初三数学一元二次方程与实际问题
一元二次方程与实际问题
一元二次方程与实际问题一元二次方程与实际问题引言•什么是一元二次方程?•为什么一元二次方程与实际问题相关?解决实际问题的重要性•为什么解决实际问题是数学的重要组成部分?•为什么一元二次方程是解决实际问题的有效工具?实际问题的建模•如何将实际问题转化为一元二次方程的模型?•介绍一些实际问题的例子,如抛物线运动、面积计算等。
解决一元二次方程的方法•介绍求解一元二次方程的方法,如配方法、因式分解和求根公式。
•每种方法的适用场景和特点。
实际问题的解答与解释•如何使用一元二次方程解答实际问题?•如何解释一元二次方程的解对于实际问题的意义?一元二次方程的应用•介绍一些实际领域中广泛应用的问题,如物理学、工程学和经济学等。
•这些问题如何借助一元二次方程得到解决?结论•总结一元二次方程与实际问题之间的关系。
•强调学习一元二次方程对于解决实际问题的重要性。
通过以上方式,我们可以对一元二次方程与实际问题之间的关系进行全面的介绍和说明。
读者可以更好地理解一元二次方程的应用价值,以及如何通过数学工具解决实际问题。
引言一元二次方程是数学中的重要概念,广泛应用于实际问题的解决。
在本文中,我们将探讨一元二次方程与实际问题之间的关系,以及如何使用一元二次方程解决实际问题。
解决实际问题的重要性解决实际问题是数学的重要组成部分,它帮助我们理解现实世界中的现象和规律,并为我们提供了解决实际困难的工具和方法。
无论是在科学研究、工程设计还是商业决策中,数学都发挥着重要的作用。
为什么一元二次方程与实际问题相关?一元二次方程是实际问题建模的常用工具,它能够描述许多自然界和社会现象中的关系。
抛物线运动、物体自由落体、流体力学等都可以通过一元二次方程进行建模和求解。
因此,熟练掌握一元二次方程的求解方法对于理解和解决实际问题至关重要。
实际问题的建模将实际问题转化为数学模型是解决实际问题的第一步。
一元二次方程可以帮助我们建立与实际问题有关的数学模型。
九年级数学一元二次方程与实际问题题型归纳
九年级数学一元二次方程与实际问题题型归纳实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,可归纳为七个步骤:“审、找、设、列、解、验、答”。
1)审:审清题意,弄清已知量与未知量;2)找:找出等量关系;3)设:设未知数,有直接和间接两种设法,因题而异;4)列:列出一元二次方程;5)解:求出所列方程的解;6)验:检验方程的解是否正确,是否符合题意;7)答:作答。
二、典型题型1.数字问题例1:有两个连续整数,它们的平方和为25,求这两个数。
例2:有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练:1、两个连续的整数的积是156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A。
25.B。
36.C。
25或36.D。
-25或-362.传播问题公式:(a+x)n=M,其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数。
例3:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?例4:有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数为()A。
8.B。
9.C。
10.D。
11练:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3.相互问题(循环、握手、互赠礼品等)问题1.循环问题:又可分为单循环问题n(n-1)和双循环问题n(n-1)。
例5:参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?例6:参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例7:一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例8:生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是()A。
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
九年级上册数学一元二次方程解实际问题公式
九年级上册数学一元二次方程解实际问题公式九年级上册数学一元二次方程解实际问题公式在九年级上册数学学习中,解决一元二次方程实际问题是重要的一环。
一元二次方程是由一次项、二次项和常数项组成的方程,其一般形式为ax² + bx + c = 0,其中a、b和c分别为实数且a≠0。
在解决实际问题时,可以利用一元二次方程的公式来求解。
一元二次方程的解可以通过公式来求解,即二次方程的求根公式:x = (-b ± √(b² - 4ac)) / 2a这个公式是通过将一元二次方程化简后得到的,其中 b² - 4ac 被称为判别式。
判别式的值会决定方程的解的情况。
根据判别式的不同情况,可以得到方程有两个实根、有一个实根还是无实根。
当判别式的值大于0时,即 b² - 4ac > 0,方程有两个实根。
此时,可以使用上述公式来求解,并计算出两个不同的解。
当判别式的值等于0时,即 b² - 4ac = 0,方程有一个实根。
此时,也可以使用公式来求解,并计算出唯一的解。
当判别式的值小于0时,即 b² - 4ac < 0,方程无实根。
在这种情况下,方程无法用公式求解。
需要注意的是,当方程无实根时,我们可以通过观察方程的系数来判断其解的情况。
例如,当二次项系数a大于0时,方程图像开口向上,无实根;当二次项系数a小于0时,方程图像开口向下,也无实根。
在实际问题中,我们可以将问题抽象为一元二次方程,然后利用上述的公式来求解。
例如,某个问题要求解一个运动员从起点出发,在给定的速度和时间内到达终点的距离问题。
我们可以通过设定一个未知变量来表示距离,然后建立一元二次方程,利用公式来求解出这个未知变量的值。
总之,九年级上册的数学学习中,解决一元二次方程实际问题是一个重要的内容。
掌握一元二次方程的解法,并理解公式的原理和应用场景,能够帮助我们更好地解决实际问题,提高数学解题的能力。
人教九年级数学上册-实际问题与一元二次方程(传播问题和数字问题)(附习题)
答:共有10个队参加了比赛.
4. 有一人利用手机发送短信,获得信息的人 也按他的发送人数发送了该条短信息,经
过两轮短信发送,共有90人的手机上获得 同一信息,则每轮平均一个人向多少人发
送短信? 解:设每轮平均一个人向x人发送短信. 由题意,得x+x2=90. 解得:x1=9,x2=-10(舍去). 答:每轮平均一个人向9个人发送短信.
答:这个两位数是82或28.
课堂小结
两个要点: 传染源和传播速度
传
播 问 题
传染轮数 与传染总 人数之间
设1个人每次可以传染x人 第一轮:(1+x)人 第二轮:(1+x)+x(1+x)人
的关系: 第三轮:(1+x)+x(1+x)+x(1+x)2人
第n轮: (1+x)+x(1+x)+…x(1+x)n=(1+x)n人
知识点 列一元二次方程解决实际问题
有一人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人 传染了几个人?
你能解决这个问题吗?
设每轮传染中平均一个人传染了x个人. 第一轮传染后有 x+1 人患了流感. 第二轮传染中的传染源为 x+1 人,第二轮传染后 有 x+1+x(x+1) 人患了流感. 根据等量关系 “ 两轮传染后,有121人患了流感 ” 列出方程 x+1+x(x+1)=121 .
21.3 实际问题与一元二次方程 第1课时 实际问题与一元二次方程(1)
21.3一元二次方程与实际问题
1、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?2、循环问题又可分为单循环问题1/2n(n-1),双循环问题n(n-1)和复杂循环问题1/2n(n-3)a.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?b.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?c.一个正多边形,它共有20条对角线,问是几边形?3、平均率问题M=a(1±x)n,n为增长或降低次数 , M为最后产量,a为基数,x为平均增长率或降低率4、商品销售问题常用关系式:售价—进价=利润一件商品的利润×销售量=总利润单价×销售量=销售额利润率= 利润÷进价b\某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件,如果商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场平均每天赢利最多?5、数字问题:(!)两个相邻偶数的积是168,求这两个偶数。
(2)一个两位数,十位上数字与个位上数字之和为5;把十位上的数字与个位上数字互换后再乘以原数得736,求原来两位数.例、在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?解法一、如图,矩形地面面积为,设道路的宽为x米,则横向的路面面积为纵向的路面面积为如图,设路宽为x米,横向路面为纵向路面面积为。
实际问题与一元二次方程知识点总结及重难点精析
实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
中考数学-实际问题与一元二次方程
中考数学实际问题与一元二次方程(1)教学内容由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.重难点关键1.重点:用“倍数关系”建立数学模型2.难点与关键:用“倍数关系”建立数学模型教学过程一、复习引入(学生活动)问题1:列方程解应用题:某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,•星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.解:设这人持有的甲、乙股票各x、y张.则0.5(0.2)2000.40.61300x yx y+-=⎧⎨+=⎩解得1000(1500(xy=⎧⎨=⎩股)股)答:(略)二、探索新知上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.•因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2•=3.31去括号:1+1+x+1+2x+x2=3.31整理,得:x2+3x-0.31=0解得:x=10%答:(略)以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.例1.某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.解:设平均增长率为x则200+200(1+x)+200(1+x)2=950整理,得:x2+3x-1.75=0解得:x=50%答:所求的增长率为50%.三、巩固练习(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.四、应用拓展例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0解得:x1=-2(不符,舍去),x2=18=0.125=12.5%答:所求的年利率是12.5%.五、归纳小结本节课应掌握:利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.六、布置作业1.教材P53复习巩固1 综合运用1.2.选用作业设计.作业设计一、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250C.100(1-x)2=250 D.100(1+x)22.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为().A.(1+25%)(1+70%)a元B.70%(1+25%)a元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 二、填空题1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.三、综合提高题1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,•从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,•求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.3.某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.答案:一、1.B 2.B 3.D二、1.6(1+x ) 6(1+x )2 6+6(1+x )+6(1+x )22.a (1+x )2t3.10039a 三、1.平均增长率为x ,则1600(1+x )2=1936,x=10%2.设乙型增长率为x ,甲型一月份产量为y :则210316(1)2(20)16(1)65y x y x +⎧=⎪+⎨⎪+++=⎩224141632290y x x y x =+⎧⎨++-=⎩ 即16x 2+56x-15=0,解得x=14=25%,y=20(台) 3.(1)第一年年终总资金=50(1+P )(2)50(1+P )(1+P+10%)=66,整理得:P 2+2.1P-0.22=0,解得P=10%22.3 实际问题与一元二次方程(2)教学内容建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.教学目标掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.重难点关键1.重点:如何全面地比较几个对象的变化状况.2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.教具、学具准备小黑板教学过程一、复习引入(学生活动)请同学们独立完成下面的题目.问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,•则每件平均利润应是(0.3-x )元,总件数应是(500+0.1x ×100) 解:设每张贺年卡应降价x 元则(0.3-x )(500+1000.1x )=120 解得:x=0.1答:每张贺年卡应降价0.1元.二、探索新知刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,•好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120 即(34-y )(200+136y )=120 整理:得68y 2+49y-15=0∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.(学生活动)例2.两年前生产1t甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?老师点评:绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.依题意,得5000(1-x)2=3000解得:x1≈0.225,x2≈1.775(不合题意,舍去)设乙种药品成本的平均下降率为y.则:6000(1-y)2=3600整理,得:(1-y)2=0.6解得:y≈0.225答:两种药品成本的年平均下降率一样大.因此,虽然绝对量相差很多,但其相对量也可能相等.三、巩固练习新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,•平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?四、应用拓展例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,•求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000 解得:x1=80,x2=60当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).五、归纳小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.六、布置作业1.教材P 53 复习巩固2 综合运用7、9.2.选用作业设计:一、选择题1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).A .12人B .18人C .9人D .10人2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x 增加到(x+10%),则x 是( ).A .12%B .15%C .30%D .50%3.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为( ).A .600B .604C .595D .605二、填空题1.一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.3.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体xL ,•则列出的方程是________.三、综合提高题1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?2.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a (a>0)个成品,且每个车间每天都生产b (b>0)个成品,质量科派出若干名检验员周一、•周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.(1)这若干名检验员1天共检验多少个成品?(用含a 、b 的代数式表示)(2)若一名检验员1天能检验45b 个成品,则质量科至少要派出多少名检验员?答案:一、1.C 2.B 3.D二、1.2 2.1 3.(1-63x )2=2863三、1.甲:设上升率为x ,则100(1+x )2=121,x=10%乙:设上升率为y,则200(1+y)2=288,y=20%,那么乙商场年均利润的上升率大.2.设多种x棵树,则(100+x)(1000-2x)=100×1000×(1+15.2%)•,• 整理,•得:•x2-400x+7600=0,(x-20)(x-380)=0,解得x1=20,x2=3803.(1)2222a b+⨯=a+2b或2253a b+⨯(2)因为假定每名检验员每天检验的成品数相同.所以a+2b=2103a b+,解得:a=4b所以(a+2b)÷45b=6b÷45b=304=7.5(人)所以至少要派8名检验员.22.3 实际问题与一元二次方程(3)教学内容根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.2.•难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备小黑板教学过程一、复习引入(口述)1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?(学生口答,老师点评)二、探索新知现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m 3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm ,则上口宽为x+2,•渠底为x+0.4,那么,根据梯形的面积公式便可建模.解:(1)设渠深为xm则渠底为(x+0.4)m ,上口宽为(x+2)m依题意,得:12(x+2+x+0.4)x=1.6 整理,得:5x 2+6x-8=0解得:x 1=45=0.8m ,x 2=-2(舍) ∴上口宽为2.8m ,渠底为1.2m .(2)1.675048⨯=25天 答:渠道的上口宽与渠底深各是2.8m 和1.2m ;需要25天才能挖完渠道.学生活动:例2.如图,要设计一本书的封面,封面长27cm ,宽21cm ,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm )?九年级 练数 学 习同步老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm ,•则左、右边衬的宽均为7xcm ,依题意,得:中央矩形的长为(27-18x )cm ,宽为(21-14x )cm .因为四周的彩色边衬所点面积是封面面积的14,则中央矩形的面积是封面面积的. 所以(27-18x )(21-14x )=34×27×21 整理,得:16x 2-48x+9=0解方程,得:x=64±, x 1≈2.8cm ,x 2≈0.2所以:9x 1=25.2cm (舍去),9x 2=1.8cm ,7x 2=1.4cm因此,上下边衬的宽均为1.8cm ,左、右边衬的宽均为1.4cm .三、巩固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)四、应用拓展例3.如图(a )、(b )所示,在△ABC 中∠B=90°,AB=6cm ,BC=8cm ,点P 从点A•开始沿AB 边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C•后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q•作DQ⊥CB,垂足为D,则:DQ CQAB AC=)(a)BACQP(b)BACQ DP分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.则:12(6-x)·2x=8整理,得:x2-6x+8=0解得:x1=2,x2=4∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.(2)设y秒后点P移到BC上,且有CP=(14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQ⊥CB,垂足为D,则有DQ CQ AB AC=∵AB=6,BC=8∴由勾股定理,得:∴DQ=6(28)6(4) 105y y--=则:12(14-y)·6(4)5y-=12.6整理,得:y2-18y+77=0解得:y1=7,y2=11即经过7秒,点P在BC上距C点7cm处(CP=14-y=7),点Q在CA上距C点6cm处(CQ=•2y-8=6),使△PCD的面积为12.6cm2.经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,∴点Q已超过CA的范围,即此解不存在.∴本小题只有一解y1=7.五、归纳小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题. 六、布置作业1.教材P 53 综合运用5、6 拓广探索全部. 2.选用作业设计: 一、选择题1.直角三角形两条直角边的和为7,面积为6,则斜边为( ). AB .5 CD .72.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m ,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m 2,这两块木板的长和宽分别是( ). A .第一块木板长18m ,宽9m ,第二块木板长16m ,宽27m; B .第一块木板长12m ,宽6m ,第二块木板长10m ,宽18m; C .第一块木板长9m ,宽4.5m ,第二块木板长7m ,宽13.5m; D .以上都不对3.从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( ). A .8cm B .64cm C .8cm 2 D .64cm 2 二、填空题1.矩形的周长为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm ,面积为60cm 2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m ,所围的面积为150m 2,则此长方形鸡场的长、宽分别为_______.三、综合提高题1.如图所示的一防水坝的横截面(梯形),坝顶宽3m ,背水坡度为1:2,迎水坡度为1:1,若坝长30m ,完成大坝所用去的土方为4500m 2,问水坝的高应是多少?(说明:•背水坡度CF BF =12,迎水坡度11DE AE )(精确到0.1m )B ACE DF2.在一块长12m ,宽8m 的长方形平地中央,划出地方砌一个面积为8m 2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?3.谁能量出道路的宽度:如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,•只有无刻度的足够长的绳子一条,如何量出道路的宽度?请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.C答案:一、1.B 2.B 3.D二、1.2.32cm3.20m和7.5m或15m和10m三、1.设坝的高是x,则AE=x,BF=2x,AB=3+3x,依题意,得:12(3+3+3x)x×30=4500整理,得:x2+2x-100=0解得x≈220.102-+即x≈9.05(m)2.设宽为x,则12×8-8=2×8x+2(12-2x)x 整理,得:x2-10x+22=0解得:x1,x23.设道路的宽为x,AB=a,AD=b则(a-2x)(b-2x)=12ab解得:x=14[(a+b )]量法为:用绳子量出AB+AD (即a+b )之长,从中减去BD 之长(对角线BD=),得L=•AB+AD-BD ,再将L 对折两次即得到道路的宽4AB AD BD +-.22.3 实际问题与一元二次方程(4)教学内容运用速度、时间、路程的关系建立一元二次方程数学模型解决实际问题. 教学目标掌握运用速度、时间、路程三者的关系建立数学模型并解决实际问题. 通过复习速度、时间、路程三者的关系,提出问题,用这个知识解决问题. 重难点关键1.重点:通过路程、速度、时间之间的关系建立数学模型解决实际问题. 2.难点与关键:建模. 教具、学具准备 小黑板 教学过程一、复习引入(老师口问,学生口答)路程、速度和时间三者的关系是什么? 二、探究新知我们这一节课就是要利用同学们刚才所回答的“路程=速度×时间”来建立一元二次方程的数学模型,并且解决一些实际问题. 请思考下面的二道例题.例1.某辆汽车在公路上行驶,它行驶的路程s (m )和时间t (s )•之间的关系为:•s=10t+3t 2,那么行驶200m 需要多长时间?分析:这是一个加速运运,根据已知的路程求时间,因此,只要把s=200•代入求关系t 的一元二次方程即可.解:当s=200时,3t 2+10t=200,3t 2+10t-200=0解得t=203(s)答:行驶200m需203s.例2.一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,•紧急刹车后汽车又滑行25m后停车.(1)从刹车到停车用了多少时间?(2)•从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?分析:(1)刚刹车时时速还是20m/s,以后逐渐减少,停车时时速为0.•因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为2002+=10m/s,那么根据:路程=速度×时间,便可求出所求的时间.(2)很明显,刚要刹车时车速为20m/s,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.(3)设刹车后汽车滑行到15m时约用除以xs.•由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m的平均速度,再根据:路程=速度×时间,便可求出x 的值.解:(1)从刹车到停车所用的路程是25m;从刹车到停车的平均车速是2002+=10(m/s)那么从刹车到停车所用的时间是2510=2.5(s)(2)从刹车到停车车速的减少值是20-0=20从刹车到停车每秒平均车速减少值是202.5=8(m/s)(3)设刹车后汽车滑行到15m时约用了xs,这时车速为(20-8x)m/s则这段路程内的平均车速为20(208)2x+-=(20-4x)m/s所以x(20-4x)=15整理得:4x2-20x+15=0解方程:得x1≈4.08(不合,舍去),x2≈0.9(s)答:刹车后汽车行驶到15m时约用0.9s.三、巩固练习(1)同上题,求刹车后汽车行驶10m时约用了多少时间.(精确到0.1s)(2)刹车后汽车行驶到20m时约用了多少时间.(精确到0.1s)四、应用拓展例3.如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,•在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:•小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,•那么相遇时补。
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。
一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.2. 一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-.知识链接点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接). (3)列:是指列方程,根据等量关系列出方程. (4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
初三数学一元二次方程与实际问题
一元二次方程与实际问题是一个重要的数学课题,它涉及到数学建模、问题分析、数值计算等多个方面。
在解决实际问题时,我们需要将实际问题转化为数学问题,再利用一元二次方程进行求解。
以下是一篇关于初三数学一元二次方程与实际问题的回答,希望对您有所帮助。
一、一元二次方程的基本概念一元二次方程是指含有且只含有一个未知数,未知数的最高次数为二次的整式方程。
一般形式为ax2+bx+c=0,其中a、b、c为常数,a≠0。
一元二次方程具有广泛的应用价值,可以用于解决各种实际问题。
二、实际问题转化为数学问题将实际问题转化为数学问题,需要我们进行以下几个步骤:1. 识别问题:首先需要仔细分析实际问题,明确问题的本质和核心。
2. 建立模型:根据问题的特点,建立相应的数学模型,如一元二次方程、不等式、函数等。
3. 确定参数:根据问题的实际背景,确定方程中的参数,如价格、成本、收益等。
4. 转化求解:将实际问题中的参数转化为方程中的系数,再利用数学方法进行求解。
以销售问题为例,假设某商店进了一批商品,成本为c元/件,售价为x元/件。
经过一段时间的销售后,商店决定降价销售,以刺激销量。
降价后售价为y元/件,销售量为z件。
根据实际情况,我们可以得到以下一元二次方程:y-x=z(c-x),其中y为降价后的售价,x为原价,c为成本,z为销售量。
通过求解该方程,我们可以得到降价后的最优售价和销售量。
三、一元二次方程的解法一元二次方程的解法有多种,如直接开平方法、配方法、公式法等。
在实际应用中,我们需要根据具体问题选择合适的解法。
以配方法为例,将一元二次方程ax2+bx+c=0化为(ax+b/2)2=c/4的形式,从而方便求解。
四、实际问题的注意事项在解决实际问题时,还需要注意以下几点:1. 准确性:实际问题往往比较复杂,需要仔细分析问题的细节和背景,确保数学模型的准确性。
2. 可行性:在建立数学模型时,需要考虑实际操作的可行性和成本效益。
九年级数学-实际问题与一元二次方程
第3讲 实际问题与一元二次方程【知识导航】面积问题,增长率问题,传染问题,循环及握手问题,经济问题等.【板块一】面积问题【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2答案:(1)设鸡场的宽AB 为xm ,则BC =(31-2x +1)m ,依题意得, x (31-2x +1)=120,解得x 1=6,x 2=10,由0<31-2x +1≤14得9≤x <16,∴x =10.答:长为12m ,宽为10m .(2)S =x (31-2x +1)=-2(x -8)2+128,当x =8时,S 有最大值为128.【点评】矩形开口就是增加长度,要注意取值范围.【题型二 矩形中通道】【例2】如图,要设计一副宽20cm 、长30cm 的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?答案:设横彩条的宽为2x cm ,竖彩条的宽为3x cm ,依题意,得:(20-2x )(30-3x )=81%×20×30.解之,得x 1=1,x 2=19当x =19时,2x =38>20,不符题意,舍去.所以x =1答:横彩条的宽为2cm ,竖彩条的宽为3cm .【题型三 边框设计】【例3】第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm 、宽为20cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程得________. 30cm答案:设镜框的宽度为x cm ,依题意列方程,(29+2x )(20+2x )=54×29×20, 化简得,4x 2+98x -145=0.【针对练习1】 1.如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5答案:B2.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm答案:D3.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.答案:设甬道宽为xm ,依题意得,(32-x )(20-x )=540,解得x 1=2,x 2=50,∵x <20,∴x =2 答:甬道宽为2m .4.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.答案:设横彩条的宽度为3x cm ,竖彩条的宽度为2x cm .(20-4x )(12-3x )=20×12×(1-25)解得x 1=1,x 2=8. ∵3x <12,∴x <4,∴x =1.答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .20m5.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为xm.(1)若两个鸡场总面积为96m2,求x;(2)若两个鸡场总面积和为Sm2,求S关于x的关系式;(3)两个鸡场面积和S有最大值吗?若有,最大值是多少?答案:(1)x=8,提示:x(36-3x)=96,x=4或x=8,当x=4,AD=24>0,舍去;(2)S=AD×AB=(36-3x)x=-3x2+36x(163≤x≤343);(3)S=-3x2+36x=-3(x-6)2+108,当x=6,即AB=6时,S取得最大值108.【板块二】循环向题、增长率问题、传染等问题1.n支球队参加单循环比赛、一共赛12n(n-1)场;n支球队参加双循环比赛,一共赛n(n-1)场;2.基数A经过两轮增长(下降),平均增长(下降)率为x,两轮后结果为A(1士x)2;3.一人感冒,经过两轮传染,平均每人传染x人,两轮后感冒人数为(1+x)2【题型一循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【解析】设应邀请x个球队参加比赛,依题意得,12x(x-1)=15,解得x1=6,x2=-5(舍去)答:应邀请6个球队参加比赛.【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x名学生,根据题意列出方程为________.答案:x(x-1)=1980.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640答案:选D【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________答案:200(1-x)2=98.【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?答案:(1)设每轮感染中平均一台电脑会感染x台电脑,依题意得,1+x+(1+x)x=81,解得x1=8,x2=-10(舍去)∴平均一台电脑会感染8台电脑;(2)三轮感染后,(1+x)2=729>700,∴被感染的电脑会超过700台【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?答案:设每个支干长出x个小分支,依题意得,1+x+x2=73,解得x1=8,x2=-9(舍去)答:每个支干长出8个小分支【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12答案:C【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.10答案:C2.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________答案:12x(x-1)=363.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.8答案:C4.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%答案:C5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________答案:12000(x+1)2=145206.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.答案:10【板块三】利润问题【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?答案:设售价为x 元,依题意得:[x -21][100-10(x -25)]=400,解得x 1=25,x 2=31.∵21(1+20%)≤x ≤21(1+50%),∴25.2≤x ≤31.5,∴x =3当x =31时,铺售量为100-10(x -25)=40件.故每件商品的售价为31元时,可卖出40件,每天可赚400元.【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【解析】(1)24间(2)设每间商铺的年租金增加x 万元,则(30-x 0.5)×(10+x )-(30-x 0.5)×1-x 0.5×0.5=275,解得1x =0.5,2x =5.答:当每间商铺的年租金定为15万元或10.5万元时,该公司的年收益为275万元.针对练习31.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现, 在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x 元,则(500 —20x )(10+x ) = 6000,解得1x =5,2x =10. 要使顾客得到实惠,应取x =5.答:每千克应涨价5元.2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x 元(x ≥100).(1)每天有游客居住的房间数为 (用x 表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w (元)最大?解:(1)30-110x ; (2)w =(x -20)(30-110x )=-1102x +32x -600=-1102160x () +1960 当x =160时,w 有最大值为1960;。
初三数学—实际问题与一元二次方程
解:设四周的等宽草坪的宽为x米, 则花坛的长和宽分别为(42x)米和(32x)米, 根据题意,得
(42x)(32x)2[43(42x)(32x)] 整理,得 2x27x20
解得
,
.
当x3.19时,42x0, 不合题意,舍去; 当x0.31时,42x3.383.4, 32x2.382.4. 符合题意. 答:花坛的长约为3.4米,宽约为2.4米.
1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度
沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后△
PBQ的面积等于8cm2?
D
C
Q
A
B
P
解:设x秒后△PBQ的面积等于8cm2 根据题意,得 1 2x (6 x) 8
2
整理,得 x2 6x 8 0
[例1] 已知两个数的差是8,积是209,求这两个数.
解:设较小的数为x,则较大的数为(x+8), 根据题意,得x(x8) 209 x28x16209+16 (x4)2225
x415 ∴x111, x219 当x=11时,x819; 当x19时,x811.都符合题意. 答:这两个数分别11和19,或19和11.
x1 1 2 0.414 41.4%, 符合题意. x2 1 2 0不合题意,舍去. 答:这两年中市财政净收入的平均年增长率约为41.4%.
[例6] 某服装店原计划按每套200元的价格销售一批 保暖内衣,但上市后销售不佳,为减少库存积压, 两次连续降价打折处理,最后价格调整为每套128元 .若两次降价折扣率相同,求每次降价率为多少?两次 打折标示多少折?
a(1 x)n b
其中增长取+,降低取-
人教版九年级数学上《实际问题与一元二次方程》知识全解
《实际问题与一元二次方程》知识全解课标要求能根据具体问题中的数量关系列出一元二次方程,体会方程是刻画现实世界数量关系的有效模型。
知识结构内容解析1.列一元二次方程解应用题1.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设。
所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数。
⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系。
⑶列:就是指根据等量关系列出方程。
⑷解:就是求出所列方程的解。
⑸验:分为两步:一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况。
⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则。
以上几个步骤中,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步。
2.一元二次方程应用类型一元二次方程的应用常见问题常用规律、技巧、方法增长率、减少率(1)na x b±=几何问题借助面积或体积,相关图形的性质及内在关系倍数传播(1)nx b+=市场经济销售利润=每件的利润×件数数字问题用相关的代数式表示数位注意:一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位。
⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来。
重点难点教学重点:将实际问题转化为数学问题,借助各种数量关系列出一元二次方程解应用题。
关键是学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展数学实际应用意识。
教学难点如何把实际问题转化为数学问题。
(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数。
中考数学实际问题与一元二次方程的几种题型(传播问题,销售问题和增长率)
一元二次方程应用题(增长率)(1)一、知识回顾:1、列方程解应用题有哪几步?关键是什么?2、某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产个? 增长率是。
二、例题精讲:例: 某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?经检验: 答:[总结]:如果某个量原来的值是a,每次增长的百分率是x,则增长1次后的值是a(1+x),增长2次后的值是a(1+x)2,……增长n 次后的值是a(1+x)n ,这就是重要的增长率公式.同样,若原来的量的值是a,每次降低的百分率是x,则n 次降低后的值是a(1-x)n ,这就是降低率公式.三、 巩固练习:1、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?2、制造一种产品,原来每件的成本是300元,经过两次降低成本,现在的成本是147元.平均每次降低成本百分之几?检测题1、某商场销售商品的收入款,3月份为25万元,5月份为36万元,该商场这两个月销售商品收入款的平均每月增长率是多少?2、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率。
3、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。
求每年接受科技培训的人次的平均增长率。
实际问题与一元二次方程(探究案)(传播问题)(2)1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
解:【合作探究】问题1、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?【题型练习】2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
九年级数学一元二次方程与实际问题题型归纳
实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)审:审清题意,弄清已知量与未知量;(2)找:找出等量关系;(3)设:设未知数,有直接和间接两种设法,因题而异;(4)列:列出一元二次方程;(5)解:求出所列方程的解;(6)验:检验方程的解是否正确,是否符合题意;(7)答:作答。
二、典型题型1.数字问题例1、有两个连续整数,它们的平方和为25,求这两个数。
例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练习:1、两个连续的整数的积是156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25B. 36C. 25或36D. -25或-362.传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M 为最后得病总人数例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?8. 有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为()A. 8B. 9C. 10D. 11练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3.相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题21n(n-1),双循环问题n(n-1). 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?(2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x 个同学,则根据题意列出的方程是( )A.()1821=+x xB. ()1821=-x xC.()18212=+x xD.()21821⨯=-x x练习:1、甲A 联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110场,则联赛中共有多少个队参加比赛?2、参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?4.平均增长率问题:b=a(1±x)n, n为增长或降低次数 , b为最后产量,a为基数,x为平均增长率或降低率例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
初中数学一元二次方程在实际生活中的应用案例
初中数学一元二次方程在实际生活中的应用案例初中数学一元二次方程在实际生活中的应用案例一元二次方程是初中数学中的重要内容之一,学习和掌握它对于解决实际生活中的问题具有重要意义。
以下将介绍几个一元二次方程在实际应用中的案例。
例一:抛物线的应用 - 抛物线喷泉在公园中,常常可以看到美丽的喷泉景观。
这些喷泉往往呈现出一个高高上升的水柱然后再逐渐下落,形成一个美丽的抛物线形状。
喷泉的高度和时间之间的关系可以由一元二次方程来表示。
设喷泉的高度为h(单位:米),时间为t(单位:秒)。
研究显示,喷泉的高度随时间的变化关系可以用以下一元二次方程表示:h = -5t^2 + 20t在这个方程中,-5t^2代表了喷泉高度随时间的递减,并且t^2项的系数-5表示了递减的速率。
喷泉的初始高度是20米,因为方程的常数项20表示了t=0时的高度。
通过对这个方程进行求解,我们可以得到喷泉的高度在不同时间点的具体数值,以及它在不同时间点的高低变化趋势。
这样的分析有助于公园管理者进行喷泉景观的设计和维护。
例二:运动轨迹的预测 - 投掷运动一元二次方程也可以在物体的投掷运动中应用。
当我们投掷物体时,它的运动轨迹往往呈现出一个抛物线形状。
通过建立一元二次方程,我们可以预测物体的运动轨迹和到达目标所需的时间。
假设有个人以初速度v(单位:米/秒)将一个物体投掷出去,物体的运动轨迹可以由方程h = -5t^2 + vt + h0表示,其中h代表物体的高度,t代表时间,h0代表投掷时的高度。
通过解方程,我们可以计算出物体到达地面时所需的时间以及它的落点坐标等信息。
这对于进行远程投掷比赛、预测投掷物下落位置等都非常有用。
例三:经济学中的应用 - 成本与利润一元二次方程在经济学中也有应用,特别是在成本、利润等方面的分析中。
假设某公司的生产成本与产量之间的关系可以用一元二次方程进行表示。
设生产成本为C(单位:元),产量为x(单位:个),则可以用方程C = 2x^2 - 10x + 100来表示。
九年级上册数学实际问题与一元二次方程
九年级上册数学实际问题与一元二次方程九年级上册数学学习内容中,实际问题与一元二次方程是一个非常重要的部分。
实际问题是数学知识在生活中的应用,而一元二次方程是解决实际问题的数学工具。
在本文中,我们将探讨实际问题与一元二次方程之间的关系,并且举一些实际问题的例子,以便更好地理解和应用这一知识。
实际问题与一元二次方程有着密切的联系。
实际问题中常常涉及到某个未知数,我们可以通过设立方程来解决这个问题。
而一元二次方程是一种常见的形式,可以表示很多实际问题。
一元二次方程的一般形式是ax^2 + bx + c = 0,其中a、b、c是已知数,x是未知数。
实际问题中,我们常常需要根据已知条件求解未知数的值,而设立方程是解决这一问题的重要方法。
通过将已知条件翻译成数学表达式,我们可以设立方程,并且通过解方程求解未知数的值。
一元二次方程是解决这类问题的常见工具。
下面,我们来看几个实际问题的例子,以便更好地理解和应用一元二次方程。
例1:某人乘坐公交车从甲地到乙地需要1小时,如果他步行从甲地到乙地需要2小时。
公交车的速度是步行速度的3倍。
求他步行的速度和公交车的速度。
这个问题中,我们设步行速度为x,公交车速度为3x。
根据题意,我们可以列出方程:1/(3x) + 2/x = 1,然后解这个方程,就可以求得他的步行速度和公交车的速度。
例2:一个长方形的长是宽的3倍,长方形的面积是七个单位面积。
求长方形的长和宽。
这个问题中,设长方形的宽为x,那么长就是3x。
根据题意,我们可以列出方程:3x * x = 7,然后解这个方程,就可以求得长方形的长和宽。
例3:现有一座长方形的花坛,花坛的长是宽的2倍,花坛的面积是72平方米。
现在要将花坛的长和宽都加长x米,使得新的花坛的面积是原来的3倍。
求x的值。
这个问题中,设原长方形的宽为x,那么长就是2x。
根据题意,我们可以列出方程:(2x + x)(x + x) = 3*72,然后解这个方程,就可以求得x的值。
《实际问题与一元二次方程》的说课稿(通用15篇)
《实际问题与一元二次方程》的说课稿〔通用15篇〕篇1:《实际问题与一元二次方程》说课稿今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。
它是继传播问题、百分率问题、长宽比例问题这几个根本问题的学习后的探究活动课,对于本节课我将从教材分析^p 与学生现实分析^p 、教学目的分析^p ,教法确实定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析^p 与学生现实分析^p一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的根底,它是研究现实世界数量关系和变化规律的重要模型。
本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究表达数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。
这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用大量事实说明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。
对于初中学生来说他们比拟缺乏社会生活经历,搜集信息处理信息的才能较弱,这就构成了本节课的难点。
〔二〕数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的开展。
我根据新课标对方程的详细要求和初三学生的认知的特点,确定了如下教学目的的:1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
以一元二次方程解决实际问题为载体,加强学生对数学建模的根本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探究问题中的数量关系,并能运用一元二次方程对之进展描绘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存 款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利 率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩 下的本金和利息是1000+2000x·80%;第二次存,本金就变为 1000+2000x·80%,其它依此类推.
解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120 元,甲种贺年卡应降价0.1元.
(2)乙种贺年卡:设每张乙种贺年卡应降价y元, 则:(0.75-y)(200+×34)=120 即(-y)(200+136y)=120 整理:得68y2+49y-15=0 y= ∴y≈-0.98(不符题意,应舍去) y≈0.23元 答:乙种贺年卡每张降价的绝对量大. 因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对 量也有同样的变化规律. (学生活动)例2.两年前生产1t甲种药品的成本是5000元,生产1t乙 种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的 成本是3000元,生产1t乙种药品的成本是3600元,哪种药品成本的年平 均下降率较大? 老师点评: 绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元, 乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,乙种 药品成本的年平均下降额较大. 相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能 否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这 个问题. 解:设甲种药品成本的年平均下降率为x, 则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)元. 依题意,得5000(1-x)2=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去) 设乙种药品成本的平均下降率为y. 则:6000(1-y)2=3600 整理,得:(1-y)2=0.6
一年的年获利率.
答案: 一、1.B 2.B 3.D 二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2
2.a(1+x)2t 3. 三、1.平均增长率为x,则1600(1+x)2=1936,x=10% 2.设乙型增长率为x,甲型一月份产量为y: 则 即16x2+56x-15=0,解得x==25%,y=20(台) 3.(1)第一年年终总资金=50(1+P) (2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得 P=10%
解:设二月份、三月份生产电视机平均增长的百分率为x,则 1+(1+x)+(1+x)2=3.31
去括号:1+1+x+1+2x+x2=3.31 整理,得:x2+3x-0.31=0 解得:x=10% 答:(略) 以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分 式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程 为背景建立数学模型来分析实际问题和解决问题的类型. 例1.某电脑公司2001年的各项经营中,一月份的营业额为200万元, 一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率 相同,求这个增长率. 分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、 三月份的营业额,又由三月份的总营业额列出等量关系. 解:设平均增长率为x 则200+200(1+x)+200(1+x)2=950 整理,得:x2+3x-1.75=0 解得:x=50% 答:所求的增长率为50%. 三、巩固练习 (1)某林场现有木材a立方米,预计在今后两年内年平均增长p%, 那么两年后该林场有木材多少立方米? (2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产 量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长 的百分率相同,均为x,可列出方程为__________. 四、应用拓展 例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元
实际问题与一元二次方程(2)
教学内容
建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化 状况.
教学目标 掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问 题. 复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化 状况的解题方法. 重难点关键 1.重点:如何全面地比较几个对象的变化状况. 2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状 况. 教具、学具准备 小黑板 教学过程 一、复习引入 (学生活动)请同学们独立完成下面的题目. 问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每 天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适 当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么 商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年 卡应降价多少元? 老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,则每件平均利润应是(0.3-x)元,总件数应是(500+×100) 解:设每张贺年卡应降价x元 则(0.3-x)(500+)=120 解得:x=0.1 答:每张贺年卡应降价0.1元. 二、探索新知 刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利 0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元, 为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年 卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对 量之间的关系. 例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡 平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出 200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降 价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平
一元二次方程与实际问题结合
教学内容 由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因 式法解决实际问题. 教学目标 掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题. 通过复习二元一次方程组等建立数学模型,并利用它解决实际问题, 引入用“倍数关系”建立数学模型,并利用它解决实际问题. 重难点关键 1.重点:用“倍数关系”建立数学模型 2.难点与关键:用“倍数关系”建立数学模型 教学过程 一、复习引入 (学生活动)问题1:列方程解应用题
解得:y≈0.225 答:两种药品成本的年平均下降率一样大. 因此,虽然绝对量相差很多,但其相对量也可能相等. 三、巩固练习 新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场 调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每 降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000 元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当 销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰 箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少? 四、应用拓展 例3.某商店经销一种销售成本为每千克40元的水产品,据市场分 析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销 售量就减少10kg,针对这种水产品情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算销售量和月销售利润. (2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系 式. (3)商品想在月销售成本不超过10000元的情况下,使得月销售利润 达到8000元,销售单价应为多少?
系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面 所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问 题.
(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台, 第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视 机平均增长的百分率是多少?
老师点评分析:直接假设二月份、三月份生产电视机平均增长率为 x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二 月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x) +(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.
解:设这种存款方式的年利率为x 则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320 整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0 解得:x1=-2(不符,舍去),x2==0.125=12.5% 答:所求的年利率是12.5%. 五、归纳小结 本节课应掌握: 利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法 解它. 六、布置作业 1.教材P53 复习巩固1 综合运用1. 2.选用作业设计. 作业设计 一、选择题 1.2005年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发 生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为 x,依题意列出的方程是( ). A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250 C.100(1-x)2=250 D.100(1+x)2 2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压, 所以就按销售价的70%出售,那么每台售价为( ). A.(1+25%)(1+70%)a元 B.70%(1+25%)a元 C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元 3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成 本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ). A. B.p C. D. 二、填空题 1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg, 第二年的产量为_______kg,第三年的产量为_______,三年总产量为