高等数学(微积分)期末复习总结
微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
大学数学期末总结范本(通用版)6篇

大学数学期末总结范本(通用版)6篇Model of final summary of College Mathematics (General Editio n)汇报人:JinTai College大学数学期末总结范本(通用版)6篇前言:工作总结是将一个时间段的工作进行一次全面系统的总检查、总评价、总分析,并分析不足。
通过总结,可以把零散的、肤浅的感性认识上升为系统、深刻的理性认识,从而得出科学的结论,以便改正缺点,吸取经验教训,指引下一步工作顺利展开。
本文档根据工作总结的书写内容要求,带有自我性、回顾性、客观性和经验性的特点全面复盘,具有实践指导意义。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:大学数学期末总结样本2、篇章2:大学数学期末总结范本3、篇章3:大学数学期末总结例文2021版4、篇章4:大学数学期末总结文档(规范版)5、篇章5:大学数学期末总结样本标准版6、篇章6:大学数学期末总结样本篇章1:大学数学期末总结样本通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。
首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。
一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。
所以希望大家无论如何,一定要把高数考好。
记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。
说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!!)。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
大学微积分l知识点总结(一)

大学微积分l知识点总结【第一部分】大学阶段准备知识1、不等式:引申双向不等式:两侧均在ab≥0或ab≤0时取等号柯西不等式:设a1、a2、。
.。
a n,b1、b2、。
.b n均是实数,则有:2、函数周期性和对称性的常用结论1、若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f (x)具有对称性。
口诀:“内同表示周期性,内反表示对称性”2、周期性(1)若f(x+a)=f(b+x),则T=|b—a|(2)若f(x+a)=-f(b+x),则T=2|b—a|(3)若f(x+a)=±1/f(x),则T=2a(4)若f(x+a)=【1—f(x)】/【1+f(x)】,则T=2a(5)若f(x+a)=【1+f(x)】/【1—f(x)】,则T=4a3、对称性(1)若f(a+x)=f(b-x),则f(x)的对称轴为x=(a+b)/2(2)若f(a+x)=—f(b—x)+c,则f(x)的图像关于((a+b)/2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
(1)若f(x)的图像有两条对称轴x=a和x=b,则f(x)必定为周期函数,其中一个周期为2|b-a|。
(2)若f (x )的图像有两个对称中心(a ,0)和(b,0),(a ≠b),则f (x )必定为周期函数,其中一个周期为2|b —a |。
(3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b ,0),(a ≠b ),则f(x)必定为周期函数,其中一个周期为4|b —a|。
3、三角函数倒数关系: 商的关系: 平方关系:平常针对不同条件的两个常用公式: 一个特殊公式: 二倍角公式: 半角公式: 三倍角公式: 万能公式: 两角和公式: 和差化积公式: 积化和差公式:口诀:奇变偶不变,符号看象限4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
微积分复习附解题技巧

微积分复习附解题技巧本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微积分》复习及解题技巧第一章 函数一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0④反正(余)弦函数式:自变量 ≤1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。
典型例题:《综合练习》第二大题之1补充:求y=xx212-+的定义域。
(答案:212<≤-x )三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章 极限与连续求极限主要根据: 1、常见的极限:2、利用连续函数:初等函数在其定义域上都连续。
例:3、求极限的思路:可考虑以下9种可能:①00型不定式(用罗彼塔法则) ②20C =0 ③∞0=0④01C =∞ ⑤21C C ⑥∞1C =0⑦0∞=∞ ⑧2C ∞=∞ ⑨∞∞型不定式(用罗彼塔法则)1sin lim 0=→x xx e x xx =⎪⎭⎫⎝⎛+∞→11lim )0(01lim >=∞→ααxx )()(0lim 0xf x f x x =→11lim 1=→x x 1)()(lim =→x g x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(11lim 常数C C x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(22lim 常数C C x g x α特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。
以上解法都必须贯穿极限四则运算的法则!典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8补充1:若1)1(sin 221lim =++-→bax x x x ,则a= -2 ,b= 1 . 补充2:21221211111lim lim e x x x x xx x xx =⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-•-∞→∞→补充3:21121121121121...513131121)12)(12(1...751531311lim lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:1ln lim 1-→x xx 111lim 1=→x x (此题用了“罗彼塔法则”)型0第三章 导数和微分一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵222212111221121x arctgxxx x arctgx x x y +++=+⋅+⋅+⋅=' ∴dy=)121(22xarctgx x x dx y +++=⋅'dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题:典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程:典型例题:《综合练习》第二大题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章 不定积分 第六章 定积分Ⅰ理论内容复习: 1、原函数:)()(x f x F ='则称F (x )为f (x )的一个原函数。
高等数学微积分知识点总结

函数的概念与性质●定义函数及函数的自变量和因变量:函数是一个将一个自变量集合映射到一个因变量集合的规律,自变量可以是实数、向量、矩阵等,因变量也可以是实数、向量、矩阵等。
●常见函数类型:多项式、有理函数、指数函数、对数函数、三角函数、反三角函数等。
这些函数都有自己的定义域和值域。
●函数的图像:单调性、奇偶性、周期性等性质,是描述函数图像的重要性质。
极限与连续●极限的概念与性质:左极限、右极限、无穷大极限等,都是用来描述函数在某一点处的趋势性质。
●极限的计算:夹逼定理、无穷小量、洛必达法则等,是计算极限的重要方法,这些方法可以简化极限的计算。
●连续的概念与性质:间断点、可导性等。
连续是描述函数在某一点上的“无缝连接”的性质,间断点则是描述函数在某一点上不连续的性质。
●连续函数的性质:介值定理、零点定理、最大值最小值定理等。
这些定理描述了连续函数的一些重要性质,可以用来解决实际问题。
导数与微分●导数的概念与几何意义:切线斜率、曲线的局部特征等。
导数是描述函数在某一点处的变化率的重要工具,也是描述函数在某一点处的局部特征的工具。
●导数的计算:基本导数公式、导数的四则运算、高阶导数等。
这些方法可以用来计算函数的导数。
●微分的概念与应用:线性近似、误差估计等。
微分是一种近似方法,可以用来计算函数在某一点的变化量,也可以用来计算函数值的误差估计。
函数的应用●求极值问题:求函数最大值最小值的方法及应用。
这些方法可以用来解决优化问题,如最大利润、最短路径等问题。
●曲线的几何性质:拐点、渐近线、弧长、曲率等。
这些性质可以用来描述曲线的特征,如拐点是曲线局部拐点是曲线的转折点,曲率是描述曲线弯曲程度的重要概念,渐近线是曲线在无穷远处的趋势线。
●泰勒公式与泰勒展开:将函数在某一点展开为幂级数的方法。
泰勒公式可以用来计算函数在某一点的近似值,泰勒展开可以用来表示函数在某一点的局部性质。
●常微分方程:描述物理、化学、生物等领域中的变化规律的重要工具。
5-3微积分基本公式 北京航空航天大学高等数学期末模考复习

01[1
f (t )]dt 0,
所以F ( x) 0即原方程在[0,1]上只有一个实根.
四、小结
1.积分上限函数
( x)
x a
f
(t )dt
2.积分上限函数的导数 ( x) f ( x)
3.微积分基本公式
b a
f
(
x)dx
F
(b)
F
(a)
牛顿-莱布尼茨公式沟通了微分学与积分学 之间的关系.
(a)
a a
f
(t )dt
0
F(a) C,
F ( x) x f (t)dt F (a), a
x a
f (t )dt
F ( x) F (a),
令x b
b a
f
(
x)dx
F
(b)
F
(a).
牛顿—莱布尼茨公式
b a
f
( x)dx
F(b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分可用它的 任意一个原函数在区间[a, b]端点上的值来表示.
F ( x) x f (t )dt x dt ,证明:
a
b f (t)
(1)、F ' ( x) 2 ;
(2)、方程F ( x) 0在( a , b )内有且仅有一个根 .
练习题答案
一、1、0; 2、 f ( x) f (a); 3、 3 x ln( x 2 1) ;
4、5 ; 6
7、45 1 ; 6
1
2
例4 求 1 1dx.
2 x
解 当 x 0时, 1 的一个原函数是ln | x |,
高等数学知识点总结

高等数学知识点总结高等数学知识点总结(上)一、微积分微积分是数学中的一个重要分支,包括微分和积分两部分。
微分是研究函数变化率和极值,积分是求解曲线下面的面积。
1.导数和微分导数是函数变化率的衡量指标,定义为函数在一点处的切线斜率。
微分是导数的微小增量,通常用dx来表示。
常见的微分公式:(1)(x^n)' = nx^(n-1)(2)(sinx)’=cosx(3)(cosx)’=-sinx(4)(ex)’=ex2.微分应用微分在科学工程中的应用非常广泛,如曲线的近似计算、变化率的分析和优化问题的求解等。
常见的微分应用题:(1)求解函数在某个点处的导数;(2)求解曲线y=f(x)在某一点x=x0处的切线方程;(3)求解函数极值的位置;(4)求解函数的最大值和最小值。
3.积分积分是微积分的另一大分支,通常被用来求解曲线下的面积。
三种积分:(1)定积分(2)不定积分(3)曲线积分常见的定积分计算方法:(1)换元法(2)分部积分法(3)长条法4.积分应用积分在工程科学中的应用非常广泛,如求解曲线下的面积、物理量的计算、概率分布的求解等。
常见的积分应用题:(1)求解曲线下的面积;(2)求解物理量的分布规律;(3)求解概率分布函数。
二、数学分析数学分析是研究实数域函数极限、连续、可导性以及积分的方法和应用的分支。
可分为实数的函数分析和向量的函数分析两部分。
1.实数的函数分析实数函数的极限,连续性以及可导性是实数的函数分析中研究的重点。
常见的函数分析公式:(1)函数极限的定义(2)连续函数的定义(3)可导函数的定义2.向量的函数分析向量的函数分析是研究向量值函数的极限、连续、可导性以及曲线积分的方法和应用。
常见的向量的函数分析公式:(1)向量函数的极限(2)向量函数的连续性(3)向量函数的导数(4)向量函数的曲线积分3.数列和级数数列和级数是数学分析中的重要概念,常用于求解无限积分与求和等问题。
常见的数列公式:(1)数列极限的定义(2)数列序列收敛定理(3)调和数列发散定理常见的级数公式:(1)级数收敛的定义(2)级数收敛和发散判定标准(3)比值判别法和根值判别法三、线性代数线性代数是数学中的一个重要分支,主要研究向量、矩阵、行列式和线性方程组等内容。
高中微积分重要知识点总结

高中微积分重要知识点总结一、函数与极限1. 函数概念:函数是一种特殊的映射关系,它将一个自变量映射为一个因变量。
2. 函数的性质:奇函数、偶函数、周期函数等。
3. 极限概念:当自变量趋于某一值时,函数的取值趋于一个确定的常数。
4. 极限的性质:唯一性、有界性、保号性等。
5. 极限的计算方法:无穷小替换法、洛必达法则、泰勒展开式等。
二、导数与微分1. 导数的概念:函数在某一点的变化率。
2. 导数的性质:可加性、可积性、伊尔米特公式等。
3. 导数的计算方法:基本导数公式、复合函数求导、隐函数求导、参数方程求导等。
4. 微分的概念:函数值的变化量与自变量的变化量的比值。
5. 微分的性质:可加性、可积性、微分中值定理等。
三、微分中值定理与应用1. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。
2. 泰勒公式及应用:泰勒展开式、泰勒公式的应用。
3. 凹凸性与拐点:二阶导数的概念、凹凸性的判定、拐点的判定。
四、不定积分与定积分1. 不定积分:初等函数的不定积分、换元积分法、分部积分法、有理函数的积分、三角函数的积分等。
2. 定积分:黎曼积分的概念、定积分的性质、定积分的计算方法、定积分的应用。
五、微分方程1. 微分方程的基本概念:微分方程的定义、微分方程的分类、微分方程的初值问题等。
2. 微分方程的解法:可分离变量法、齐次微分方程、常数变易法、一阶线性微分方程等。
3. 高阶微分方程:高阶微分方程的基本概念、高阶微分方程的解法、特解与通解等。
六、级数与收敛1. 级数的概念:无穷级数、收敛级数、发散级数、等比级数、调和级数等。
2. 收敛的判定:级数的收敛判定、级数的比较判别法、级数的积分判别法、级数的根值判别法等。
3. 级数的运算:级数的加法、级数的乘法、级数的分解、级数的换序等。
综上所述,高中微积分的重要知识点包括函数与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程以及级数与收敛等内容。
高等数学微积分总结

积 分 整个高数课本整个高数课本整个高数课本,,我们一共学习了不定积分我们一共学习了不定积分,,定积分,重积分重积分((二重二重,,三重三重),),),曲线积分曲线积分曲线积分((两类两类),),),曲面积分曲面积分曲面积分((两类两类).).).在此在此在此,,我们对积分总结积分总结,,比较比较,,以期同学们对积分有一个整体的认识以期同学们对积分有一个整体的认识. .一、不定积分一、不定积分一、不定积分不定积分是微分的逆运算不定积分是微分的逆运算不定积分是微分的逆运算,,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种方法方法((两类换元两类换元,,分部积分分部积分,,有理函数积分等有理函数积分等) )二、定积分二、定积分二、定积分1. 1.定义式定义式定义式::()baf x dx ò2. 2.定义域定义域定义域::一维区间一维区间,,例如[,]a b3. 3.性质性质性质::见课本P 229-P 232特殊特殊::若1f =,则()baf x dx b a =-ò,即区间长度即区间长度.. 4. 4.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性. .注意注意注意::定积分中积分变量可以任意替换即()()bbaaf x dx f y dy =òò,而不定积分不具有这种性质而不定积分不具有这种性质.. 5. 5.积分方法积分方法积分方法::与不定积分的方法相同与不定积分的方法相同. . 6. 6.几何应用几何应用几何应用: : 定积分的几何意义定积分的几何意义定积分的几何意义: :()baf x dx ò表示以()f x 为顶与x 轴所夹区域面积的代数和轴所夹区域面积的代数和((注意如()0f x <,则面积为负则面积为负); ); 其他应用其他应用其他应用::如()f x 表示截面积表示截面积,,则积分为体积则积分为体积;;平面弧长2()1[()]b af x y x dx ¢+ò等.三、二重积分三、二重积分三、二重积分 1. 1.定义式定义式定义式: :(,)xyD f x y d s òò2. 2.定义域定义域定义域::二维平面区域二维平面区域3. 3.性质性质性质::见下册课本P 77 特殊特殊: : : 若若1f =,则(,)xyD f x y dxdy S =òò,即S 为x y D 的面积的面积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::X 型区域型区域,,Y 型区域型区域 ②极坐标系②极坐标系::适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定q 的范围的范围,,再确定r 的范围的范围. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性((见后见后),),),质心质心质心; ; 6.6.几何应用几何应用几何应用: : 二重积分的几何意义二重积分的几何意义::若(,)0f x y ³,则(,)xyD f x y dxdy òò表示以(,)f x y 为顶以x y D 为底的曲顶柱体体积为底的曲顶柱体体积; ;其他应用其他应用::求曲面(,)z z x y =的面积221xyx y D z z dxdy ++òò四、三重积分四、三重积分 1.1.定义式定义式(,,)f x y z d v Wòòò2.2.定义域定义域定义域::三维空间区域三维空间区域; ;3.3.性质性质性质::与二重积分类似与二重积分类似; ; 特殊特殊特殊: : : 若若1f =,则(,,)f x y z d v V W=òòò,其中V 表示W 的体积的体积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::投影法投影法,,截面法截面法((一般被积函数有一个自变量,而当该变量固定时所得截面而当该变量固定时所得截面 积易求时采用积易求时采用) ) ②柱坐标系②柱坐标系②柱坐标系::积分区域为柱形区域积分区域为柱形区域,,锥形区域锥形区域,,抛物面所围区域时可采用抛物面所围区域时可采用; ;③球坐标系③球坐标系③球坐标系::积分区域为球域或与球面相关的区域时,确定自变量范围时确定自变量范围时,,先q ,后j ,最后最后r .5. 5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性((见后见后),),),质心等质心等质心等. .6. 6.应用应用应用: : (,,)f x y z 表示密度表示密度,,则(,,)f x y z d v Wòòò为物体质量为物体质量.(.(.(不考虑几何意义不考虑几何意义不考虑几何意义) )五、第一类曲线积分五、第一类曲线积分1.1.定义式定义式定义式::(,)Lf x y ds ò(二维二维) ) |(,,)Lf x y z ds ò(三维三维) )2.2.定义域定义域定义域::平面曲线弧平面曲线弧 | 空间曲线弧空间曲线弧空间曲线弧3.3.性质性质性质::见课本P 128 特殊特殊特殊: : 1f =则Lfds s =ò,s 表示曲线弧长表示曲线弧长. .4.4.计算公式计算公式计算公式((二维为例二维为例): ):22(,)((),())1()()bLaf x y dsf t t t t dt j y j y ¢¢=++òò:(),(),[,]L x t y t t a b j y ==Î类似可推出:(),[,]L y y x x a b =Î的公式的公式..注意化为定积分时下限小于上限.5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心; ;6.6.几何应用几何应用几何应用::见上3. 六、第二类曲线积分六、第二类曲线积分 1.1.定义式定义式定义式: :(,)(,)LP x y dx Q x y dy +ò(二维二维) )(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dy ++ò(三维三维) )2.2.定义域定义域定义域::有向平面曲线弧有向平面曲线弧((二维二维))或有向空间曲线弧或有向空间曲线弧((三维三维) )3.3.性质性质性质::见课本P 1354.4.计算公式计算公式计算公式: :(,)(,)[((),())()((),())()][(,())(,())()]bLadcP x y dx Q x y dy P t t t Q t t t dt P x f x Q x f x f x dxj y j j y y ¢¢+=+¢ =+òòò注意注意::曲线积分化为定积分时曲线积分化为定积分时,,下限为起始点下限为起始点,,上限为终点上限为终点. . 5.5.积分技巧积分技巧积分技巧::二维曲线积分可以应用格林公式(注意使用条件注意使用条件).).).积分与路径无关积分与路径无关积分与路径无关. . 不能使用奇偶对称性不能使用奇偶对称性. . 6.6.应用应用应用::力做功力做功. .七、第一类曲面积分七、第一类曲面积分 1.1.定义式定义式定义式: :(,,)f x y z dS Sòò2.2.定义域定义域定义域::空间曲面空间曲面 注意注意注意::空间曲面与坐标面重合或平行时,即为二重积分即为二重积分,,故二重积分时第一类曲面积分的特例故二重积分时第一类曲面积分的特例. .3.3.性质性质性质::见课本见课本::与第一类曲线积分类似与第一类曲线积分类似 特殊特殊特殊: : 1f =则(,,)f x y z dS S S=òò,S 表示曲线面积表示曲线面积. .4.4.计算公式计算公式计算公式::22(,,)(,,(,))1xyx y D f x y z dS f x y z x y z z dxdy S=++òòòò类似可得在另两个曲面上的投影公式类似可得在另两个曲面上的投影公式.. 注意对于特殊的曲面如柱面考虑使用柱坐标注意对于特殊的曲面如柱面考虑使用柱坐标,曲面考虑使用球坐标曲面考虑使用球坐标. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心. .6.6.几何应用几何应用几何应用::见上3. 八、第二类曲面积分八、第二类曲面积分 1.1.定义式定义式Pdydz Q dzdx Rdxdy S ++òò2.2.定义域定义域定义域::有向空间曲面有向空间曲面3.3.性质性质性质::见课本P 1624.4.计算公式计算公式计算公式: :(,,)(,,(,))xyD R x y z dxdy R x y z x y dxdy S =±òòòò,类似可得另两个类似可得另两个. .5.5.积分技巧积分技巧积分技巧::高斯公式高斯公式,,循环对称性循环对称性..不能使用奇偶对称性不能使用奇偶对称性. .注:要熟练掌握使用高斯公式做第二类曲面积分的题目,使用时要注意曲面方向以及是否封 闭. 6.6.应用应用应用::求流量求流量,,磁通量等磁通量等. . 奇偶对称性奇偶对称性: :定积分定积分::若积分区间关于原点对称若积分区间关于原点对称,,例如[,]a a - 若()f x 关于x 为奇函数为奇函数,,则()0aaf x dx -=ò若()f x 关于x 为偶函数为偶函数,,则()2()aaaf x dx f x dx -=òò二重积分二重积分二重积分::若积分区域D 关于y 轴对称轴对称,,记1D 为0x >的部分的部分若(,)f x y 关于x 为奇函数为奇函数,,则()()(,)(,)0x y Dx y f x y dxdy dyf x y dx -==òòòò若(,)f x y 关于x 为偶函数为偶函数,,则1()()()(,)(,)2(,)2(,)x y x y Dx y D f x y dxdy dy f x y dx dyf x y dx f x y dxdy -===òòòòòòòò同样可以得到积分区域D 关于x 轴对称时轴对称时, , (,)f x y 关于y 为奇、偶函数的公式为奇、偶函数的公式. .三重积分三重积分: : : 若积分区域若积分区域W 关于o x oy y 面对称面对称,,记1W 为0z >的部分的部分若(,,)f x y z 关于z 为奇函数为奇函数,,则(,)(,)(,,)(,,)0z x y z x y f x y z dxdydz dxdy f x y z dz W-==òòòòòò若(,,)f x y z 关于z 为偶函数为偶函数,,则1(,)(,)(,)0(,,)(,,)2(,,)2(,,)z x y z x y z x y f x y z dxdydz dxdyf x y z dzdxdy f x y z dz f x y z dxdydzWW -===òòòòòòòòòòòò同样可以得到区域关于另两个曲面对称的情况同样可以得到区域关于另两个曲面对称的情况. . 例题例题:P :P 123#1(1)(2) P 124#2(4)第一类曲线积分第一类曲线积分::若积分曲线L 关于y 轴对称轴对称,,记1L 为0x >的部分的部分 若(,)f x y 关于x 为奇函数为奇函数::(,)0Lf x y ds =ò 若(,)f x y 关于x 为偶函数为偶函数::1(,)2(,)LL f x y d s f x y d s =òò同样可以得到曲线关于x 轴对称的情况轴对称的情况. .第一类曲面积分第一类曲面积分第一类曲面积分::若积分曲面S 关于o x oy y 面对称面对称,,记1S 为0z >的部分的部分, ,若(,,)f x y z 关于z 为奇函数为奇函数::(,,)0f x y z dz S =òò 若(,,)f x y z 关于z 为偶函数为偶函数::1(,,)2(,,)f x y z d z f x y z d z SS =òòòò同样可以得到曲面关于另两个坐标面对称的情况同样可以得到曲面关于另两个坐标面对称的情况. .例题例题::课本P 158#6(3),P 184#2 变量对称性变量对称性::一般在做重积分、曲面积分时使用,使用时要注意曲面或区域必须是关于变量是对称的,即对于曲面方程自变量相互替换后方程不改变,例如2222,1x y z R x y z ++=++=等,此时此时()()()f x dS f y dS f z dS SS S ==òòòòòò例题例题1:2,I x ds G=ò 其中G 为球面2222x y z a ++=被平面0x y z ++=所截的曲线.例题2:2: 22()d ,I x y S å=+òò 其中S 为球面2222().x y z x y z ++=++循循环对称性(适用第二类曲面积分):若积分曲面满足变量对称,而且,,P Q R 中,,x y z 依次替换,即,,x y y z z x ®®®后积分表达式不改变后积分表达式不改变,,则可以使用该对称性则可以使用该对称性,,有3Pdydz Qdzdx Rdxdy Rdxdy S S ++=òòòò 例题例题::课本168页#3(4)质心质心质心::适用重积分适用重积分,,第一类积分第一类积分. . 请同学们思考如何区别各种积分请同学们思考如何区别各种积分?(?(定义域定义域定义域) ) 区别区别区别::以下两个例题应该怎样算以下两个例题应该怎样算? ?222222()d ,()x y z S x y z dxdydz Wå++++òòòòò , 其中22222222:,:x y z R x y z R S W ++=++£。
微积分总复习题详细答案

微积分总复习题详细答案一、极限与连续性1. 极限的定义- 极限是描述函数在某点或无穷远处的行为。
对于函数f(x),当x趋近于a时,如果存在一个实数L,使得对于任意给定的正数ε,总存在一个正数δ,使得当0 < |x - a| < δ时,都有|f(x) - L| < ε,则称L为函数f(x)在x趋近于a时的极限。
2. 极限的运算法则- 极限的加法法则:lim(x→a) (f(x) + g(x)) = lim(x→a) f(x) + lim(x→a) g(x)- 极限的乘法法则:lim(x→a) (f(x) * g(x)) = (lim(x→a)f(x)) * (lim(x→a) g(x))- 极限的除法法则:lim(x→a) (f(x) / g(x)) = (lim(x→a)f(x)) / (lim(x→a) g(x)),前提是lim(x→a) g(x) ≠ 0。
3. 连续性的定义- 函数f(x)在点a处连续,如果lim(x→a) f(x) = f(a)。
4. 间断点的类型- 可去间断点:函数在a点的左极限或右极限存在,但不等于f(a)。
- 跳跃间断点:函数在a点的左极限和右极限都存在,但两者不相等。
- 无穷间断点:函数在a点的左极限或右极限为无穷大。
二、导数与微分1. 导数的定义- 函数f(x)在点a处的导数定义为:f'(a) = lim(h→0) [(f(a+h)- f(a)) / h]。
2. 导数的几何意义- 导数表示函数在某点处的切线斜率。
3. 基本导数公式- (c)' = 0,其中c是常数。
- (x^n)' = nx^(n-1),其中n是实数。
- (sin(x))' = cos(x)。
- (cos(x))' = -sin(x)。
- (e^x)' = e^x。
4. 高阶导数- 高阶导数是一阶导数的导数,记作f''(x)。
微积分函数知识点总结

微积分函数知识点总结一、函数的极限函数的极限是微积分的基本概念之一,它描述了函数在某点处的值随着自变量的变化趋于某个值的情况。
函数的极限可以用数学语言表示为:若当x趋于a时,f(x)趋于L,则称函数f(x)在点x=a处的极限为L,记作lim(x→a)f(x)=L。
其中,a为自变量x的取值,L为函数f(x)的极限值。
极限的计算是微积分中的重要内容,它可以分为一侧极限和两侧极限。
一侧极限是指自变量x在趋于某一点a时,只从某一侧(左侧或右侧)接近a;而两侧极限是指自变量x在趋于某一点a时,既从左侧接近a,又从右侧接近a。
举例说明一下:对于函数y=1/x,当x趋于无穷大时,函数y的极限为0。
这是因为随着x的增大,1/x的值会越来越小,最终趋于0。
又比如对于函数y=x^2,当x趋于2时,函数y的极限为4。
因为当x接近2时,x^2的值也会接近4。
二、导数与微分导数是微积分中的另一个核心概念,它描述了函数在某一点处的斜率或变化率。
在几何意义上,导数可以理解为函数图像在某点处的切线斜率,用数学语言表示为f’(x)或dy/dx。
导数的计算可以用极限的方法来进行,即导数等于极限值limΔx→0[f(x+Δx)-f(x)]/Δx。
微分是导数的一个应用,用以研究函数的变化率与微小的增量之间的关系。
微分的计算可以用导数的方法,即dy=f’(x)dx,表示函数y=f(x)的微小增量dy与自变量x的微小增量dx之间的关系。
导数与微分有很多重要的性质和定理,比如导数的四则运算法则、复合函数的导数、反函数的导数等。
这些性质和定理在微积分中有着广泛的应用,可以用来简化复杂函数的导数计算,并且可以解决很多实际问题。
三、积分与定积分积分是微积分的另一个基本概念,它描述了函数在某一区间内的累积效果。
在几何意义上,积分可以理解为函数图像与坐标轴之间的面积,用数学语言表示为∫f(x)dx,表示函数f(x)在区间[a,b]上的积分。
定积分是积分的一种特殊形式,它描述了函数在一定区间内的累积效果。
高等数学微积分知识整理

f -1 f f f n nn n高等数学微积分知识整理第一章 极限与连续一、函数1、函数的定义与要素(定义域、对应法则;函数相等的条件)2、函数的性质:单调性,奇偶性,周期性,有界性 *单调性的定义(以递增为例):∀x 1 , x 2 ∈ D f ,若x 1<x 2时f (x 1 ) ≤ f (x )在D f 上严格单调递增。
f (x 2 ),则f (x )在D f 上单调递增;将≤ 改为<,则*有界的定义: ∃M >0,对于∀x ∈ A ⊆ D f ,都有| f (x ) |≤ M ,则f (x )在A 上有界。
(f (x )≥m ∈R ,则 f (x )下有界;反之则上有界。
只有既上有界又下有界的函数才是有界函数。
)3、函数的运算:四则运算、复合运算、反函数*题型:判断某个函数由哪些基本初等函数复合而成。
*反函数存在的可能情况:①y 与 x 一一对应;②f (x )是某区间上的严格单调函数 (反函数的单调性与原来的函数相同)* D = R ;当x ∈ D 时,f -1 ( f (x )) = x ;当x ∈ R 时,f ( f -1 (x )) = x 。
4、初等函数:包括 6 大基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则、复合运算构成的函数。
二、数列的极限1、数列的定义及表示方法2、数列的性质:单调性、有界性3、数列极限的定义:ε-N 语言(存在性命题要学会寻找充分条件,即增加对 N 的限制,从而找到 N ;绝对值不等式与不等式放缩也很重要)4、极限的四则运算5、无穷小量的性质(1) 若lim a = A ,则{a - A }是无穷小量。
(一种证明极限的方法) n →∞(2)有限个无穷小量相加、相乘还是无穷小量。
(3)无穷小量乘以有界量还是无穷小量。
6、收敛数列的性质 (1) 收敛数列必然有界 (2) 收敛数列的任一子列与该数列收敛于同一极限。
(完整版)微积分知识点总结

(完整版)微积分知识点总结微积分知识点总结
微积分是数学中的一个分支,涵盖了很多基础的概念和方法。
以下是一些微积分的主要知识点总结:
极限与连续
- 极限是微积分的核心概念之一,它描述函数在某一点的趋近情况。
- 函数在某一点连续,意味着函数在该点的极限存在且与函数在该点的取值相等。
导数与微分
- 导数是用来描述函数变化率的概念,表示函数在某一点的瞬时变化率。
- 函数在某一点可导,意味着函数在该点有导数。
- 微分是导数的一种表达形式,它表示函数在某一点附近的近似线性变化。
积分与区间
- 积分是导数的逆运算,用来计算函数在某个区间上的累积变化量。
- 定积分计算的是函数在某个区间上的面积。
- 不定积分是求函数的原函数,用来表示函数在某一点的反函数。
微分方程
- 微分方程描述了函数与其导数之间的关系,是很多实际问题的数学模型。
- 一阶线性微分方程是最简单的微分方程类型,具有广泛的应用。
泰勒级数
- 泰勒级数是一种用多项式逼近函数的方法,可以将复杂的函数简化为简单的多项式。
- 泰勒展开公式是计算泰勒级数的重要工具。
以上是微积分的一些主要知识点,它们在数学、工程、物理等领域都有广泛的应用。
学好微积分有助于理解和解决实际问题。
微积分所有知识点

微积分所有知识点1. 极限啊,那可是微积分的基石呀!就好比盖房子得先有稳固的地基一样。
你想想,函数在某个点无限趋近的值,这多神奇呀!比如,当 x 趋近于0 时,1/x 会趋近于无穷大,是不是很有意思呢?2. 导数呢,简直就是微积分的秘密武器!它就像汽车的速度表,能告诉你函数变化的快慢。
比如一个物体运动的路程函数,它的导数就是速度呀,想象一下你在赛跑,能实时知道自己的速度,酷不酷?3. 积分呀,那是在积累“财富”呢!把小小的部分一点点加起来,最后得到一个大的结果。
就好比你每天存一点钱,时间长了就有一笔可观的存款了。
例如求曲线下的面积,通过积分就能算出来啦,神奇吧!4. 微分中值定理,听起来高大上吧?其实就像在一段路程中总能找到一个特别的点一样。
比如说,在一段曲线中,肯定有一个地方的切线斜率和两端连线的斜率相等,厉害吧!5. 泰勒公式,那可是近似的好帮手哟!它能把复杂的函数用简单的多项式来近似。
就好像有个难搞的家伙,突然变得很听话好接近了。
比如可以用泰勒公式来近似计算三角函数的值哦!6. 定积分的应用,那可多了去了。
像计算体积呀、弧长呀什么的。
就像是在生活中,你可以用它来计算各种实际问题,多有用呀!比如说计算一个圆柱的体积。
7. 无穷级数,哇,那是数不尽的奇妙呀!就如同天上的星星一样多而神秘。
可以用它来表示一些无法用常规式子表示的东西呢,很厉害吧!比如用无穷级数来表示某些特殊函数。
8. 多元函数微积分,那可复杂又有趣呢!就像在一个丰富多彩的世界里探索。
比如研究一个三维物体的性质,是不是感觉很有挑战性呀!我觉得呀,微积分就像一把神奇的钥匙,能打开好多知识的大门,让人深陷其中,不能自拔!。
高等数学-一-微积分-考试必过归纳总结-要点重点

高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续〔包括级数〕 第二部分 导数及其应用〔包括多元函数〕第三部分 积分计算及其应用 〔包括二重积分和方程〕第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
例1..函数___________.知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
微积分知识点总结

微积分知识点总结
微积分是数学中重要的一门学科,它研究了函数的变化以及与其相关的概念和定理。
以下是微积分的一些基本知识点总结:
导数
导数是描述函数变化率的概念。
对于函数f(x),导数f'(x)表示函数在某一点x处的变化率。
导数可以通过以下公式计算:
其中h表示极限趋近于0的一个小量。
积分
积分是导数的逆运算,用来求取曲线下的面积。
定积分可被定义为下面的极限形式:
其中a和b是积分的上下限,f(x)是被积函数。
基本积分公式
微积分中有一些常见的函数的积分公式,它们被称为基本积分
公式。
这些公式可以用来简化积分运算。
一些常见的基本积分公式
包括:
微分方程
微分方程是描述函数及其导数之间关系的方程。
它们在物理学、工程学等领域中广泛应用。
微分方程可以分为常微分方程和偏微分
方程两类。
常见的微分方程类型有:
- 一阶线性微分方程
- 二阶齐次线性微分方程
- 二阶非齐次线性微分方程
泰勒级数
泰勒级数是一种将函数表示为无穷级数的方法。
通过使用泰勒
级数展开,我们可以近似表示函数在某一点附近的值。
泰勒级数可
由以下公式表示:
其中f(n)(x)表示函数f(x)的n阶导数。
这些是微积分的一些基本知识点总结。
深入学习微积分可以帮助我们更好地理解数学和解决实际问题。