必修三第二章统计复习教案
人教a版必修3第二章统计教案资料
第二章统计初步授课课题:2.1.1简单随机抽样一、教学目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、重点与难点:重点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,难点:能灵活应用相关知识从总体中抽取样本。
三、教学用具:电脑,计算器,图形计算器四、教学方法:尝试,探究五、教学手段(教学用具):课件六、课时安排:一课时七、学情分析:一、授课课题:2.1.2 系统抽样一、教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
二、重点与难点:重点是正确理解系统抽样的概念难点是能够灵活应用系统抽样的方法解决统计问题。
三、教学用具:电脑,计算器,图形计算器四、教学方法:尝试,探究五、教学手段(教学用具):课件六、课时安排:两课时七、学情分析:一、授课课题:2.1.3 分层抽样二、教学目标(三维目标):1、知识与技能(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
3、情感、态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
人教A版高中数学必修3《二章 统计 复习参考题》优质课教案_11
课题:用样本的频率分布估计总体分布本节内容为人教A版《普通高中课程标准实验教科书》必修3第2章第2节第1小节——《用样本的频率分布估计总体分布》的第一课时.一、教学设计1.教学目标分析《数学课程标准》强调统计思想与运用统计思想解决实际问题的能力,要求学生系统地经历提出问题、收集数据、整理分析数据、做出推理与决策的全过程.通过本节的学习,让学生体会统计思想与确定性思想的差异,并能从所获得的数据提取有价值的信息,作出合理的决策.统计与现实生活的联系是非常紧密的,因此本节内容对学生来说应该是充满趣味性和吸引力的.教科书选择居民生活用水定额管理问题,引导学生从具体的问题中总结、抽象出一般规律,让学生体会其中的统计原理,感受统计与实际生活的联系以及在解决现实问题中的作用.通过以上分析,确定教学目标如下:1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,理解数形结合的数学思想和逻辑推理的数学方法.3.通过对样本分析和总体估计的过程,感受数学在实际生活中的作用,通过实例体会频率分布直方图的特征,并利用它分析样本的分布,准确地作出总体估计,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.2.教学内容解析本节内容在高中统计部分占有十分重要的地位,一方面它与前面学习的抽样方法(简单随机抽样、系统抽样及分层抽样)之间有着紧密的联系,是在学习完抽样方法后的第一节课.数据被收集后,很自然地要从中提取出我们所需要的信息,使我们能够通过样本来估计总体.然而数据通常是多而杂乱的,我们往往无法直接从中理解它们的含义.于是,采用什么方法来分析数据就成为急需解决的问题.我们常常借助图、表、计算等方式来分析数据,帮助我们获取数据中的规律,将数据中所包含的信息转化成直观的容易理解的形式.这样,频率分布表和频率分布直方图就自然地产生了.在此基础上,我们就可以对总体作出相应的估计;另一方面本节内容本身就是利用样本估计总体的一个重要方法,它是后面即将要学习的用样本的数字特征估计总体数字特征的基础,二者在思想方法上是一脉相承的,为后续知识的学习作了很好的铺垫.本节的引言首先说明了用统计方法解决实际问题的一般框架,明确了估计总体分布和总体数字特征的重要性.接着通过对“居民生活用水定额管理问题”的探究,引出对总体分布的估计问题及估计总体分布的途径的讨论,这个问题贯穿本节始终.通过对该问题的探究,让学生学习列频率分布表和画频率分布直方图,最后又围绕这个问题的解决方案,让学生尝试用直方图来解决实际问题,体会用样本估计总体的思想.根据以上分析,本节课的教学重点确定为:(1)会列频率分布表,画频率分布直方图;(2)了解频率分布与总体分布之间的关系,体会用样本估计总体的思想.3.教学问题诊断学生在小学学习过频数条形图,在初中就知道了分布的初步概念,对用样本估计总体有一定的认识,也已经学过把样本数据表示成频率条形图的形式,能从图表上直观地看出数据的分布情况,对用图表反映知识有一定的意识,这些都为本节内容的学习做了铺垫.虽然有些学生对直方图有所接触,但具体的操作步骤并不熟悉,同时,学生根据图形处理数据的能力不足,更不会利用图形分析问题、解决问题,对常见的数学思想的认识和应用停留在表面层次上,所以本节课的教学难点确定为:(1)能通过样本的频率分布估计总体分布;(2)体会分布的意义与作用.4.教学对策分析本节课通过对现实生活中实际例子的讲解,以问题探究和动手操作为主要方式,以问题解决为主线,引导学生通过对问题的交流讨论,学会画频率分布表和直方图,让学生体会观察——猜想——发现——归纳的学习方法.由于涉及数据较多,教学中采用多媒体课件辅助教学,如ppt、excel等突出重点,突破难点.5.教学基本流程导入新课→实例探究→操作讨论→方法归纳→应用示例→课堂练习→课堂小结6.教学过程设计(一)导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,武汉市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?(二)实例探究问题1:如果标准太低,会影响居民的日常生活;如果标准太高,则不利于节水.那么你认为,为了较合理地确定出这个标准,需要了解哪些相关信息,做哪些工作?为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此应采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.通过抽样调查,获得100位居民2010年的月均用水量如下表(单位:t)3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.63.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.43.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.83.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.64.13.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.84.33.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.02.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.32.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.42.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.42.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2(三)操作讨论问题2:从表中随意记录下的数据中很难直接看出规律,因此需要对统计数据进行整理分析.从上表中,你能获取哪些信息?很容易发现的是一个居民月均用水量的最大值为4.3,最小值为0.2.问题3:仅仅知道最值,这些数据还是一盘散沙,仍然无法知道用水量集中在哪个区间,如何进一步分析、研究这些数据呢? 分组问题4:进一步,分组如何进行?是组数越多(少)越好吗?分多少组比较合适呢?组分得太多,没有必要,会增加工作量,浪费资源;组分得太少,看不出规律,也达不到效果.因此,组分得太多或太少,都会影响我们了解数据的分布情况.应根据样本容量,对数据适当分组.问题5:我们将样本数据中的最大值和最小值的差称为极差.表中数据的极差是多少?如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?各组数据的取值范围可以如何设定?极差为4.1,共分9组,各组数据的范围可设定为[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].问题6:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种用样本的频率分布估计总体分布的统计思想.问题7:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a 的取值)有何建议?88%的居民月用水量在3t 以下,可建议取a =3.(四)方法归纳问题8:通过上面的讨论,你能归纳出列频率分布表的步骤吗?第一步,求极差.第二步,决定组距与组数.1.00100合计0.022[4,4.5] 0.044[3.5,4) 0.066[3,3.5) 0.1414[2.5,3) 0.2525[2,2.5) 0.2222[1.5,2) 0.1515[1,1.5) 0.088[0.5,1) 0.044[0,0.5)频率频数频数分组第三步,确定分点,将数据分组.第四步,列频率分布表.问题9:有了频率分布表,虽然能反映样本数据的频率分布情况,但不够直观.请大家回忆,我们在函数、线性规划等章节的学习过程中,是如何将已知条件直观化、形象化的?作图问题10:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的频率分布直方图表示.频率分布直方图中=频率小长方形的高组距.那么小长方形的面积表示什么?所有小长方形的面积和=?图1小长方形的面积表示该组的频率.所有小长方形的面积和=1.问题11:你能概括出频率分布直方图的作图步骤吗?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.(五)应用示例例1.为了了解九年级女生身高情况,某中学对九年级女生的身高(单位:cm )进行了一次测量,将所得数据整理后列出了频率分布表如下:(1)求出表中m ,N M n ,,所表示的数;(2)在图2122--中画出频率分布直方图.(六)课堂练习练习1:样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算X 的值为,样本数据落在[6,14)内的频数为.(七)课堂小结1. 频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律.我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2. 频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3. 样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况.二、教学反思本节课我采用分析与思考的方法引导学生的自主探究活动,教给学生分析问题、解决问题的研究方法,培养学生善于动手、善于观察、善于思考的学习习惯.鼓励学生大胆积极参与,使学生在自主探究和合作交流中理解和掌握本节课的内容,力求在整个探究学习的过程中充满师生交流、生生交流以及互动.本节课从问题入手,使学生带着兴趣进入课堂,为学习新知识做好了准备,设计符合学生的认知规律,从具体到抽象,从特殊到一般,从学生熟悉的、有兴趣的问题开始,通过设疑迁疑让学生逐步理解统计的数学思想方法,对学生今后学习和分析数学问题很有帮助.不足之处是在学生探究这个环节上留给学生思考的时间少了点;同时,对于频率分布直方图中为什么用频率/组距作为纵坐标,而不直接用频率作为纵坐标,我个人还存在疑惑..本节课,我觉得基本上达到了教学目标,在整个教学过程中学生的参与积极性也还不错,暴露出的一个问题就是学生的语言表达不是很好,缺乏数学语言的准确性、简洁性.。
高中数学必修三《统计章末复习课》优秀教学设计
(1)两个变量之间的相关关系的研究,通常先作变量的散点图,根据散点图判断这两个变量最接近于哪种确定性关系(函数关系).
(2)求回归直线方程的步骤:
①先把数据制成表,从表中计算出 , , x , xiyi;
②计算回归系数 , .公式为
③写出回归直线方程 = x+ .
三、考试题型探究
s= .有时也用标准差的平方s2——方差来代替标准差,实质一样.
例3甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为
甲:9910098100100103
乙:9910010299100100
(1)分别计算两组数据的平均数及方差;
(2)根据计算结果判断哪台机床加工零件的质量更稳定.
(2)画出频率分布直方图;
(3)估计数据小于30的数据约占多大百分比.
解(1)样本的频率分布表如下:
分组
频数
频率
累积频率
12.5~15.5
6
0.06
0.06
15.5~18.5
16
0.16
0.22
18.24.5
22
0.22
0.62
24.5~27.5
20
0.20
例1某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?
解用分层抽样抽取.
∵20∶100=1∶5,∴ =2, =14, =4,
即从副处级以上干部中抽取2人,一般干部中抽取14人,干事中抽取4人.
因副处级以上干部与干事人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部采用00,01,…,69编号,然后用随机数法抽取14人.
人教A版高中数学必修3《二章 统计 小结》优质课教案_14
第二章统计复习教案一、教学目标:1、整合本章知识点,完善知识结构,体会知识之间的相关关系,能应用所学知识解决一些简单的统计问题。
2、在归纳总结知识的过程中完善知识结构。
3、让学生在学习中自觉应用类比,数形结合等数学思想方法帮助学习。
二、教学重难点重点:构建本章(统计)的知识结构,能应用所学知识解决简单的统计问题。
难点:应用所学知识解决简单的统计问题。
三、教学方法:归纳总结法,讲练结合法四、教学用时:1课时五、教学过程设计2、用样本估计总体(1)用样本估计总体的两种情况 ①用样本的频率分布估计总体的分布.②用样本的数字特征估计总体的数字特征. (2)绘制频率分布直方图的步骤 (3)频率分布折线图和总体密度曲线频率分布直方图――――――――→连接各小长方形上端的中点频率分布折线图 ――――――――――――→样本容量不断增大,频率折线图接近于一条光滑曲线总体密度曲线 (4)茎叶图的制作步骤 ①将数据分为茎和叶两部分;②将最大茎和最小茎之间数据按大小次序排成一列; ③将各个数据的“叶”按大小次序写在茎右(左)侧.(5)数字特征①众数:一组数据中重复出现次数最多的数.②中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.③平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.④标准差的计算公式: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2 ⑤方差的计算公式:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],想一想:众数、中位数、平均数与频率分布直方图的关系。
3、两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. (2)正相关与负相关:① 正相关:散点图中的点散布在从左下角到右上角的区域. ② 负相关:散点图中的点散布在从左上角到右下角的区域. (3)回归直线的方程① 回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.② 回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程.二、巩固练习1、要从已编号(1—60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的枚导弹的编号可能是( ) A 、5,10,15,20,25,30 B 、3,13,23,33,43,53 C 、1,2,3,4,5,6 D 、2,4,8,16,32,482、某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则普通职员,中级管理人员和高级管理人员各应该抽取多少人( )A 、8,15,7B 、16,2,2C 、16,3,1D 、12,3,5 3、右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( ) A 、161cm B 、162cmC 、163cm D 、164cm4、为了了解某地区高中学生的身体发育情况,抽查了该地区100名年龄在17.5~18岁的男生体重(单位:kg ),得到频率分布直方图如下: 求这100名学生中体重在56.5~64.5范围内的人数.5、某商场为了调查旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得数据整理后,画出频率分布直方图如下,已知图中从左到右前3个小矩形的面积之比为1︰2︰3,第二小组的频数为10. (1)求样本容量;(2)估计购鞋尺寸在37.5~43.556.5 60.5 64.5 68.5 72.56、已知某人5次上班途中所花时间的平均数为10分钟,方差为2分钟,其中有三次上班途中所花时间分别为9分钟,10分钟和11分钟,求另两次上班途中所花的时间.7、随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.8、某工厂经过技术改造后,生产某种产品的产量x 吨与相应的生产能耗y 吨标准煤有如下几组样本数据:(1)样本数据是否具有线性相关关系?若是,求出其回归方程; (2)预测生产100吨产品的生产能耗约需多少吨标准煤?三、课堂小结1、本章中统计的相关知识。
高中数学必修三《统计复习课》优秀教学设计
第二章:统计复习课学习目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差.二.知识梳理回顾本章知识共分为三个单元:1.随机抽样:三种方法------简单随机抽样、系统抽样、分层抽样2.用样本估计总体:两种方法------用样本的频率a:分布估计总体分布、用样本的数字特征估计总体的数字特征.①用样本的频率分布估计总体分布:频率分布直方图的特征.画茎叶图的步骤.②用样本的数字特征估计总体的数字特征:利用频率分布直方图估计众数、中位数、平均数.b:标准差,方差.3.变量间的相关关系:变量之间的相关关系:确定性的函数关系.带有随机性的变量间的相关关系.两个变量的线性相关:a、散点图的概念.b、正相关与负相关的概念.c、线性相关关系.d、线性回归方程. ※ 典型例题1.在一次有奖明信片的100 000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用_______抽样法.3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.5.有一个样本容量为50的样本数据分布如下,[)5.15,5.12 3;[)5.18,5.15 8;[)5.21,5.18 9;[)5.24,5.21 11;[)5.27,5.2410;[)5.30,5.27 6;[)5.33,5.30 3.估计小于30的数据大约占有( ) A.9400 B.600 C.8800 D.1200※ 动手试试1.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A .甲班10名学生的成绩比乙班10名学生的成绩整齐B .乙班10名学生的成绩比甲班10名学生的成绩整齐C .甲、乙两班10名学生的成绩一样整齐D .不能比较甲、乙两班10名学生成绩的整齐程度2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ). A .3.5 B .-3 C .3 D .-0.53.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数不变,方差改变D .平均数改变,方差不变三、总结提升本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
高中数学 第二章 统计教案 苏教版必修3
第2章统计§2.1抽样方法2.1.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.过程与方法通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题、解决问题的能力.3.情感态度与价值观通过身边事例研究,体会抽样调查在生活中的应用.●重点难点重点:掌握简单随机抽样的特点及常见的两种方法(抽签法、随机数表法).难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性.通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才是比较科学的,结论才是可靠的,通过学生的实际操作,逐步引导学生总结出随机抽样的概念,体会随机抽样在处理现实问题中的必要性和重要性,让学生在概念中找关键词使之加深对概念的理解,并归纳实施步骤从而强化重点.教学时充分让学生自己分析、判断,自主学习、合作交流.采用讨论发现法教学,通过抓阉等游戏尽可能的让学生动手操作,体验并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性,从而化解难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,在教法上,建议教师采用“启发—探究—讨论”式教学模式,以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.运用由浅入深的问题形式,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力,增长才干.由于本节课内容实例多,信息容量大,文字多,采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,从而大大提高学生的学习兴趣.●教学流程创设问题情境,引出问题:要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?⇒引导学生结合初中学习过的抽样知识,观察、比较、分析,得出简单随机抽样的概念.⇒通过引导学生回答所提问题理解简单随机抽样的条件、特征及讨论由简单抽样能够解决的问题.⇒通过例1及其变式训练,使学生理解简单随机抽样的概念与解决问题的方法.⇒通过例2及其变式训练,使学生掌握利用抽签法设计抽样方案问题的解题策略.⇒通过例3及其变式训练阐明随机数表法的原理,使学生明确用随机数表法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体把握这两种抽样设计的优缺点及应用范围.课标解读1.理解简单随机抽样的概念.(重点) 2.学会两种简单随机抽样的方法.(重点) 3.能合理地从总体中抽取样本.(难点)简单随机抽样【问题导思】要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?【提示】从中抽取一定数量的罐头作为检验的样本.一般地,从个体数为N的总体中逐个不放回地抽取n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.抽签法和随机数表法都是简单随机抽样.抽签法【问题导思】假设在你们班选派3个人参加学校的某项活动,为了体现选派的公平性,用什么方法确定具体人选?【提示】抽签法.抽签法的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.随机数表法【问题导思】当总体的个数较多时,怎么抽取质量比较高的样本?【提示】随机数表法随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.简单随机抽样的判断下列抽取样本的方式是否属于简单随机抽样,并说明理由.(1)从全班50名同学中,选出3名三好学生.(2)从无限多个个体中,选出100个个体作样本.(3)从100件产品中选5件检验质量,抽取一件检验后放回,再抽一件,共抽五次.(4)从全班同学中选两名参观世博会,将全班同学的学号写在大小相同的纸片上,放入箱子里搅拌均匀后,一次取出两张,由纸片上的学号确定人选.【思路探究】根据简单随机抽样的特点逐一判断即可.【自主解答】(1)不是简单随机抽样,选三好学生时,不是每位学生被选上的机会都相等.(2)不是简单随机抽样,因为总体N无限,不符合简单随机抽样的定义.(3)不是简单随机抽样,因为是有放回抽样.(4)不是简单随机抽样,因为一次取了两张纸片,不是逐个抽取.1.简单随机抽样的特点是:(1)总体有限;(2)不放回抽取;(3)逐个抽取;(4)机会均等,不满足其中任何一条都不是简单随机抽样.2.判断一种抽样是不是简单随机抽样,评判的惟一标准就是其特征,尤其是总体有限容易被忽视,如本例中的(4),容易误判为简单随机抽样.判断下列抽取样本的方法是否是简单随机抽样:(1)从8台电脑中不放回地逐个随机抽取2台进行质量检验(假设8台电脑已经编号,对编号随机抽取).(2)某班50名同学,指定年龄最小的5个人参加某项活动;(3)从20个零件中一次性抽出3个进行质量检测.【解】(1)是简单随机抽样,简单随机抽样就是从有限个个体中逐个不放回地抽取个体构成样本.(2)不是简单随机抽样,因为每个个体被抽到的机会不是均等的.(3)不是简单随机抽样,因为不是逐个抽取的.抽签法的应用从某班46名学生中随机选出5名参加某项活动.请用抽签法设计抽样方案.【思路探究】按抽签法的步骤进行抽样.【自主解答】第一步,编号.一般用正整数1,2,3,…,46来给总体中所有的个体编号;第二步,写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步,均匀搅拌.把上述号签放在同一个容器内均匀搅拌;第四步,抽取.从容器中逐个连续地抽取5次,得到一个容量为5的样本.1.一个抽样能否用抽签法关键看两点:一是制签方便,二是易被搅匀.这就要求总体中个体数量不多.2.采用抽签法最重要的是保证每个个体等可能的被抽取,这就要求把号签搅匀.3.若个体中已有编号如考号、学号、标签号码等,可不必重新编号.从40件产品中抽取10件进行质量检验,写出抽取样本的步骤.【解】第一步将40件产品按1,2,…,40进行编号;第二步将1~40这40个号码写在形状、大小均相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步依次从箱中抽取10个号签;第五步将抽到的10个号签上的号码对应的产品取出,即得样本.随机数表法有一批机器,编号为1,2,3, (112)请用随机数表法抽取10台入样,写出抽样过程.【思路探究】各机器的编号位数不一致,需将编号进行调整.【自主解答】第一步将原来的编号调整为001,002,003, (112)第二步在随机数表中,任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读;第三步从数“3”开始,向右读,每次读三位,凡是不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步对应原来的编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.1.随机数表的构成与特点:随机数表是由0,1,2,…,9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通常根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.2.随机数表的产生方法并不唯一,如抽签法、抛掷骰子法、计算机生成法,编号时号码的位数一定要一致.读数时,读取的每个数的位数与编号的位数也要一致.3.使用随机数表法时,选取开始读的数是随机的,读数的方向也是随机的.因选取开始读的数不同,读数方向不同,所以抽取的样本号码可能不一致,但均符合抽样的公平性、等可能性.只要按随机数表法的步骤抽取,都是符合要求的、正确的.某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?【解】简单随机抽样分两种:抽签法和随机数表法.尽管此题总体中的个体数不算少,但依题意其操作过程却是等可能的.法一首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用抽签法,则做1 200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,得到一个容量为50的样本.法二首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用随机数表法,则在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取四位,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读.一直到取够50个为止.忽视抽样方法步骤出错某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.【错解】第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.【错因分析】设计方案时,没有按照抽签法的一般步骤进行方案设计,不符合简单随机抽样的特点.【防范措施】 1.设计方案时步骤要合理、正确.2.方案的设计要符合简单随机抽样的等可能性.3.正确掌握抽签法的步骤.【正解】第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.1.抽签法与随机数表法都要求被抽取样本的总体的个体数有限,都是从总体中逐个地进行抽取,都是不放回抽样.2.当总体中的个体数较多,样本容量较小时,抽签法将总体的编号“搅拌均匀”比较困难,因此用此种方法产生的样本代表性差的可能性很大,而随机数表法中每个个体被抽到的可能性相等,用这种方法产生的样本代表性较好.3.简单随机抽样每个个体入样的可能性都相等.1.简单随机抽样的常用方法有________和________.随机地选定随机数表读数,选定开始读取的数后,读数的方向可以是________.【解析】根据简单随机抽样的分类及随机数表法的操作步骤可知.【答案】抽签法随机数表法任意的2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是________.①要求总体的个数有限②从总体中逐个抽取③这是一种不放回抽样④每个个体被抽到的机会不一样,与先后顺序有关【解析】简单随机抽样除了具有特点①②③外,还具有等可能性,每个个体被抽到的机会相等,与先后顺序无关,故只有④不正确.【答案】④3.某校有教学班100个,每班50人,要求每班选派2人参加“学生代表大会”,在该问题中,样本容量是________.【解析】N=100×50=5 000,抽取比例250=1 25.∴n=5 000×125=200.【答案】2004.从20名学生中要抽取5名进行问卷调查,写出抽样的过程.【解】①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌;④依次从箱子中取出5个号签,按这5个号签上的号码抽取学生,即得样本.一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.(2013·苏州高一检测)采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.(2013·江西高考改编)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816657208026314070243699728019832049234493582003623486969387481 【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.(教师用书独具)中央电视台希望在春节联欢晚会播出一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把春节联欢晚会收视率调查表放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快反馈到我的电脑中,这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一个住户发一份是否在除夕那天晚上看中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案是否能够获得比较准确的收视率?为什么?【思路点拨】判断的标准是所有可能看电视的人群是否有相同的的机会被抽中.【规范解答】调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是上网而且登录该网址的人群,那些不能上网的人,或者不登录该网址的人就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种方案都有一定的片面性,不能得到比较准确的收视率.1936年,美国进行总统选举.竞选的是民主党的罗斯福和共和党的兰登,罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人中谁能当选,采用了大规模的模拟选举.他们以电话簿上的地址和俱乐部成员名单上的地址发出100万封信,收到回信20万封.在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力.他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统.这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊.试分析这次调查失败的原因.【解】统计不当的原因,其中之一是选取了不适当的样本作为统计调查的基础,如果抽样时使用了不适当的方法,往往得到错误的结论.失败的原因:①抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取.1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭受沉重打击.“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,“喝了富人的血”,但广大的美国人民从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.②样本容量相对太小也是导致估计出现偏差的一个原因,因为样本容量越大,估计才越准确,发出的信不少,但回收率太低.2.1.2 系统抽样(教师用书独具)●三维目标1.知识与技能(1)理解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感态度与价值观:(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,合作探讨、相互交流的能力,概括归纳的能力.●重点难点重点:系统抽样的定义及操作步骤;难点:系统抽样中的处理办法.(教师用书独具)●教学建议在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力.让学生体会学数学的成就感.通过师生的互动,理解系统抽样概念.●教学流程创设问题情境,引出问题:从500名学生中抽取50名学生调查对老师的意见除了用简单随机抽样外还有其他方法吗?⇒引导学生结合前面学习过的简单随机抽样的知识,观察、比较、分析,得出系统抽样的概念.⇒通过引导学生回答所提问题,理解系统抽样的应用条件、应用范围及由系统抽样能够解决的问题.⇒通过例1及其变式训练,使学生掌握系统抽样概念问题的解题方法.⇒通过例2及其变式训练,使学生掌握简单的系统抽样的方案设计问题的解题策略.⇒通过例3及其变式训练阐明需剔除个体的系统抽样的方法,使学生明确抽样方法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.。
人教A版高中数学必修3《二章 统计 复习参考题》优质课教案_16
人教版必修三第二章统计教案【教学背景分析】本章是高考的一个重要考点,每年的分值大概是15-20分,而且是相对简单的题目,通过对这一章节的学习,要培养学生统计能力。
【教学目标】1.通过小结与复习,梳理本章知识内容,强化知识间的内在联系,提高综合运用知识解决问题的能力.2.通过例题的讲解、讨论和进一步的训练,提高学生灵活运用本章知识解决问题的能力.3.培养学生归纳思维、统计论断的判断性思维能力.【教学重点和难点分析】重点:培养学生的统计观念.难点:用知识解决实际问题.【教学过程】教学环节一:知识点归纳,形成知识框架教学内容:一、随机抽样(1)简单随机抽样①抽签法:编号制签搅拌抽签确定样本②随机数法:编号确定开始的数字随机数表选号确定样本(2)系统抽样:编号分段间隔确定第一个个体编号取样本(3)分层抽样:将总体分成互不相交的层,按照一定比例,从各层中抽取一定数量的个体,再将取出的各个个体合起来作为样本二、用样本估计总体1、用样本的频率分布估计总体分布(1)频率分布表:①求极差=最大值-最小值②决定组数与组距组数=极差/组距(组距=极差/组数)③再将数据分组④列表:分组频数(2)频率分布直方图:(3)频率分布折线图:连接频率分布直方图中各长方形上端的中点(4)总体密度曲线:样本容量增加,组数增加,组距减小。
频率分布折线图会就会来越接近一条平滑的曲线(5)茎叶图:一般由两位数构成的数茎:十位上的数字为茎;叶:个位上的数字为叶由三位数构成的数茎:十位和百位上的数字为茎;叶:个位上的数字为叶二、用样本估计总体2、用样本数字特征估计总体的数字特征(1)众数、中位数、平均数:①众数:一组数据中出现次数最多的数叫做众数;如果有两个或两个以上数据出现的次数最多且一样多,则这些数据 都是众数 ;如果所有数据出现次数相等,则这组数据没有众数。
②中位数:将一组数据从小到大排列后,若个数为奇数个,则位置在最中间的那个数叫做中位数;若为偶数个时,位置处在最中间的两个数的平值为这组数据的中位数。
必修3第二章 统计 教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二章统计统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据。
在客观世界中,需要认识的现象无穷无尽。
要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象。
如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题。
现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视。
“课标”中指出统计与概率的基础知识已经成为一个未来公民的必备常识。
从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学要求随着学段的升高逐渐提高。
在义务教育阶段的统计与概率知识的基础上,“课标”要求教科书通过实际问题及情景,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
全章共安排了3个小节,教学约需16课时,具体内容和课时分配(仅供参考)如下:2.1 随机抽样约5课时2.2 用样本估计总体约5课时2.3变量间的相关关系约4课时实习作业约1课时小结约1课时一、教科书内容与课程学习目标通过实际问题情境,学习随机抽样、用样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异。
本章知识展开的结构框图如下:现代社会是信息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。
高中数学 第二章 统计小结与复习教案 新人教A版必修3-新人教A版高一必修3数学教案
第二章统计教学目标重点:会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题.难点:能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.能力点:如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测.教育点:提高学生的认知水平,为学生塑造良好的数学认识结构.自主探究点:例题及变式的解题思路的探寻.易错点:由于学生运算能力差,因此求回归直线方程涉及的运算学生容易出错.学法与教具1.学法:讲授法、讨论法.2.教具:学案导学.(1)作样本频率分布直方图的步骤:注意:频率分布直方图纵坐标表示:____________.(2)茎叶图作图步骤:(3)直方图与茎叶图的优缺点:3.用样本的数据特征估计总体的数据特征(1)利用频率直方图中估计众数、平均数、中位数的值:估计众数______________________________________.估计平均数____________________________________.估计中位数____________________________________.(2)标准差与方差的公式:标准差____________________s=.方差2_____________________s=.(3)标准差与方差的作用:4.变量间的相关关系(1)两变量间的关系有:________________和________________.(2)两变量相关关系的确定方法:____________________________________.(3)用最小二乘法求回归直线方程的步骤:(二)基础检测1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法分别是________________.答案:分层抽样,简单随机抽样.2.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6样本,则抽取的样本号码是_______________.答案:3,9,15,21,27,33,39,45,51,3.(12山东文高考) 右图是根据部分城市某年6气温(单位:℃)数据得到的样本频率分布直方图气温的范围是[20.5,26.5],样本数据的分组为[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为_________.答案:9./第3题图4.(10山东理)样本中共有五个个体,其值分别为a ,0,1,2,3, 若该样本的平均值为1,则样本方差为_______________. 答案:2.5.(11辽宁)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 和年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:0.2540.321y x =+.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______________万元.答案:0.254. 三、【范例导航】例1.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标A 类轿车10辆.(1)求z 的值; (2)B 类,C 类轿车各应抽取多少? (3)在C 类轿车中,按型号分层抽样,应各抽取多少?【分析】按类分层或者是按型号分层,抽样比是相同的.【解答】(1)设该厂这个月共生产轿车n 辆,则由题意得5010,100300n =+所以2000n =, 则2000(100300)150450600400z =-+---=.(2)B 类轿车共有150+450=600(辆).按抽样比10400抽取,则应抽取1060015400⨯=(辆). 同理,C 类应抽取10(400600)25400+⨯=(辆).(3)在C 类轿车中,按型号抽样时抽样比仍为140.则舒适型应抽取14001040⨯=(辆);标准型应抽取16001540⨯=(辆).【点评】通过本题的具体计算可看出,无论是按类抽取还是按型号抽取,每个个体入样的概率都是140. 变式训练:为了了解参加某种知识竞赛的1000名学生的成绩,要从中抽取50名学生的成绩,采用什么抽样方法比较恰当?简述抽样过程. 答案:适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3,,1000;(2)将总体按编号顺序均分成50部分,每部分包括20个个体; (3)在第一部分的个体编号1,2,3,,20中,利用简单随机抽样抽取一个号码,比如是18;(4) 以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,, 998. 小结:1.三种抽样方法的共同特点是在抽样过程中每个个体被抽取的机会相同,体现了这些抽样方法的客观性和公平性.2.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当总体中的个体有明显的层次差异,层次分明时,常采用分层抽样.3.系统抽样时要注意所得样本号码的特点,而分层抽样要正确确定抽样的比例.例2.为了了解高二学生的体能情况,我校抽取部分高二学生进行一分钟跳绳次数测试,将所得数据整理后,图所示,图中左到右各小长方型的面积之比为小组频数为12.问:(1)(2)(3)求一分钟跳绳的众数,中位数和平均数.(4)若一分钟跳绳次数在110次以上(含110试估计该校全体高一学生的达标率是多少?【分析】(1)考查频率分布折线图与频率分布直方图的关系; (2)根据从左到右各小长方形的面积之比为 2:4:17:15:9:3,第二小组频数为12,用比值做出样本容量.做出的样本容量和第二小组的频率.(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数的估计值,处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数的估计值,平均数的估计值是频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(4)根据上面做出的样本容量和前两个小长方形所占的比例,用所0.034 0.0180.03有的符合条件的样本个数之和,除以样本容量得到概率. 【解答】(1)如图所示(2)∵从左到右各小长方形的面积之比为 2:4:17:15:9:3,第二小组频数为12.∴样本容量是(24171593)121504+++++⨯=∴第二小组的频率是 120.08150=.(3)由图可知众数为1101201152+=,又∵前三个小矩形的面积之和为0.46.∴设中位数为120+x ,则0.460.030.5x +⨯=,得x =43,∴中位数为3643,而平均数为0.04950.081050.341150.31250.181350.06145121.8⨯+⨯+⨯+⨯+⨯+⨯=.(4)∵次数在110次以上(含110次)为达标,∴在这组数据中达标的个体数一共有17+15+9+3, ∴全体学生的达标率估计是1715930.8850+++=.【点评】本题考查频率分步直方图的应用,是一个基础题,这种题目解题的关键是看清图中所给的条件,知道小长方形的面积就是这组数据的频率. 变式训练:1.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图为如图(1)根据茎叶图判断哪个班的平均身高较高;用茎叶图分析数据的好处?(2)分别计算甲班、乙班的样本平均数及方差;(3)根据计算结果对两班的身高用其稳定性进行比较,写出统计结论. 答案:(1)由茎叶图不难看出乙班的平均身高较高;用茎叶图处理现有的数据不但可以看出数据的分布情况, 而且可以看出每组中的具体数据.(2)由茎叶图,得甲班的10名同学的身高分别为182 179 179 171 170 168 168 163 162 158甲班 乙班 18171615 3 73 6 8 9 2 5 8 99 9 1 0 2 8 8 3 2 8183 187 173 176 178 179 162 165 168 159, 得他们的平均身高为2173x cm =,22277.2s cm =.(3)由(2)的计算结果可以发现甲班的平均身高为170cm ,乙班的平均身高为173cm .由此可知乙班的平均身高比甲班的平均身高高,但乙班的身高不够稳定,而甲班的身高比较集中在平均身高附近. 2.某次数学考试中,高一(20)班有20人成绩记录如下:(单位:分)125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128王老师想做出以上数据的频率分布直方图,他把这些数据分成5组,分组情况为[120.5,122.5),[122.5,124.5),[124.5,126.5),[126.5,128.5),[128.5,130.5].(1)请你帮他完成频率分布直方图;(2)根据画出的直方图,求这组数据的众数、中位数、平均数. 答案:(1)略. (2) 众数为125.5,中位数为125.75,平均数为125.8. 小结:1.用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,列表与作图时要注意其方法步骤;对于茎叶图要正确画图,能够根据图中所给的数据进行分析.2.在频率分布直方图中能够正确估计样本数据的众数、中位数、平均数,并且知道它们给分析数据带来的不同影响,不同的数字特征代表着不同的信息.由于需要不同信息而选择不同的数字特征,对同一组数据的评价可能会相差很大.3.会计算样本数据的方差、标准差,知道它们的作用;在实际应用中当所得数据平均数不同时,须先分析平均水平,再计算标准差(方差)分析稳定情况.例3.假设关于某设备的使用年限x 和所支出的维修费用y (万元)(1)性回归方程y bx a =+的回归系数 b ,a ;(2)估计使用年限为10年时的维修费用.【分析】(1)利用散点图可直接判断两变量是否线性相关;再利用公式1122211()(),()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑a y bx =-来计算回归系数.有时为了计算方便常制表对应求出2,,i i i x y x ,以利于求和.(2)获得线性回归方程后,取x =10即得所求. 【解答】(1)散点图如图所示: 由散点图可知两变量线性相关.于是有2112.3 1.23905410b -===-⨯,5 1.2340.08a y bx =-=-⨯=.(2)回归直线方程是 1.230.08y x =+,当x =10(年)时,1.23100.0812.38y =⨯+=(万元),即估计使用10年时维修费用是12.38万元. 【点评】判断两变量是否线性相关一种简便可行的方法就是绘制散点图.根据散点图可以很容易看出两个变量是否具有相关关系.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测. 变式训练:1.小王记录了产量x (吨)和能耗y (吨标准煤)对应的四组数据,用最小二乘法求出了0.70.35y x =+,不慎将一滴墨水滴于表内,表中第二行第四列的数据已无法看清,据您判断这个数据应该是多少?答案:2.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是多少cm ?答案:185cm . 小结:求线性回归直线方程应注意:先画散点图判断两变量是否线性相关;若线性相关,再利用公式计算,a b 的值,进而求出回归直线方程,但要注意运算顺序;然后就可以利用回归方程进行估计和预测. 四、【解法小结】1.对于随机抽样问题:掌握三种抽样方法的区别与联系,系统抽样的样本号码的特点以及分层抽样的比例的确定.2.应用频率分布直方图时,需明确纵轴表示的是频率/组距,进而进行相关计算.3.对于标准差、方差记准公式,知道其作用.4.掌握用最小二乘法求回归直线方程的步骤,注意运算顺序. 五、【布置作业】 必做题:1.(2012山东理高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为 1,2,,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间 [1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为_______________.2. (2012湖北文高考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有_______________人.3.(2013山东文高考)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91分.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则7个剩余分数的方差是_______________.4.(2011广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x法,预测小李该月6号打6小时篮球的投篮命中率为___________. 5.(2012广东文高考)某校100位学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是8 9 7 74 0 1 0 x 9 10.04 0.03 0.02[70,80),[80,90),[90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生的语文成绩某些分数段的人数x 与数学成绩 相应分数段的人数y 之比如下表所示,求数学成绩在[50,90) 之外的人数.6.某学校高一(3)班甲、乙两名同学的最近5次(1)(2)分别用平均数和中位数分析甲、乙两位同学中,哪位同学成绩较好;(3)(单位:分)如下:并说明理由.必做题答案:1.10 2. 6 3.3674. 0.5, 0.535. (1) a =0.005 (2)73 (3)106.(1)甲的平均分、中位数分别为90、95,乙的平均分、中位数分别为86、98;(2)从平均分看,甲的平均分高,甲的成绩较好;从中位数看,乙的中位数大,乙的成绩较好.(3)丙的平均数、中位数、方差分别为90、90、44.4,甲的方差为158.8.由于两人的平均分相同,所以从平均分看,甲、丙成绩同样好;从中位数看,甲的中位数高,甲的成绩高;从方差看,丙的方差小,丙的成绩较稳定,所以丙的成绩好. 选做题:(2012山西模拟)如下图,图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图甲中从左向右第一组的频数为4000.在样本中记月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000)的人数依次为A1,A2,…,A6.图乙是统计图中月工资收入在一定范围内的人数的程序框图,图乙输出的S=______________.(用数字作答).0.00080.00040.00030.000250.000150.0001。
必修三第二章统计复习教案
必修三第二章《统计》复习专题一、基础知识回顾1:简单随机抽样(1)总体与样本①在统计学中 , 把研究对象得全体叫做总体.②把每个研究对象叫做个体.③把总体中个体得总数叫做总体容量.④为了研究总体得有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本.其中个体得个数称为样本容量.(2)简单随机抽样:就就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点就是:每个样本个体被抽中得可能性相同(概率相等),样本得每个个体完全独立,彼此间无一定得关联性与排斥性且为逐个不放回抽取,简单随机抽样就是其它各种抽样形式得基础。
通常只就是在总体个体之间差异程度较小与数目较少时,才采用这种方法。
(3)简单随机抽样常用得方法:①抽签法②随机数表法③计算机模拟法(4)抽签法:①给调查对象群体中得每一个对象编号;②准备抽签得工具,实施抽签;③对样本中得每一个个体进行测量或调查(5)随机数表法:①给调查对象群体中得每一个对象编号(编号位数相同);②获取样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体得单位进行排序,再计算出抽样距离,然后按照这一固定得抽样距离抽取样本。
第一个样本采用简单随机抽样得办法抽取。
K(抽样距离)=N/n(若N/n 不就是整数,则需先用简单随机抽样剔除数目最少得个体后再进行)(2)系统抽样,即等距抽样就是实际中最为常用得抽样方法之一。
因为它对抽样框得要求较低,实施也比较简单。
更为重要得就是,如果有某种与调查指标相关得辅助变量可供使用,总体单元按辅助变量得大小顺序排队得话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中得所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样得办法抽取一个子样本,最后,将这些子样本合起来构成总体得样本。
两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中得比例从各层中抽取。
必修三第二章统计复习优秀教案
必修三第二章《统计》复习专题一、基础知识回顾1:简单随机抽样(1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样:就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本个体被抽中的可能性相同(概率相等),样本的每个个体完全独立,彼此间无一定的关联性和排斥性且为逐个不放回抽取,简单随机抽样是其它各种抽样形式的基础。
通常只是在总体个体之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:①给调查对象群体中的每一个对象编号(编号位数相同);②获取样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N/n(若N/n不是整数,则需先用简单随机抽样剔除数目最少的个体后再进行)(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
必修三第二章统计复习教案
必修三第二章统计复习教案一、基础知识回顾1.1 数据的分类数据可以分成两类:定量数据和定性数据。
定量数据又可以分成离散型数据和连续型数据。
1.2 数据的搜集与整理数据搜集包括问卷调查、观察、实验、采访、统计报表等方式。
数据整理包括数据的分类、汇总、整理等。
1.3 数据的描述统计1.3.1 频数和频率频数是指每种取值出现的次数,频率是指每种取值出现的次数占总次数的比例。
1.3.2 累计频数和累计频率累计频数是指某个区间的频数加上前面所有区间的频数之和,累计频率是指某个区间的频率加上前面所有区间的频率之和。
1.3.3 均值、中位数和众数均值是指所有数据的总和除以数据个数,中位数是指将所有数据按大小排序后排在中间的数,众数是指出现次数最多的数。
1.3.4 极差和标准差极差是指最大值和最小值的差,标准差是指各个数据和均值的差的平方和的平均数的算术平方根。
二、实践应用2.1 统计图的绘制统计图包括条形图、饼图、直方图、折线图等,可以反映数据的频数和分布规律。
2.2 描述统计的应用应用描述统计可以对数据进行初步分析,为后续的推断统计提供参考,也可以为决策提供数据支持。
2.3 推断统计的基本原理推断统计包括参数估计和假设检验两个方面。
参数估计是指利用样本数据推断总体参数的取值,假设检验是指根据样本数据推断总体参数是否满足某个假设。
三、拓展应用3.1 正态分布和标准化分布正态分布是指在概率论和统计学中最重要的分布之一,其分布图像呈钟形。
标准化分布是指将正态分布转化为符合标准正态分布的过程。
3.2 相关系数和回归分析相关系数是指用于反映两个变量是否有相关关系的一种统计指标,回归分析是指建立两个或多个变量之间关系的一种数学模型。
3.3 统计软件的应用随着计算机技术的发展,统计软件的应用越来越广泛,可以大大提高数据分析的效率和准确性。
四、考试重点必修三第二章的考试重点包括数据的描述统计、统计图的绘制、推断统计的基本原理以及常见的综合应用题型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修三第二章《统计》复习专题一、基础知识回顾1:简单随机抽样(1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样:就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本个体被抽中的可能性相同(概率相等),样本的每个个体完全独立,彼此间无一定的关联性和排斥性且为逐个不放回抽取,简单随机抽样是其它各种抽样形式的基础。
通常只是在总体个体之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:①给调查对象群体中的每一个对象编号(编号位数相同);②获取样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N/n(若N/n不是整数,则需先用简单随机抽样剔除数目最少的个体后再进行)(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
(2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
③以那些有明显分层区分的变量作为分层变量。
(3)分层的比例问题:抽样比=样本容量各层样本容量个体容量各层个体容量①按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
②不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
类别共同点各自特点相互关系 适用范围 简单随机抽样 抽样过程中每个个体被抽取的机会相等,都为n/N从总体中逐个抽取总体中的个体数较少系统抽样将总体均匀分成几部分,按事先确定的规则在各部分抽取再起时部分抽样时采用简单随机抽样总体中的个数较多 分成抽样 经总体分成几层,分层进行抽取各层抽样时采用简单随机抽样总体由差异明显的几部分组成如:某学校决定从高一(1)班60名学生中利用随机数表法抽取10人进行调研,先将60名学生按01,02,…,60进行编号;如果从第8行第7列的数开始从左向右读,则抽取到的第4个人的编号为( )(下面摘取了第7行到第9行)8442 1753 3157 2455 0688 7704 7447 6721 7633 5026 8392 6301 5316 5916 9275 3862 9821 5071 7512 8673 5807 4439 1326 3321 1342 7864 1607 8252 0744 3815 0324 4299 7931. A .16B .38C .21D .50【考点】系统抽样方法.【分析】根据随机数表法的读法,可得答案.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是16,第二个数59,第三个数38,第四个数21.∴第4个样本个体的编号是21,故选:C ,4:用样本的数字特征估计总体的数字特征(1)样本均值:n x x x x n+++=21(2)样本标准差:n x x x x x x s s n 222212)()()(-++-+-==(3)众数:在样本数据中,频率分布最大值所对应的样本数据(可以是多个)。
(4)中位数:居中(中间一个或两个的平均数,直方图中使两边频率相等的数据) 注意:①如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 ②如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍③一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理 5:用样本的频率分布估计总体分布 1:频率分布表与频率分布直方图频率分布表盒频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,它可以使我们看到整个样本数据的频率分布情况。
具体步骤如下:第一步:求极差,即计算最大值与最小值的差.第二步:决定组距和组数:组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准.太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多.一般来说,容量不超过100的组数在5至12之间.组距应最好“取整”,它与组距极差有关.注意:组数的“取舍”不依据四舍五入,而是当组距极差不是整数时,组数=[组距极差]+1.②频率分布折线图 :连接频率分布直方图中各个小长方形上端的中点,就得到频率分布折线图。
③总体密度曲线:总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。
2:茎叶图:茎是指中间的一列数,叶是指从茎旁边生长出来的数。
例1:某班n名学生的综合素质测评成绩(百分制)频率分布直方图如图所示,已知70~80分数段的学生人数为27人,90~95分数段的学生中女生为2人.(1)求a,n的值;(2)若从90~95分数段内的学生中随机抽取2人,求其中至少有一名女生的概率.【考点】频率分布直方图;列举法计算基本事件数及事件发生的概率.【分析】(1)根据频率分布直方图求出a的值,从而求出n即可;(2)先得到男生4人,记为:a,b,c,d,女生2人,记为:e,f,列出所有的基本事件以及满足条件的事件,从而求出满足条件的概率即可.【解答】解:(1)由频率分布直方图得:(a+a+2a+3a+4a+4a+5a)×5=1,解得:a=0.01,由已知得(4a+5a)×5=,解得:n=60;(2)90~95分数段内的学生数是2a×5×60=6,则男生4人,记为:a,b,c,d,女生2人,记为:e,f,若从90~95分数段内的学生中随机抽取2人,共有ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef,共15种情形,其中满足至少有一名女生共有:ae,af,be,bf,ce,cf,de,df,ef,共9种情形,∴其中至少有一名女生的概率是p==.例2:某赛季甲、乙两名篮球运动员每场比赛得分情况的茎叶图如下甲 乙0 85 1 36 44 5 1 2 3 5 87 6 9 1 6 1 3 3 8 98 5 40 5 1图2-2-5请根据上图对两名运动员的成绩进行比较,谁发挥比较稳定。
6:变量间的相关关系:自变量取值一定时因变量的取值带有一定随机性的两个变量之间的关系交相关关系。
对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
(1)回归直线:根据变量的数据作出散点图,如果各点大致分布在一条直线的附近,就称这两个变量之间具有线性相关的关系,这条直线叫做回归直线方程。
如果这些点散布在从左下角到右上角的区域,我们就成这两个变量呈正相关;若从左上角到右下角的区域,则称这两个变量呈负相关。
设已经得到具有线性相关关系的一组数据:x1x。
n x y1y。
ny所要求的回归直线方程为:y b x a ∧-=+,其中,是待定的系数。
(2)回归直线过的样本中心点(,)x y例3. 10.假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:x 2 3 4 5 6 y2.23.85.56.57.0若由资料知,y 对x 呈线性相关关系.试求: (1)线性回归方程;(2)估计使用年限为10年时,维修费用约是多少?思路分析:本题考查线性回归方程的求法和利用线性回归方程求两变量间的关系. 解:(1)b= =1.23,a=y -b x =5-1.23×4=0.08.所以,回归直线方程为y ˆ=1.23x+0.08. (2)当x=10时,y ˆ=1.23×10+0.08=12.38(万元), 即估计使用10年时维修费约为12.38万元.例4.(15年全国卷19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.225125145905453.11255⨯-⨯⨯-=--∑∑==xxy x yx i ii ii表中w 1 =x 1, ,w =18∑+111x w(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:xw2111)(∑+-x x x2111)(∑+-x w w))((111y y x x x --∑+))((111y y w w x --∑+ 46.6 56.36.8289.81.61469108.8yβ=211i)())((u∑∑---n ini u uv v u α=u v β-二、练习提高;1.一学校高中部有学生2 000人,其中高一学生800人,高二学生600人,高三学生600人.现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三各年级被抽取的学生人数分别为( )A.15,10,25 B 、20,15,15 C.10,10,30 D.10,20,20 2.一个容量为10的样本数据,分组后,组距与频数如下:[1,2),1;[2,3),1;[3,4),2; [4,5),3;[5,6),1;[6,7),2.则样本在区间[1,5)上的频率是( ) A 、0.70B.0.25C.0.50D.0.203.观察新生婴儿的体重表,其频率分布直方图如图2-1所示,则新生婴儿体重在[2 700,3 000)的频率为( )图2-1A.0.001B.0.1C.0.2 D、0.34.有甲、乙两种水稻,测得每种水稻各10株的分蘖数后,计算出样本方差分别为s甲2=11,s乙2=3.4,由此可以估计( )A.甲种水稻比乙种水稻分蘖整齐B、乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较5.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2). 则完成(1)(2)这两项调查宜采用的抽样方法依次是( )A.分层抽样法,系统抽样法B、分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法6.已知x,y之间的一组数据如下表,则y与x的线性回归方程y=a+bx必经过点( D )x 0 1 2 3y 1 3 5 7(A)(2,2)(B)(1.5,0)(C)(1,2)(D)(1.5,4)7.若总体中含有1 650个个体,现在要采用系统抽样法,从中抽取一个容量为35的样本,分段时应从总体中随机剔除_______个个体,编号后应均分为_______段,每段有_______个个体.答案:5 35 478.数据x1,x2, …,x8的平均数为6,标准差为2,则数据2x1-6,2x2-6, …,2x8-6的平均数为___________,方差为_________.答案:6 169.进行n 次试验,得到样本观测值为x 1,x 2,…,x n ,设c 为任意常数,d 为任意正数,得变量y i =dcx i -(i=1,2,…,n),则y =_____________.答案:)(1c xd -10.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称 A B C D E 销售额(x )/千万元 3 5 6 7 9 利润额(y )/百万元23345(1) 画出销售额和利润额的散点图;(2) 若销售额和利润额具有相关关系,计算利润额y 对销售额x 的回归直线方程。