 =36+2|PF 1|·|PF 2| =36+2×32 =100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=22121212||||||2||||PF PF F F PF PF +-⋅=121001002||||PF PF -⋅ =0,所以∠F 1PF 2=90°,所以12F PF S=12|PF 1|·|PF 2|=12×32=16.答案:(1)D (2)16变式探究:若将例中的条件“|PF 1|·|PF 2|=32”改为“1PF ·2PF =0”,其他条件不变,则|PF 1|·|PF 2|的值为 .解析:由双曲线方程29x -216y=1,可知=5.由题意得,|PF 2|-|PF 1|=2a=6,所以|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36. ① 又1PF ·2PF =0,所以PF 1⊥PF 2.在Rt △PF 1F 2中,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=100. ② 将②代入①式,得2|PF 1|·|PF 2|=64, 所以|PF 1|·|PF 2|=32. 答案:32(1)在解决与双曲线有关的焦点三角形问题时,应注意双曲线定义条件||PF 1|-|PF 2||=2a 的应用.(2)解题的关键是“|PF 1|·|PF 2|”形式的“配凑”,将双曲线定义及图形的平面几何性质(结合正、余弦定理)“和谐”地结合起来,注意整体思想的应用,从而达到简化运算的目的. 即时训练1-1:(1)设P 为双曲线x2-212y =1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积;(2)已知一个动点P(x,y)到两个定点F 1(-1,0),F 2(1,0)的距离差的绝对值为定值a(a ≥0),求点P 的轨迹. 解:(1)因为|PF 1|-|PF 2|=2a=2, 且|PF 1|∶|PF 2|=3∶2, 所以|PF 1|=6,|PF 2|=4. 又因为|F1F 2所以|PF 1|2+|PF 2|2=|F 1F 2|2, 所以12PF F S=12|PF 1|·|PF 2|=12×6×4=12. (2)因为|F 1F 2|=2,①当a=2时,轨迹是两条射线y=0(x ≥1)或y=0(x ≤-1); ②当a=0时,轨迹是线段F 1F 2的垂直平分线,即y 轴,方程x=0; ③当0<a<2时,轨迹是以F 1,F 2为焦点的双曲线; ④当a>2时,轨迹不存在. 题型二 双曲线标准方程的求法[例2] 根据下列条件,求双曲线的标准方程:(1)与双曲线216x -24y =1有相同的焦点,且经过点(2)过点P(3,154),Q(-163,5)且焦点在坐标轴上. 解:(1)法一 因为焦点相同,所以设所求标准方程为22x a -22y b =1(a>0,b>0),所以c 2=16+4=20,即a 2+b 2=20,① 因为双曲线经过点所以218a -24b =1,②由①②得a 2=12,b 2=8,所以双曲线的标准方程为212x-28y =1.法二 设所求双曲线方程为216x λ--24y λ+=1(-4<λ<16). 因为双曲线过点所以1816λ--44λ+=1, 解得λ=4,或λ=-14(舍去).所以双曲线的标准方程为212x-28y =1.(2)法一 当焦点在x轴上时,设标准方程为22x a -22y b =1(a>0,b>0),因为点P,Q 在双曲线上,所以222292251,16256251,9a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩此方程组无解.当焦点在y 轴上时,设标准方程为22y a -22x b =1(a>0,b>0),因为点P,Q 在双曲线上,所以222222591,16252561,9a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得229,16.a b ⎧=⎪⎨=⎪⎩所以双曲线的标准方程为29y -216x =1.法二 设双曲线方程为2x m+2yn =1,mn<0. 因为点P,Q 在双曲线上,所以92251,16256251,9m nm n⎧-=⎪⎪⎨⎪-=⎪⎩解得16,9.m n =-⎧⎨=⎩ 所以双曲线的标准方程为29y -216x=1.利用待定系数法求双曲线标准方程的步骤:即时训练2-1:(1)(2018·天心区校级月考)如图,已知双曲线以矩形ABCD 的顶点A,B 为左、右焦点,且过C,D 两点,若|AB|=4,|BC|=3,则此双曲线的标准方程为 .(2)写出下列条件的双曲线的标准方程.①a=4,c=5,焦点在x 轴上,则标准方程为 ;②a=4,经过点),则标准方程为 . 解析:(1)连接BD(图略),由题意知c=2, |DB|=5,|DA|=|BC|=3, 2a=|DB|-|DA|=5-3=2, 所以故双曲线的标准方程为x 2-23y =1. (2)①设双曲线方程为22x a -22y b =1(a>0,b>0). 因为a=4,c=5,所以b 2=c 2-a 2=25-16=9.所以双曲线的标准方程为216x -29y =1.②若所求的双曲线标准方程为22x a -22y b =1(a>0,b>0),则将a=4代入得216x -22yb =1.因为点)在双曲线上,所以116-21609b =1,由此得b 2<0,不合题意舍去. 若所求的双曲线标准方程为22y a -22x b =1(a>0,b>0),同理解得b 2=9.所以双曲线的标准方程为216y -29x =1.答案:(1)x 2-23y =1(2)①216x -29y =1 ②216y -29x =1题型三 双曲线标准方程的理解[例3] (1)若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( )(A)焦点在y 轴上的双曲线 (B)焦点在x 轴上的双曲线 (C)焦点在y 轴上的椭圆 (D)焦点在x 轴上的椭圆(2)已知21x k--2||3y k -=-1,当k 为何值时,①方程表示双曲线?②方程表示焦点在x 轴上的双曲线? ③方程表示焦点在y 轴上的双曲线?(1)解析:曲线方程可化为2cos x θ+2cos sin y θθ=1,θ是第三象限角,则cos θ<0,cos sin θθ>0,所以该曲线是焦点在y 轴上的双曲线.故选A. (2)解:①若方程表示双曲线,则10,||30k k ->⎧⎨->⎩或10,||30,k k -<⎧⎨-<⎩ 解得k<-3或1<k<3.②若方程表示焦点在x 轴上的双曲线,则10,||30,k k -<⎧⎨-<⎩ 解得1<k<3.③若方程表示焦点在y 轴上的双曲线,则10,||30k k ->⎧⎨->⎩ 解得k<-3.名师点评:(2)中对于①,只要两分母同号,就可以化成双曲线的标准方程;对于②,标准方程为21x k --23||y k -=1;对于③,标准方程为2||3y k --21x k-=1.即时训练3-1:(1)(2018·东湖区校级期中)若曲线24x k ++21y k -=1表示双曲线,则k 的取值范围是( ) (A)[-4,1](B)(-∞,-4)∪(1,+∞) (C)(-4,1)(D)(-∞,4]∪[1,+∞)(2)已知m,n 为两个不相等的非零实数,则方程mx-y+n=0与nx 2+my 2=mn 所表示的曲线可能是( )解析:(1)根据题意,若曲线24x k ++21y k -=1表示双曲线,则有(k+4)(k-1)<0,解得-4<k<1. 即k 的取值范围是(-4,1). 故选C.(2)A 中,由直线位置可知,m>0,n<0,曲线应为双曲线,故A 错;B 中,由直线位置可知,m<0,n>0,曲线应为双曲线,故B 错;C 中,由直线位置可知,m>0,n<0,曲线为焦点在x 轴上的双曲线,故C 正确;D 中,由直线位置可知,m>0,n>0,曲线应为椭圆,故D 错.故选C.。

《双曲线及其标准方程》教学设计+于泳

《双曲线及其标准方程》教学设计+于泳

《双曲线及其标准方程》教学设计1 教材内容与学生状况模拟分析1.1 教材内容分析双曲线是圆锥曲线的重要内容,也是难点内容。

处理好双曲线的教学,也就突破了圆锥曲线教学中的难点。

《双曲线及其标准方程》是苏教版高中数学选修2-1中第二章圆锥曲线与方程的第三节第一课时,主要研究双曲线的概念和双曲线的标准方程(有两种形式)。

它是在学习了椭圆的定义及其标准方程和椭圆的简单性质之后展开的,为进一步学习双曲线的几何性质及应用奠定了基础,同时也为以后的“三种圆锥曲线的统一定义”做好铺垫。

因此,本节内容起到了一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。

双曲线是一种常见的几何图形,在生产、日常生活和科学技术中有着广泛的应用,因此双曲线在解析几何中占有重要的地位。

根据双曲线定义推出的标准方程,为以后用代数方法研究双曲线的几何性质和实际应用提供了必要的工具和基础,是解决实际生活中问题的有力工具之一。

通过本节课的学习,灌输学生学习圆锥曲线中采用的待定系数法和换元法,培养学生观察、分析、归纳、推理的能力,并在教学过程中渗透分类讨论、数形结合的思想。

高中数学课程标准对本节课的教学要求达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用。

《普通高中数学课程标准》明确指出“学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式”。

要倡导积极主动,勇于探索的学习方式,数学教学应从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会,让他们在自己的生活中寻找数学、发现数学、探究数学、认识数学和掌握数学。

让学生亲历探究发现过程,不仅是为了让学生通过多种活动去探索和获取数学知识,以达到对知识的深层理解,更主要的是使学生掌握发现、认识并理解数学的一般方法,学习科学的探究的方法。

高中数学《双曲线及其标准方程》(导学案)

高中数学《双曲线及其标准方程》(导学案)

第二章 圆锥曲线与方程2.2.1 双曲线及其标准方程一、学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.【重点、难点】1.双曲线的定义及标准方程2.双曲线的标准方程的推导及简单应用二、学习过程【复习引入】复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.【导入新课】问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。

两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?【典型例题】【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P (3,154),Q (-163,5); (2)c =6,经过点(-5,2),焦点在x 轴上.【例2】 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点. (1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2【变式拓展】1. 求适合下列条件的双曲线的标准方程:(1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6).2.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.三、总结反思1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.四、随堂检测1.动点P 到点M (1,0),N (-1,0)的距离之差的绝对值为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .(22,0) B .(52,0)C .(62,0) D .(3,0)3.满足条件a =2,一个焦点为(4,0)的双曲线的标准方程为( )A.x 24-y 212=1B.x 212-y 24=1C.x 24-y 216=1 D.x 216-y 24=14.已知双曲线x 216-y 29=1的左支上一点M 到其左焦点F 1的距离为10,求点M 到该曲线左焦点F 2的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 双曲线及其标准方程
课堂导学
三点剖析
一、双曲线的定义
【例1】 已知双曲线的两个焦点F 1、F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.
解:若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则双曲线的方程为标准形式. 由题意得2a=24,2c=26. ∴a=12,c=13, b 2=132-122
=25.
当双曲线的焦点在x 轴上时,双曲线的方程为25
1442
2y x -=1. 若以线段F 1F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系,则双曲线
的方程为25
1442
2x y +=1. 温馨提示
求轨迹方程时,如果没有直角坐标系,应先建立适当的直角坐标系.求双曲线的标准方
程就是求a 2、b 2
的值,同时还要确定焦点所在的坐标轴.双曲线所在的坐标轴,不像椭圆那
样看x 2、y 2的分母的大小,而是看x 2、y 2
的系数的正、负. 二、求双曲线的标准方程
【例2】 求满足下列条件的双曲线的标准方程. (1)经过点A (1,
3
10
4),且a=4; (2)经过点A (2,
3
3
2)、B (3,-22). 解析:(1)若所求双曲线方程为
22
22b y a x -=1(a >0,b >0), 则将a=4代入,得2
2
216b y x -=1, 又点A (1,
3
10
4)在双曲线上, ∴
29160
161b
-=1, 解得b 2
<0,不合题意,舍去.
若所求双曲线方程为2222b
x a y -=1(a >0,b >0),同上,解得b 2
=9,
∴双曲线的方程为
9
162
2x y -=1. (2)设双曲线方程为mx 2
+ny 2
=1(mn <0), ∵点A (2,
3
3
2)、B (3,22-)在双曲线上, ∴⎪⎩⎪⎨⎧
=+=+.
189,1344n m m . 解之,得⎪⎪⎩
⎪⎪⎨⎧
-==.41,3
1n m .
∴所求双曲线的方程为14
32
2=-y x . 三、确定方程表示的曲线类型 【例3】 已知方程kx 2+y 2
=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型. 解:(1)当k=0时,y=±2,表示两条与x 轴平行的直线.
(2)当k=1时,方程为x 2+y 2
=4,表示圆心在原点,半径为2的圆.
(3)当k <0时,方程为k
x x y ---442
22=1,表示焦点在y 轴上的双曲线.
(4)当0<k <1时,方程为442
2y k x +=1,表示焦点在x 轴上的椭圆. (5)当k >1时,方程为442
2y k
x +=1,表示焦点在y 轴上的椭圆. 温馨提示
本题是判定方程所表示的曲线类型题目.对参数k 讨论时,首先要找好讨论的分界点,除了区别曲线类型外,同一类曲线还要区别焦点在x 轴和y 轴的情况.
各个击破
类题演练 1
(2006辽宁高考,9) 已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2.当点P 的
纵坐标是
2
1
时,点P 到坐标原点的距离是( ) A.
2
6
B.23
C.3
D.2
答案:A
变式提升 1
在△MNG 中,已知NG=4.当动点M 满足条件sinG-sinN=
2
1
sinM 时,求动点M 的轨迹方程. 解析:如右图所示,以NG 所在的直线为x 轴,以线段NG 的垂直平分线为y 轴建立直角坐标系
.
∵sinG -sinN=
2
1
sinM , ∴由正弦定理,得|MN|-|MG|=
2
1
×4. ∴由双曲线的定义知,点M 的轨迹是以N 、G 为焦点的双曲线的右支(除去与x 轴的交点). ∴2c=4,2a=2,即c=2,a=1. ∴b 2=c 2-a 2
=3.
∴动点M 的轨迹方程为x 2
-3
2
y =1(x >0,且y≠0). 类题演练 2
双曲线22
22b
y a x -=1(a>0,b>0)与直线x=6的一个交点到两焦点的距离分别是30和20,求该双
曲线的方程.
解:将x=6代入双曲线方程,得226a -22
b
y =1,
则y=±
a
b 226a -,
设一个交点P 的坐标为(6,
a
b
226a -), 则由题意,得⎪⎪

⎪⎪
⎨⎧+==-++-=2222
2
2222,30)6()6(,20302b a c a a b c a ,
解之得a=5,b 2
=
36
589
25⨯. 故所求的双曲线方程为36
589
25252
2⨯=y x =1. 变式提升 2
在面积为1的△PMN 中,tan∠PMN=
2
1
,tan∠MNP=2,建立适当坐标系,求以M 、N 为焦点且过点P 的双曲线方程.
解:以MN 所在直线为x 轴,MN 的中垂线为y 轴建立直角坐标系,
设P (x 0,y 0)、M(-c,0)、N(c,0)(y 0>0,c >0),(如右图)
则⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∙=-=+.122
1
,2,
21000
00
y c c x y c x y 解得⎪⎪⎪⎪


⎪⎪
⎪⎨⎧=
==23,332,63
500c y x . 设双曲线方程为22
a x 224
3a y -==1(y >0),
将点P (
635,6
32)代入,可得a 2
=125.
∴所求双曲线方程为3
11252
2y x -=1(y >0). 类题演练 3
试一试:已知F 1(-8,3)、F 2(2,3),动点P 适合|PF 1|-|PF 2|=2a ,当a 为3和5时,P 点的轨迹为( )
A.双曲线和一直线
B.双曲线和一射线
C.双曲线一支和一直线
D.双曲线一支和一射线 答案:D
变式提升 3
如果k
y k x -+
-12||2
2=-1表示焦点在y 轴上的双曲线,那么它的半焦距C 的取值范围是…( )
A.(1,+∞)
B.(0,2)
C.(2,+∞)
D.(1,2) 答案:A。

相关文档
最新文档