相交线与平行线最全知识点(教学课资)
平行线与相交线的关系知识点
平行线与相交线的关系知识点在几何学中,平行线和相交线是两个基本的几何概念,它们之间有着密切的关联。
本文将介绍平行线与相交线的性质以及它们之间的一些重要关系。
一、平行线的定义与性质平行线是指在同一个平面上永远不会相交的直线。
两条平行线之间的距离始终保持相等,且它们的斜率也相等。
平行线具有以下性质:1. 平行线的性质一:同一平面内两直线要么相交于一点,要么平行。
2. 平行线的性质二:如果一条直线与另外两条平行线相交,那么这两条平行线之间的对应角相等。
3. 平行线的性质三:平行线的倾斜角度相等。
4. 平行线的性质四:两条平行线与一条相交线所构成的内角和为180度。
二、相交线的定义与性质相交线是指在同一个平面上交于一点的两条直线。
相交线之间的夹角是它们各自的内角和,且夹角的大小和形状取决于直线的倾斜程度。
相交线具有以下性质:1. 相交线的性质一:相交线之间夹角的大小可以是锐角、直角或钝角。
2. 相交线的性质二:相交线之间夹角的大小等于其对应的对顶角。
3. 相交线的性质三:两条相交线若交于一点,则点的坐标满足这两条直线的方程。
三、平行线与相交线的关系平行线与相交线之间有以下重要的关系:1. 平行线切割相交线:如果一条直线与一对平行线相交,那么它将会把这对平行线切割成相似的线段。
2. 内错角与同旁内角:当一条直线与两条平行线相交时,所构成的对应角(内错角)相等,而相应于同旁外角(同旁内角)也相等。
3. 平行线的判定:如果两条直线与一条相交线所构成的内外角相等,那么这两条直线是平行的。
4. 平行线的传递性:如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。
通过对平行线和相交线的定义、性质以及它们之间的关系的认识,我们能够更好地理解几何学中的相关概念,并应用它们解决问题。
总结:平行线是在同一平面上永不相交的直线,其性质包括对应角相等、倾斜角相等以及内角和为180度等;相交线是在同一平面上交于一点的直线,其性质包括夹角等于内角和以及夹角的种类;平行线与相交线之间的关系包括平行线切割相交线、内错角与同旁内角相等、平行线的判定方法以及平行线的传递性。
相交线与平行线知识点归纳总结
名师总结优秀知识点《相交线与平行线》知识点总结段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.一:相交线三、平行线( 1 )相交线的定义1、在同一平面内,两条直线的位置关系有两种:平行和相交.两条直线交于一点,我们称这两条直线相交.相对的,我们称这两( 1)平行线的定义 :在同一平面内 ,不相交的两条直线叫平行线.条直线为相交线.记作: a∥ b;读作:直线 a 平行于直线 b .( 2 )两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.( 2)同一平面内,两条直线的位置关系:平行或相交,对于这一( 3 )在同一平面内,两条直线的位置关系有两种:平行和相交知识的理解过程中要注意:( 4 )对顶角:有一个公共顶点,并且一个角的两边分别是另一个①前提是在同一平面内;角的两边的反向延长线,具有这种位置关系的两个角,互为对顶②对于线段或射线来说,指的是它们所在的直线.角.∠ 1 和∠ 3,∠ 2 和∠ 4 是对顶角 .( 3)平行公理:经过直线外一点,有且只有一( 5 )邻补角:只有一条公共边,它们的另一边互为反向延长线,条直线与这条直线平行.具有这种关系的两个角,互为邻补角.2如图,过点 P 只有直线 a 与直线 b平行如图:∠ 1 和∠ 2,∠ 2 和∠ 3 是邻补角 .( 4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,( 6 )对顶角的性质:对顶角相等.(如图∠ 1 =∠ 3,13它是“能但只能画出一条”的意思.∠2=∠ 4)4( 5)平行公理的推论:如果两条直线都与第三条直线平行,那么( 7 )邻补角的性质:邻补角互补,即和为180°.这两条直线也互相平行.(如图∠ 1+∠ 2 = 180 °)如图,如果 a ∥ c, b∥ c,那么 a ∥c( 8 )邻补角、对顶角成对出现,在相交直线中,一个角的邻补角2、同位角、内错角、同旁内角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的( 1)同位角:两条直线被第三条直线所截形成的角中,若两个角一种位置关系.它们都是在两直线相交的前提下形成的。
相交线与平行线的知识点
相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
(完整版)相交线与平行线复习知识点总结
第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
平行线与相交线的知识点总结与归纳
平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。
平行线的特点是它们的斜率相等,且不相交。
若两条直线平行,则可表示为l,m。
平行线的性质:1.平行线具有等于90°的斜角。
2.平行线与同一条直线垂直的直线也是平行线。
这一性质被称为垂直平行线定理。
3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。
4.平行线的反身性质:如果l,m,则m,l。
二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。
2.点斜式法:通过两点确定的直线斜率相等来判定。
3.斜率法:两直线斜率相等,则平行。
4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。
三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。
相交线两两相交于一点,称之为交点。
相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。
2.两条相交线总有一对互为垂直的直线。
3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。
四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。
2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。
3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。
4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。
五、应用举例1.在平行四边形中,对角线互相平分。
2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。
3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。
4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。
在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。
七年级下册数学相交线与平行线知识点归纳
七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最长。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。
②内错角成正比,两直线平行。
③同旁内角互补,两直线平行。
11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。
(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件
是为什么?
解题秘方:找出AB,CD 被
AE 所截形成的同旁内角,利
用两个角之间的数量关系来
说明这两条直线平行.
感悟新知
解:因为∠ 1= ∠ AOD(对顶角相等),∠ 1=70°, 所以∠ AOD=70°. 又因为∠ A=110°, 所以∠ A+ ∠ AOD=180°. 所以AB ∥ CD(同旁内角互补,两直线平行).
(3)直线l1,l2位置关系如何?
两直线平行
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
.P
A
B
1
相关概念:判定1:同位角相等,两直线平行
平行线判定1:
两条直线被第三条直线所截 ,
如果同位角相等, 课件 课件 课件 课件 课件
2. 表达方式:如图5.2-12, 因为∠ 1+ ∠ 2=180°(已 知), 所以a ∥ b(同旁内角互补, 两直线平行).
感悟新知
特别解读 利用同旁内角说明两直线平行时,同旁内角之
间的关系是互补,不是相等.
感悟新知
例 3 如图5.2-13, 直线AE,CD 相交于点O, 如果
∠ A=110°,∠ 1=70°,就可以说明AB ∥ CD,这
【例1】如图,∠1=∠2=35°,
则AB与CD的关系是___A__B_∥_C_D____,
理课 课 课件 件 件 由课课课件件件 是___同___位__角__相__等__,__两__直__线__平__行__.
(完整版)初一数学下册《相交线与平行线》知识点归纳
相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
第二章 相交线与平行线
第二章相交线与平行线第1节两直线的位置关系∙知识点聚焦1.相交线与平行线(1)相交线:在同一平面内如果两条直线只有一个公共点时,我们称这两条直线相交.∙(2)平行线:在同一平面内,永不相交的两条直线叫做平行线.注:(1)在同一平面内,两条直线的位置关系有相交和平行两种.(2)两条直线相交,只有一个交点.2.对顶角与邻补角(1)对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的;两边互为反向延长线,这两个角叫作对顶角,对顶角相等.注:相等的角不一定是邻补角.(2)邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角,邻补角互补.注:互补的角不一定是邻补角.3.余角和补角(1)余角①定义:如果两个角的和是o90,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.②性质:同角或等角的余角相等.(2)补角180那么称这两个角“互为补角”,简称“互补”,①定义:如果两个角的和是o也可以说其中一个角是另一个角的补角.②性质:同角或等角的补角相等.4.垂线(1)定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足.(2)性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上的所有点的连线中,垂线段最短.简称垂线段最短.(3)点到直线的距离:直线外一点到这条到这条直线的垂线段的长度,叫作点到直线的距离.注:距离是指线段的长度,是一个数量;线段是图形,它们之间不能等同. (4)垂线的画法一靠:用三角尺一条直角边靠在已知直线上. 二移:移到三角尺使已知点落在它的另一条直角边上. 三画:沿着这条直角画线.注:①画一条线段或射线的垂线,就是画它们所在直线的垂线.②过一点作线段的垂线,垂足可以线段上,也可以在线段的延长线上.典型例题 例1.如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?分析:⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角.12对邻补角.ABC DEF例2.如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.分析:⑴∵OE 、OF 平分∠BOC 、∠AOC ∴,21BOC EOC ∠=∠,21AOC FOC ∠=∠∴)(212121AOC BOC AOC BOC FOC EOC EOF ∠+∠=∠+∠=∠+∠=∠又∵︒=∠+∠180AOC BOC ∴︒=︒⨯=∠9018021EOF⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.例3.(1)已知,如图,直线AB 、CD 交于点O ,且o BOC AOD 120=∠+∠,求AOC ∠的度数.(2)如图,AB 、CD 、EF 交于点O ,o AOE 25=∠,o DOF 45=∠,求AOD ∠的对顶角的度数.(3)如图,AB 、CD 交于点O ,OE 平分AOD ∠,o BOD BOC 30-∠=∠,求CO E ∠的度数.分析:(1)由对顶角相等可得o BOC AOD 60=∠=∠,从而可得o o o A O C 12060180=-=∠.CEF(2)由对顶角相等可知o DOF EOC 45=∠=∠,从而可得o o o o A O D 1102545180=--=∠.(3)o BOD COB 180=∠+∠,o BOD BOC 30-∠=∠,则o C O B 75=∠,o BOD 105=∠,o COB AOD 75=∠=∠,OE 平分AOD ∠,则o AOE 5.37=∠, o BOD AOC 105=∠=∠,则o o o AOE COA COE 5.1425.37105=+=∠+∠=∠.例 4.已知,如图所示直线AB 、CD 、EF 交于点O ,BOD APF ∠=∠2,AOC COE ∠=∠23,求COE ∠的度数.分析:方程思想,将图中的角用未知数表示,找到等量关系,设方程,一般设较小的为x .例5.如图,OE 与CD 相交与点O ,且21,90∠=∠︒=∠=∠COE DOE .(1)BOE AOE ∠∠与有什么关系?为什么? (2)BOC AOD ∠∠与有什么关系?为什么? 分析:(1)BOE AOE ∠∠与相等.因为21,902,901∠=∠︒=∠+∠︒=∠+∠且BOE AOE ,所以BOE AOE ∠=∠.(2)BOC AOD ∠∠与相等,21,1802,1801∠=∠︒=∠+∠︒=∠+∠且BOC AOD ,所以BOC AOD ∠=∠.例6.(1)如图,已知o ACB 90=∠,AB CD ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长;线段DB 的长为点 到直线 的距离.AE CB OD12(2)如图,在直角三角形ABC 中,o C 90=∠,c AB =,b AC =,a BC =,则AB BC AC BC AB AB AC -++-+-= .分析:(1)垂线的性质.(2)垂线段最短+两点间线段最短.例7.探索规律(1)2条直线相交于一点,有多少对不同的对顶角? (2)3条直线相交于一点,有多少对不同的对顶角? (3)4条直线相交于一点,有多少对不同的对顶角?(4)n 条直线相交于一点,有多少对不同的对顶角?分析:两条直线相交时可出现两对不同的对顶角,故找对顶角的对数其实质就是找有多少对不同的直线相交.课堂练习1.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面没有公共点的两条射线平行2.下面四个图形中,∠1与∠2是对顶角的图形有( )A.0B.1C.2D.33.如图所示,∠1的邻补角是( )A .BOC ∠B .BOE ∠和AOF ∠C .AOF ∠D .BOE ∠和AOC ∠4.下列各图中,∠1与∠2互为余角的是( )A. B .C .D .5.如图,直线1l 与2l 相交于点O ,1l OM ⊥,若o 44=∠α,则=∠β等于( )A .o 56B .o 46C .o 45D .o 446.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( )个.A .0B .1C .2D .37.如图,已知直线AB 与CD 交于点O ,ON 平分DOB ∠,若o BOC 110=∠,则AON ∠的度数为___度.8.如图所示,o ACB 90=∠,AB CD ⊥,BC DE ⊥,①钝角与锐角互补; ②α∠的余角是α∠-090; ③β∠的补角是β∠-o 180;④若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余.10.已知:如图,三条直线AB ,CD EF 相交于O ,且EF CD ⊥,11.已知,所示,o ACB 90=∠,cm BC 5=,cm AC 12=,12.通过画图,寻找对顶角和邻补角(不含平角):(1)若2条直线相交于同一点,则有 对对顶角, 对邻补角. (2)若3条直线相交于同一点,则有 对对顶角, 对邻补角. (3)若4条直线相交于同一点,则有 对对顶角, 对邻补角.(4)通过(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于同一点,则可形成 对对顶角, 对邻补角.13.如图,AB ,CD ,EF 相交于点O ,如果o AOC 65=∠,o DOF 50=∠.(1)求BOE ∠的度数;(2)计算AOF ∠的度数,发现射线OA 有什么特殊性吗?14.如图,AOB 是一条直线,o EOC BOD AOD 90=∠==∠.1:3:=∠∠AOE BOD , (1)求COD ∠的度数. (2)图中有哪几对角互为余角? (3)图中有哪几对角互为补角?15.将一张长方形纸片按图中的方式折叠,BC ,BD 为折痕,求CBD ∠的大小.16.已知:如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数.17.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.18.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .CDBAEO19.已知:直线AB 与直线CD 相交于点O ,o BOD 45=∠.(1)如图1,若AB EO ⊥,求DOE ∠的度数; (2)如图2,若FO 平分AOC ∠,求DOF ∠的度数.20.如图所示,已知直线AB 、CD 交于点0,x =1,1-=y 是方程34-=+y ax 的解,也是方程a ay bx 21+=-的解,且a b AOD AOC ::=∠∠,AB EO ⊥. (1)求EOC ∠的度数.(2)若射线OM 从OC 出发,绕点O 以s o /1的速度顺时针转动,射线ON 从OD 出发,绕点O 以s o /2的速度逆时针第一次转动到射线OE 停止,当ON 停止时,OM 也随之停止.在转动过程中,设运动时间为t ,当t 为何值时,ON OM ⊥. (3)在(2)的条件下,当ON 运动到EOC ∠内部时,下列结论:①BON EOM ∠-∠2不变;②BON EOM ∠+∠2不变,其中只有一个是正确的,请选择并证明.第2节 探索直线平行的条件∙知识点聚焦1.同位角具有1∠和5∠这样位置关系的角称为同位角, 图中的同位角还有2∠和6∠,3∠和7∠,4∠和8∠ 2.内错角具有3∠和5∠这样位置关系的角称为内错角, 图中的内错角还有4∠和6∠ 3.同旁内角具有4∠和5∠这样位置关系的角称为同旁内角,图中的同旁内角还有3∠和6∠ 注:(1)同位角、内错角、同旁内角是成对出现的,两直线被第三条直线所截形成的8个角中有4对同位角,2对内错角,2对同旁内角.(2)同位角、内错角、同旁内角各自的位置关系:同位角是“同旁同侧”,内错角是“内部异侧”,同旁内角“内部同侧” 4.两条直线平行条件(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等.两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称:内错角相等.两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称:同旁内角互补.两直线平行. (4)平行于同一条直线的两条直线平行.(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 5.平行线的性质:过直线外一点有且只有一条直线与这条直线平行41 2 3 5 876DCBEAF例1:如图所示:⑴图中∠1与∠2是哪两条直线被哪一条直线所截形成的?⑵图中∠1与哪个角是同位角?它们是哪两条直线被哪一条直线所截形成的? ⑶∠3与∠C 是什么位置关系的角?它们是哪两条直线被哪一条直线所截形成的?分析:⑴∠1与∠2是直线AB 、DE 被直线EF 所截形成的;⑵∠1与∠B 是同位角,它们是直线EF 、BC 被直线AB 所截形成的; ⑶∠3与∠C 是同旁内角,它们是直线AC 、DE 被直线BC 所截形成的.例2: 如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:分析:(1)∠1和∠2:是AB 、EF 被直线CD 所截而得到的,一组同位角(2)∠1和∠3:是AB 、CD 被直线CD 所截而得到的,一对内错角(3)∠1和∠6:是AB 、CD 被直线CD 所截而得到的,一对同旁内角(4)∠2和∠6:是EF 、CD 被直线AB 所截而得到的,一对同位角 (5)∠2和∠4:是EF 、AB 被直线CD 所截而得到的,一对同旁内角 (6)∠3和∠5:是EF 、CD 被直线AB 所截而得到的,一对内错角 (7)∠3和∠4:是AB 、CD 被直线EF 所截而得到的,一对同旁内角 例3:如图,根据下列条件,可推得哪两条直线平行?并说明理由. ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°; ⑶∠ACD =∠BAC ;3CFEBAD1 423 65ABCDO分析: ⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.例4: 如图,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.分析:如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°课堂练习01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( ) A .∠AMF B .∠BMF C .∠ENC D .∠ENDl 1l 2l 3 l 4l 5l 6图⑴l 1l 2 l 3l 4l 5l 6图⑵A E BCF DABC D FEMNα第1题图 第2题图ABDC第4题图03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( ) ①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD , ∠1=∠2,那么直线AB 与CD 的位置关系如何?ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A C D EB A BC DEF 1 213.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知)∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 .使AD ∥BC .15.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点.1 23 AB C DE F第13题图 AB C D E F第14题图GFEDCB A第3节 平行线的性质∙知识点聚焦1. 平行线的性质(1)两条平行线被第三条直线所截,同位角相等.简称为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等.简称为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.简称为:两直线平行,同旁内角互补.2.平行线的判定与性质的区别与联系 (1)直线平行的条件同位角相等;内错角相等;同旁内角互补;两直线平行; (2)平行线的性质两直线平行;同位角相等;内错角相等;同旁内角互补;例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么? (2) 从︒=∠1101可以知道3∠是多少度吗?为什么? (3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 分析:(1)︒=∠1102( 两直线平行,内错角相等.)(2)︒=∠1103 ( 两直线平行,同位角相等.) (4)︒=∠704 (两直线平行,同旁内角互补.)例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么? 分析:因为CF AE //,所以FGB A ∠=∠因为CD AB //,所以C FGB ∠=∠ 所以︒=∠39C例3 如图,AB ∥CD ,AE 、DF 分别是∠BAD 、∠CDA 的角平分线,AE 与DF 平行吗?•为什么?分析:平行. ∵AB ∥CD ,∴∠BAD=∠CDA (两直线平行,内错角相等). ∵AE 、DF 分别是∠BAD 、∠CDA 的平分线,∴∠EAD=12∠BAD ,∠FDA=12∠CDA .∴∠EAD=∠FDA .∴AE ∥DF (内错角相等,两直线平行).例4 如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .分析:∵∠AMB=∠DMN ,又∠ENF=∠AMB ,∴∠DMN=∠ENF , ∴BD ∥CE .∴∠BDE+∠DEC=180°.又∠BDE=∠BCN ,∴∠BCN+∠CED=180°, ∴BC ∥DE ,∴∠CAF=∠AFD .例5 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A 是120°,第二次拐的角B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,问∠C 是多少度?说明你的理由.分析:∠C=150°.理由:如答图,过点B 作BE ∥AD ,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE ∥AD ,CF ∥AD ,∴BE ∥CF (平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补). ∴∠C=180°-∠CBE=180°-30°=150°.西B 30°A北东南例6 (1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.分析:(1)如答图5-3-2,过点C 作CF ∥AB ,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行).∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.理由:如答图5-3-2过点C 作CF ∥AB ,得∠B+∠1=180°(两直线平行,•同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.点拨:辅助线CF 是联系AB 与DE 的纽带.课堂练习01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等 B.同位角相等 C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种 B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.150°120°DBCE湖4321ABEFC D4P231A BEFC D12.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.13.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?14.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.第4节尺规作图知识点聚焦1.“尺规作图”的含义(1)在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.尺规作图在操作过程中不允许度量.(2)基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.2.熟练掌握尺规作图题的规范语言(1)用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .3.了解尺规作图题的一般步骤(1)已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1. 例2.例3. 典型例题如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于b a -2.解:(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.求作一个角等于已知角∠MON .解:(1)作射线11M O ;(2)以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.如下图,已知α∠及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .∙作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.已知∠AOB ,求作∠AOB 的平分线OC .解(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点;(3)作射线OC ,则OC 为∠AOB 的平分线.如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析 依据角平分线的性质可以知道,蓝方指挥部必在A 区内两条路所夹角的平分线上,然后由蓝方指挥部距B 点的距离,依据比例尺,计算出图上的距离为3.5cm ,就可以确定出蓝方指挥部的位置.解 如下图,图中C 点就是蓝方指挥部的位置.例4. 例5.课堂练习1.如图,已知∠A 、∠B ,求作一个角,使它等于B A ∠-∠.2.如图作△ABC ,使得BC=a 、AC=b 、AB=c3.如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h4.如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。
平行线与相交线的知识点总结与归纳
平行线与相交线的知识点总结与归纳平行线与相交线是几何学中非常基础且重要的概念。
它们在很多几何证明和定理中都占据重要地位。
本文将对平行线与相交线的相关概念、性质和应用进行总结与归纳,帮助读者理解和掌握这些知识点。
一、平行线的概念和判定平行线是指在同一个平面内永远不会相交的直线。
平行线的概念可以通过以下方式进行判定:1. 法则一:两条直线被一条横截线所截,且内、外两侧交角相等,则这两条直线是平行线。
2. 法则二:两条直线被平行于它们的横截线所截,对应角相等,则这两条直线是平行线。
3. 法则三:两条直线的斜率相等时,它们是平行线。
二、平行线的性质1. 平行线具有传递性:如果直线a与直线b平行,直线b与直线c 平行,那么直线a与直线c也平行。
2. 平行线具有对应角相等性质:当两条平行线被横截线所截时,对应角相等。
3. 平行线具有同位角相等性质:当两条平行线被平行于它们的横截线所截时,同位角相等。
三、相交线的概念和性质相交线是指在同一个平面内相互交叉或相交的直线。
相交线的性质如下:1. 相交线的交点称为顶点,顶点两侧的角分别称为锐角、钝角或直角。
2. 相交线形成的两组对应角相等,即共鸣。
3. 相交线形成的补角相等,即一个角是另一个角的补角,它们的和等于90°。
四、平行线与相交线的应用1. 平行线与相交线在平面几何证明中经常被应用。
例如,证明两条直线平行时常常使用平行线公理和对应角相等的性质。
2. 平行线与相交线在解决实际问题中也起到重要作用。
例如,在建筑工程中,通过平行线和相交线可以确定物体的垂直、水平方向,从而保证建筑结构的稳定性和安全性。
3. 平行线与相交线还与三角形的性质有密切关系。
在研究三角形的内部角度和边的关系时,平行线与相交线的性质常常用来辅助推导和证明。
综上所述,平行线与相交线是几何学中重要的概念。
通过掌握平行线与相交线的概念、判定、性质和应用,可以帮助我们更好地理解和应用几何学知识,提高问题解决能力和证明能力。
(完整版)相交线与平行线最全知识点
一、本章共分4大节共14个课时;(2.16~3.7第1、4周)章节内容课时第五章 相交线与平行线145.1 相交线35.2 平行线及其判定 35.3 平行线的性质 45.4 平移2单元小结2二、本章有四个数学基本事实1.过直线外一点有且只有一条直线与这条直线平行;2.过一点有且只有一条直线与这条直线垂直;3.两条直线被第三条直线所截,如果同位角相等,那么两直线平行;4.两直线平行,同位角相等. 三、本章共有19个概念1.对顶角2.邻补角3.垂直4.垂线5.垂足6.垂线段7.点到直线的距离8.同位角9.内错角10.同旁内角11.平行12.数学基本事实13.平行公理14.命题15.真命题16.假命题17.定理18.证明19.平移四、转化的数学思想遇到新问题时,常常把它转化为已知(或已解决)的问题.P14五、平移1.找规律2.转化求面积3.作图(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长cm ,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【解】第19题图相交线与平行线知识点5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.1243AB C DO4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥a b a .b 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行 如左图所示,∵∥,∥b a c a ∴∥b cPA BOab 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 如图,直线被直线所截b a ,l ①∠1与∠5在截线的同侧,同在被截直线的上方,l b a ,叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在l b a ,内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.l b a , ④三线八角也可以成模型中看出.同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如: 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图. 如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.abl1234567816B A D 2345789FEC A BF 21ABC17ABCD26ADBF1AF58C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言: ∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180° ∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行.②如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线. ⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确 ⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A BC DEF 1234⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠ACF +∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质: 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离 如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题.⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.4、平行线的性质与判定①平行线的性质与判定是互逆的关系A BC DEF 1234A EGBC FHDn 两直线平行 内错角相等; 两直线平行 同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C 证明:∵∠1=∠B (已知) ∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知) ∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB∥DF (已知) ∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换 ①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等2、平移的特征: ①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化. ②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______.⑶点_____的对应点是点F ;⑷线段AB的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______. ⑺____的对应角是∠F.AD FBE C123解答: ⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等例1:判断下列说法的正误。
平行线与相交线知识点总结
平行线与相交线知识点总结平行线与相交线是几何学中的重要概念,它们在解决几何问题和证明几何定理中起着重要作用。
在本文中,我将对平行线与相交线的知识点进行总结,希望能够帮助读者更好地理解和应用这些概念。
一、平行线的定义和性质平行线是指在同一个平面内永远不相交的直线。
根据平行线的定义,我们可以得到以下性质:1. 平行线具有传递性,即如果两条直线分别与一条第三条直线平行,则这两条直线也平行。
2. 平行线具有对称性,即如果一条直线与另一条直线平行,则另一条直线也与第一条直线平行。
3. 平行线与同一条直线相交的两条直线,被称为平行线的转角线,转角线上的两个内角互为对应角,且对应角相等。
二、相交线的定义和性质相交线是指在同一个平面内交于一点的两条直线。
相交线的性质如下:1. 相交线的交点被称为交点,交点所在的直线称为交线。
2. 相交线的两个内角互为对应角,且对应角相等。
3. 相交线的两个外角互为对应角,且对应角相等。
4. 相交线的两个内角和等于180度,即它们是补角。
三、平行线与相交线的关系平行线与相交线之间存在着一些重要的关系:1. 两条平行线被一条交线相交时,所成的对应角、内错角、同旁内角都相等。
2. 两条平行线被一条交线相交时,所成的同旁外角互为补角。
3. 平行线与同一条直线相交时,所成的内错角互为补角。
四、平行线与相交线的应用平行线与相交线的概念在几何学中有广泛的应用,下面举几个例子:1. 平行线的应用:在建筑设计中,我们常常需要根据已知的平行线来确定墙体、地板等的位置。
此外,在计算机图形学中,平行线的概念也被广泛应用于线的渲染和显示算法中。
2. 相交线的应用:在交通规划中,我们常常需要通过相交线来确定道路的交叉口、转弯处等位置。
此外,在计算机图形学中,相交线的概念也被广泛应用于多边形的裁剪和填充算法中。
平行线与相交线是几何学中的重要概念,它们具有一些特定的定义和性质。
了解和掌握这些知识点,对于解决几何问题和证明几何定理具有重要的意义。
相交线与平行线知识点大全
相交线与平行线知识点大全一、基础概念1.相交线:当两条线在空间中有一个交点时,我们称它们为相交线。
2.平行线:当两条线在空间中没有任何交点时,我们称它们为平行线。
3.直线:无限延伸的一维物体。
二、相交线的性质1.两条相交线的交点只有一个。
2.相交线的交点与每条线上的点都是共线的。
3.直线与平面的交点是一个点或直线。
三、平行线的性质1.平行线的斜率相等。
2.平行线之间的距离是始终相等的。
3.平行线在任意一点上的两个角相等。
4.如果两条线与一条平行线的交点的两个内角相等,则这两条线平行。
四、判断相交线与平行线的方法1.观察交线的边长关系:如果两条线段相等,则这两条线段平行。
2.观察角度关系:如果两个角的对角线相等且一个角是直角,则这两条线段平行。
3.观察线段的斜率关系:如果两条线段的斜率相等,则这两条线段平行。
4.观察线段的方程:如果两条线段的方程满足平行线的定义,则这两条线段平行。
五、平行线的判定定理1.垂直平行线定理:如果一条线段与两条平行线相交,且这两条交线是垂直的,则这两条平行线是垂直平行线。
2.异面直线平行定理:如果两条异面直线有一条平行于每条还是的直线,则这两条直线平行。
3.平行线的等价定理:如果两条直线与一条平行线平行,则这两条直线平行。
六、平行线的性质定理1.平行线的平移定理:平行线的平移仍为平行线。
2.平行线的垂直定理:平行线与同一平面内的垂直线垂直。
七、平行线与角的关系1.平行线对应角定理:如果一条直线与两条平行线相交,那么对应的内角和对应的外角是互补的。
2.平行线夹角定理:如果两条平行线被一条截断,那么所截断的两条线上的对应角相等。
3.平行线内角定理:如果一条直线与两条平行线相交,那么内角的和是180度。
以上是关于相交线与平行线的知识点的详细介绍,相交线与平行线是基础几何概念,掌握这些知识点,可以帮助我们更好地理解和应用直线之间的关系。
相交线与平行线知识点总结及例题解析
相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
相交线与平行线考点及题型总结
相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
相交线与平行线知识点归纳
相交线与平行线知识点小结一、相交线1.相交线:两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线 -----性质:对顶角相等3.邻补角:两条直线相交,产生邻补角和对顶角的概念。
要注意区分互为邻补角与互为补角的异同。
----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线-----性质:邻补角互补(和为180°)4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短----点到直线的距离:就是点到直线的垂线段的长度。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
二、平行线1.平行线:在同一平面内,不相交的两条直线。
-----特点:没有交点,平行线永不相交。
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)特别注意:①三角形的三个内角均互为同旁内角;②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。
相交线与平行线最全知识点
相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。
记作AB,CD。
2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。
-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。
-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。
3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。
4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-相交线的交点:两条相交线的交点是它们的唯一交点。
-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。
5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。
-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。
-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。
6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。
-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。
- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。
-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。
(完整版)相交线与平行线知识点
第五章《相交线与平行线》知识点1.相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4;邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。
像∠1和∠2这样的角我们称他们互为邻补角;对顶角:∠1和∠3有一个公共的顶点O,并且∠1的两边分别是∠3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∠1和∠2互补,∠2和∠3互补,因为同角的补角相等,所以∠1=∠3。
所以,对顶角相等垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。
垂线相关的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。
2.平行线:在同一个平面内永不相交的两条直线叫做平行线。
平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。
3.同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。
(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
)直线AB,CD平行,被第三条直线EF所截。
这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章节
内容
课时
第五章 相交线与平行线 14
5.1 相交线
3 5.2 平行线及其判定 3 5.3 平行线的性质
4 5.4
平移
2
单元小结 2 二、本章有四个数学基本事实
1.过直线外一点有且只有一条直线与这条直线平行;
2.过一点有且只有一条直线与这条直线垂直;
3.两条直线被第三条直线所截,如果同位角相等,那么两直线平行;
4.两直线平行,同位角相等. 三、本章共有19个概念
1.对顶角
2.邻补角
3.垂直
4.垂线
5.垂足
6.垂线段
7.点到直线的距离
8.同位角
9.内错角 10.同旁内角11.平行12.数学基本事实13.平行公理14.命题15.真命题16.假命题 17.定理18.证明19.平移
四、转化的数学思想
遇到新问题时,常常把它转化为已知(或已解决)的问题.P14
五、平移 1.找规律 2.转化求面积 3.作图
(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长103cm ,其一个内角为60°.
(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ; 【解】
(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? 【解】
60° …… d
L 第19题图
相交线与平行线知识点
5.1相交线
1、邻补角与对顶角
图形 顶点 边的关系 大小关系 对顶角
∠1与∠2 有公共顶点
∠1的两边与∠2的两边互为反向延长线
对顶角相等 即∠1=∠2
邻补角
∠3与∠4
有公共顶点
∠3与∠4有一条边公共,另一边互为反向延长线.
∠3+∠4=180°
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 符号语言记作:
如图所示:AB ⊥CD ,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.
3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线. 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;
②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,
1 2 4 3 A B C D O。