人教版七年级上册第四章-几何图形初步知识点总结

合集下载

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)一、选择题1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南D解析:D【分析】 如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .2.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .3.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π C解析:C【分析】 根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.6.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1A解析:A【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④B 解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.8.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.9.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+ 4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.12.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________. 【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.15.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.( 取3.14)16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.18.若∠B 的余角为57.12°,则∠B=_____°_____’_____”5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.3或4或6【分析】分三种情况下:①∠AOP =35°②∠AOP =20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.解析:(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE =180°,∴∠COE =180°-110°=70°,(3)∵∠COE =70°,OD 平分∠COE ,∴∠COD =35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 24.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.25.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=.故答案为:12,9,23,6,MC,9,6,15.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM,线段的比得出MC是解题关键.26.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.27.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.28.如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=°,∠COB+∠BOD=①所以∠AOC=.②因为∠AOC=40°,所以∠BOD=°.在上面①到②的推导过程中,理由依据是:.解析:90,90,∠BOD,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB=90 °,∠COB+∠BOD=90 ° -﹣﹣﹣①所以∠AOC=∠BOD .﹣﹣﹣﹣②-因为∠AOC=40°,所以∠BOD=40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.。

数学人教版七年级上册单元总结 第4章 几何图形的初步(解析表)

数学人教版七年级上册单元总结 第4章 几何图形的初步(解析表)

第四章几何图形的初步单元总结【思维导图】【知识要点】知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。

常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。

⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。

常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和几何图形的区别】1、所含平面数量不同。

平面图形是存在于一个平面上的图形。

立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。

2、性质不同。

根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。

由构成原理可知平面图形是构成立体图形的基础。

3、观察角度不同。

平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。

4、具有属性不同。

平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。

【典型例题】1.下列请写出下列几何体,并将其分类.(只填写编号)如果按“柱”“锥”“球”来分,柱体有_____,椎体有_____,球有_____;如果按“有无曲面”来分,有曲面的有_____,无曲面的有_____.【答案】(1)(2)(6)(3)(4)(5)(2)(3)(5)(1)(4)(6)【解析】详解:按柱、锥、球分类.属于柱体有(1),(2),(6),椎体有(3),(4),球有(5);按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6).故答案为:(1),(2),(6);(3),(4);(5);(2),(3),(5);(1),(4),(6).2.在如下图所示的图形中,柱体有___________,锥体有__________,球体有_______.【答案】①②③⑦⑤⑥④【解析】①是圆柱,②是正方体,属于棱柱,③是长方体,属于棱柱,④是球,⑤是圆锥,⑥是三棱锥,⑦是三棱柱,所以柱体有①②③⑦,锥体有⑤⑥,球体有④,故答案为:①②③⑦;⑤⑥;④.3.如图是一个棱锥,它是由____个三角形和____个底所组成的.【答案】4 1【详解】观察所给的几何体可知,该几何体为四棱锥,∴该几何体由4个侧面(侧面为三角形)和1个底面(底面为四边形)所组成的.故答案为:4;1.4.如图所示是一座粮仓,它可以看作是由几何体_______和_______组成的.【答案】圆锥圆柱【详解】解:一座粮仓,它可以看作是由圆锥和圆柱几何体组成的。

人教版初中七年级数学上册第四单元《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四单元《几何图形初步》知识点总结(含答案解析)

一、选择题1.如图,∠AOB=12∠BOD,OC平分∠AOD,下列四个等式中正确的是()①∠BOC=13∠AOB;②∠DOC=2∠BOC;③∠COB=12∠BOA;④∠COD=3∠COB.A.①②B.②③C.③④D.①④2.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个3.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A.白B.红C.黄D.黑4.将如图所示的直角三角形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为﹣3、1,若 BC=2,则 AC 等于()A.3 B.2 C.3 或 5 D.2 或 66.已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( )A .12α∠B .12β∠C .()12αβ∠-∠D .()1+2αβ∠∠ 7.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°8.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 9.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒''' B .363355︒''' C .63533︒''' D .53533︒''' 10.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15° 11.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .1812.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 13.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 14.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 15.已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( )A .60°B .20°C .40°D .20°或60° 二、填空题16.如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm17.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.18.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.19.如图,C 为线段AB 的中点,线段AB=12cm ,CD=2cm .则线段DB 的长为_______20.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.21.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.22.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.23.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____24.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.25.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.26.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.三、解答题27.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.28.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC是否互补?说明理由;(2)射线OF是∠BOC的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.29.如图所示,∠AOB=35°,∠BOC=50°,∠COD=22°,OE平分∠AOD,求∠BOE的度数.30.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.。

人教版七年级数学上册 几何图形初步 知识点归纳

人教版七年级数学上册 几何图形初步 知识点归纳

4.1几何图形知识点归纳从实物中抽象出来的各种图形叫做几何图形。

几何图形包括立体几何图形和平面几何图形。

各部分不都在同一平面内的几何图形叫做立体几何图形。

认识立体几何图形:长方体正方体球圆柱圆锥三棱柱三棱锥上下底面的形状大小相同且互相平行,侧棱平行且相等的封闭几何体叫做棱柱。

在棱柱中:①互相平行的两个面叫做棱柱的底面,其它面都是棱柱的侧面。

②两个面的公共边叫做棱柱的棱,两个相邻侧面的公共边叫做棱柱的侧棱。

③侧面与两个底面的公共顶点叫做棱柱的顶点。

④两个底面之间的距离叫做棱柱的高。

如果一个棱柱的底面是n边形,那么这个棱柱叫做n棱柱。

有一个面是多边形,其它面都是三角形且有一个公共顶点,这样的封闭几何体叫做棱锥。

在棱锥中:①形状是多边形的那个面叫做棱锥的底面,其它面都是棱锥的侧面。

②两个面的公共边叫做棱锥的棱,两个相邻侧面的公共边叫做棱锥的侧棱。

③相邻两个面的公共顶点叫做棱锥的顶点。

*在口头表述中,有时候说棱锥的顶点,可能指的是各个侧面的公共点。

下面④所说的顶点就是这个点。

④顶点到底面的距离叫做棱锥的高。

如果一个棱锥的底面是n边形,那么这个棱柱叫做n棱锥。

各部分都在同一平面内的几何图形叫做平面几何图形。

认识平面几何图形:线段角三角形长方形正方形平行四边形圆平面几何图形和立体几何图形是互相联系的,立体几何图形中的一部分可能是平面几何图形。

例子:圆柱的上底和下底都是圆,长方体的侧面可能是长方形,正方体的每个面都是正方形。

要观察立体几何图形,我们一般可以从三个方向来看:从正面看、从左面看、从上面看。

有一些立体几何图形是由一些平面几何图形围成的,如果将它们的表面用适当的方法剪开,就可以展开成平面几何图形。

这样的平面几何图形就是它们对应的立体几何图形的展开图。

几何体可以简称为体,包围着体的是面,面面相交的地方是线,线线相交的地方是点。

点动成线,线动成面,面动成体。

几何图形都是由点、线、面、体组合而构成的。

其中点是构成几何图形的基本元素。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版
特征 性质 比较线段 的大小
重要提示
内容
(1)连接AB,就是要画出以A、B为端点的线段, 不要向任何一方延伸; (2)画一条线段等于已知线段a,可以用圆规在 射线AC上截取AB=a,也可以先量出线段a的 长度,再画一条等于这个长度的线段
图例
有两个端点,不可延伸,可度量
两点之间,线段最短
(1)度量法:用刻度尺量出两条线段的长度,再比较两者的大小; (2)叠合法:把要比较的两条线段移到同一条直线上,使它们的一个端点重合,另一个端点落在 重合的端点的同一侧,进行比较
(1)两点间的距离:连接两点间的线段的长度,叫做这两点间的距离; (2)线段的中点一定在线段上; (3)“线段”是一个几何图形,而“线段的长度”是一个正数,二者是有区别的,不要混淆
.
例3 如图4-2-3,点A,B,C,D是直线l上的四个点,则图中共有几条线段?
图4-2-3 解析 解法一:(端点确定法) 以点A为左端点的线段有3条:线段AB,线段AC,线段AD;以点B为左端点 的线段有2条:线段BC和线段BD;以点C为左端点的线段有1条:线段CD. 因此共有3+2+1=6(条)线段. 说明:用端点确定法确定线段条数时,直线上的任意一点只能作为左端 点(或右端点),否则线段会重复. 解法二:(画线确定法) 先从左边第一个点(A)开始向右依次画弧线,共有3条,再从第二个点(B) 开始向右依次画弧线,共有2条,再从第三个点(C)开始向右画弧线,共有1 条,最后一点不再考虑.故题图中共有3.+2+1=6(条)线段.
图4-2-5 (2)将射线反向延伸就可得到直线;将线段向一方延伸就可得到射线;将 线段向两方延伸就可得到直线.
.
2.三者的区别如下表:
直线

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)人教版七年级上册数学知识点1第四章:几何图形初步一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。

几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。

实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。

2、立体图形的展开问题将立体图形的表面适当剪开,一、点、线、面、体1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;(2)体是由面组成、面与面相交成线、线与线相交成点;二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB 和线段AB表示的都是同一几何图形;2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结第四章图形的初步认识1、几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

2、线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3、直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点之间,线段最短。

4、角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线二、基础知识巩固1、如图所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。

(1)(2)(3)2、(1)过一个已知点的直线有多少条?答:(2)过两个已知点的直线有多少条?答:(3)过三个已知点的直线有多少条?答:(4)经过平面上三点A,B,C中的每两点可以画多少条直线?请画出图来。

(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果?如果不能画,请简要说明理由;如果能画,请画出图来。

3、(1)计算:①27°42′30″+1070′;②63°36′-36.36°。

(2)用度、分、秒表示48.12°。

(3)用度表示50°7′30″。

4、小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离。

5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、如图,经过直线a外一点p的4条直线中,与直线a平行的直线有___,共有__条.∠A与∠C__________.7、如图,如果AB∥CD,那么8、如图中几何体的展开图形是()A B C D9、如图是某些几何体的表面展开图,则这些几何体分别是 图1: 图2: 图3:10、若要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,x=_ ___,y=______.11、俯视图为圆的立体图形可能是________或___________。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七上数学第四章知识点总结人教版

七上数学第四章知识点总结人教版

七上数学第四章知识点总结人教版摘要:一、前言二、人教版七上数学第四章的知识点概述1.几何图形初步2.点、线、面的关系3.直线、射线、线段4.角的概念及分类5.角的度量6.三角形的性质和分类7.三角形的内角和定理8.四边形的性质和分类9.平行四边形的性质10.梯形的性质11.面积的计算三、重要公式和定理四、实际应用与例题解析五、总结与展望正文:一、前言人教版七上数学第四章主要涉及几何图形的初步知识,这对于培养学生空间观念和几何直观能力具有重要意义。

本章内容较为基础,但也为后续的几何学习打下良好基础。

二、人教版七上数学第四章的知识点概述1.几何图形初步:本章从最基本的点、线、面开始,让学生了解它们之间的关系,为后续的几何学习打下基础。

2.点、线、面的关系:点动成线,线动成面,面动成体。

学生需要理解并掌握这一基本关系。

3.直线、射线、线段:直线是无限延伸的,射线有一个起点,线段有两个端点。

理解它们的定义和性质有助于更好地理解几何图形。

4.角的概念及分类:角是由两条射线共同确定的图形,有锐角、直角、钝角等分类。

学生需要学会识别和分类各种角。

5.角的度量:角的大小可以用度数或弧度表示,学生需要熟练掌握角的度量方法。

6.三角形的性质和分类:三角形由三条边和三个顶点组成,根据边长和角度的不同,可以分为不等边三角形、等腰三角形和直角三角形等。

7.三角形的内角和定理:三角形三个内角的和等于180 度。

8.四边形的性质和分类:四边形由四条边和四个顶点组成,根据边长和角度的不同,可以分为矩形、平行四边形、菱形、梯形等。

9.平行四边形的性质:平行四边形的对边平行且相等。

10.梯形的性质:梯形有一对平行的边,另一对不平行的边。

11.面积的计算:本章介绍了三角形、平行四边形、梯形等图形的面积计算公式。

三、重要公式和定理1.三角形的面积公式:S = 1/2 * a * h,其中a 为底边长,h 为高。

2.平行四边形的面积公式:S = a * h,其中a 为底边长,h 为高。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结1 .几何图形相关概念L几何图形:从形形色色的物体外形中得出的图形是几何图形。

它分为立体图形和平面图形。

2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形(如长方体.正方体.圆柱.圆锥.球等)。

3、平面图形:有些几何图形的各部分都在同一平面内,它们是平面图形(如线段.角.三角形.长方形.圆等)。

4、立体图形的展开图:将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、体:几何体简称为体。

6、面:包围着体的是面,面有平的面和曲的面两种。

7、体:面与面相交的地方形成线,线和线相交的地方是点。

8、点线面体关系:点动成面,面动成线,线动成体。

2.直线、射线、线段L直线基本事实:经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线(公理)。

2、直线表示方法:(1)用直线上任意表示两个点的大写字母表示,如直线AB ;(2 )用一个小写字母表示,如直线Io3、直线的特征:①无端点;②向两端无限延伸;③不可度量。

4、直线与点的位置关系:①点在直线上(直线经过点);②点在直线外(直线不经过点).5、直线相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

6、射线定义:直线上一点和它一旁的部分叫做射线,这一点叫做射线的端点。

7、射线的表示方法:(1)用射线的端点和射线上另一点的大写字母表示,如射线OA ;(2 )用一个小写字母表示,如射线I.8、射线的特性:①一个断定;②向一方无限延伸;③不可度量.9、线段概念:直线上两点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段的表示方法:IOs(1)用线段两个端点的大写字母表示,如线段AB ;(2 )用一个小写字母表示,如线段I.Ils线段的特征:①两个端点;②无方向;③可度量.12、线段的中点:点M把线段AB分成相等的两条线段AM和MB ,点M叫做线段AB的中点。

人教版七年级上册数学 第四章 几何图形初步 几何图形 点、线、面、体

人教版七年级上册数学 第四章 几何图形初步  几何图形  点、线、面、体
1.了解几何体、平面和曲面的意义,能正确判 定围成几何体的面是平面还是曲面.
探究新知 知识点 1 构成图形的元素
图中有哪些你熟悉的立体图形?
长方体
正方体
球 体
圆 柱
探究新知 以上立体图形都是几何体,简称体.
1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平面 平面
曲面 曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
探究新知
观察长方体、圆柱、棱锥等熟悉的几何体模型,结合下 列问题小组合作探究:
(1) 面和面相交的地方形成了什么?它们有什么不同吗? (2) 线和线相交处又形成了什么?它们有什么不同吗?
人教版 数学 七年级 上册
4.1 几何图形
4.1.2 点、线、面、体
导入新知
猜谜语
千条线,万条线, 落入水中看不见.
(打一物)
谜底——雨—滴———
思考:将雨滴看成一条线,蕴含了怎样的数 学道理?
素养目标
2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经 过运动变化形成的简单的几何图形.
答案:48 π cm2 或 24π cm2 .
(3) 这个几何体的体积是多少?
答案:16 π cm3 或 32π cm3 .
课堂小结
几 何 图 形

交动 成成
线
交动 成成

围动 成成
构成图形的基本元素 无大小
直线 无粗细 曲线

人教版 七年级数学 知识总结 第四章 几何图形初步

人教版 七年级数学 知识总结 第四章 几何图形初步
������
P ②点不在线上 点 P 不在直线 ������ 上
直线 ������ 不过点 P
P
������
������
O 反向延长射线 AB
������
O
注:延长线具有方向性
(5)等分点:将线段平均分成几份的点 ①两等分点(中点):点 B 将线段 AC 平均分成两 份(点 B 正好在线段 AC 的中间)。
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形 4.1.2 点、线、面、体
4.2 直线、射线、线段 4.3.1 角
4.3 角 4.3.2 角的比较与运算 4.3.3 余角和补角
4.1 几何图形
4.1.1 立体图形与平面图形
(1)定义 平面图形:各部分都在同一平面内 立体图形:各部分不 都在同一平面内
������
������
������
O
第二步:用圆规量取������的长度,以 O 为圆心,������为半径画
弧,与直线������相交于点 A。则 OA=������.
������
O
A
第三步:以 A 为圆心,������为半径画弧,与直线������相交于点 B。则 OB=2������.
������
线
线与线相交

―9―
4.2 直线、射线、线段
(1)复习旧知: 直线:向两端无限延伸(无长度)。 射线:向一端无限延伸(无长度)。 线段:有两个端点(有长度)。
(4)延长线: ①延长线段
A
B
(2)记法:大写字母表示点,小写字母表示线;
①直线:取线上任意两个字母(两点确定一条直线)
������
A
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
距离:连接两点间的线段的长度,叫做这两点间的距离.(平面上任意两点间的距离指的是连接这两点的线段的长度,强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离)
4.3角
4.3.1角
角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.
包围着体的是面。面有平面和曲面两种。面动成体
面和面相交的地方形成线。有直线和曲线,线动成面
线和线相交的地方是点。点动成线。点是构成图形的基本元素。
4.2直线、射线、线段
关于直线的基本事实:经过两点有一条直线,并且只有一条直线.简称:两点确定一条直线.
相交、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
4.3.3余角和补角
余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角是另一个角的余角.同角(等角)的余角相等.
补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.同角(等角)的补角相等.注意:余角(补角)与这两个角的位置没有关系,只要度数之和满足了定义,则它们就具备相应的关系.
4.4课题学习:设计制作长方体形状的包装纸盒
平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一个平面内,它们是平面图形.
展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
4.1.2点、线、面、体
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体.
角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.以度、分、秒为单位的角的度量制,叫做角度制.
4.3.2角的比较与运算
比较角的大小:量角器量或叠合
角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.度量法、折叠法、尺规作图法等。三等分线
平角、周角:角也可以看作是由一边旋转重合时,形成周角.
角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.
尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图。
中点:点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。三等分点、四等分点……
关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.比较两条线段长短的方法有两种:度量比较法、重合比较法.
直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.
②射线:直线的一部分,用一个小写字母表示,如:射线l,或用两个大些字母表示,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
人教版数学七年级上册第四章几何图形初步
第四章:几何图形初步
4.1几何图形
几何图形都是从形形色色的物体外形中得出的,分为立体图形和平面图形.几何图形都是由点、线、面、体组成的。
4.1.1立体图形与平面图形
立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,它们是立体图形.
相关文档
最新文档