七年级数学去括号练习题.[1]

合集下载

七年级数学去括号测试卷

七年级数学去括号测试卷

一、选择题(每题2分,共10分)1. 去括号后,下列各式中正确的是()A. 5x - (2x + 3) = 5x - 2x - 3B. -3(x - 4) = -3x + 12C. (3x - 5) + 2 = 3x - 3D. 2(x + 3) - 5 = 2x + 6 - 52. 去括号后,下列各式中正确的是()A. (a - b) × 3 = 3a - bB. (a + b) × 3 = 3a + 3bC. (a - b) × 3 = 3a - 3bD. (a + b) × 3 = 3a - 3b3. 去括号后,下列各式中正确的是()A. (2x - 3) ÷ 3 = 2x - 1B. (2x + 3) ÷ 3 = 2x + 1C. (2x - 3) ÷ 3 = 2x - 0.1D. (2x + 3) ÷ 3 = 2x - 0.14. 去括号后,下列各式中正确的是()A. (a + b) ÷ (a - b) = a + bB. (a + b) ÷ (a - b) = a - bC. (a - b) ÷ (a + b) = a - bD. (a - b) ÷ (a + b) = a + b5. 去括号后,下列各式中正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²二、填空题(每题2分,共10分)6. 去括号后,3(x - 2) + 5 = ______7. 去括号后,-2(x + 3) - 4 = ______8. 去括号后,(4x - 5) ÷ 2 = ______9. 去括号后,(a - b) × (a + b) = ______10. 去括号后,(a + b)² = ______三、解答题(每题5分,共20分)11. 去括号并合并同类项:3(x - 2) + 4(2x + 1) - 5x12. 去括号并合并同类项:-2(x - 3) + 5(2x + 1) - 3x13. 去括号并合并同类项:(4x - 5) ÷ 2 + (2x + 3) ÷ 214. 去括号并合并同类项:(a + 2b) × (a - 2b)四、应用题(10分)15. 小明去商店买文具,买了一个笔记本和一个钢笔,笔记本比钢笔贵2元。

2019年初中数学-七年级《去括号》典型例题

2019年初中数学-七年级《去括号》典型例题

《去括号》典型例题例1 解下列方程:(1))72(65)8(5-=-+x x(2))1(2)1()1(3-=--+x x x(3)()[]{}1720815432=----x例2 某抗洪突击队有50名队员,承担着保护大堤的任务.已知在相同的时间内,每名队员可装土7袋或运土3袋.问应如何分配人数,才能使装好的土及时运到大堤上?例3 蜘蛛有8条腿,蜻蜓有6条腿.现有蜘蛛、蜻蜓若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5.问蜘蛛、蜻蜓各有多少只?例4 (北京崇文,2003)小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?例5(“希望杯”试题)方程0333321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 的解为__________. 参考答案例1 分析:方程中含有多重括号,一般方法是逐层去括号,但考虑到本题的特点,可先将-7移到右边,再两边除以2,自动地去掉了大括号,同理去掉中括号,再去掉小括号.解:(1)去括号,得42125405-=-+x x移项,得54042125+--=-x x合并,得777-=-x系数化为1,得11=x(2)去括号,得22133-=+-+x x x移项,得13223+--=-+x x x合并,得42-=x系数化为1,得2-=x(3)移项,得()[]{}820815432=---x两边都除以2,得[]4208)15(43=---x移项,得[]248)15(43=--x两边都除以3,得88)15(4=--x移项,得16)15(4=-x两边都除以4,得415=-x移项,得55=x系数化为1,得1=x说明:去括号时要注意括号前面的符号,是负号时去掉括号后要改变括号内各项的符号;解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.例2 解:设分配工人装土,则运土有)50(x -人.根据装上的袋数与运土的袋数相等的关系,列得)50(37x x -=去括号,得x x 31507-=移项及合并,得15010=x所以运土的人数为3550=-x .答:应分配15人装土,35人运土,才能使装好的土及时运到大堤上.说明:找准题目中的相等关系关键在于如何理解“装好的土及时运到大堤上”,即使得已装好土的袋数和运走的袋数是相同的,所以依靠总人数50人可没装土的人数为x 人,则可以用x 表示运土的人数.其实在题中还可以依靠其他的相等关系列方程,试试看.例3 解:设蜘蛛有x 只,则蜻蜓有)52(-x 只.根据蜘蛛与蜻蜓共有270条腿,列得270)52(68=-+x x去括号,得27030128=-+x x移项及合并,得30020=x15=x蜻蜓的只数为2552=-x答:蜘蛛有15只,蜻蜓有25只.说明:本题要求出两个未知数的值,但由于这两个未知数的关系为“2倍少5”,所以只要用x 表示其中的一个未知数,就可以用)52(-x 表示另一个未知数.如果设蜻蜓的只数为x ,那么应该如何列方程呢?应用题的答案与上面求得的答案一样吗?例4 分析:等量关系是:上次买牛奶的钱数+2=这次买牛奶的钱数.解:设上次买了x 袋这样的鲜奶,依题意得)2(5.228.2+=+x x55.228.2+=+x x255.28.2-=-x x33.0=x10=x答:小王上次买了10袋这样的鲜奶.说明:与市场经济相关联的方程应用题是当前中考的一个热点,要加强这方面的练习.例5 分析:方程里的括号较多,要依次去掉.解法1:去掉小括号,整理后03329412121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-x , 去掉中括号,整理后034218121=-⎭⎬⎫⎩⎨⎧-x , 去掉大括号,整理后0845161=-x . 去分母,得090=-x .所以90=x . 解法2:-3移到右边,去掉大括号(乘以2),得6333212121=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x , -3移到右边,乘以2去掉中括号,得18332121=-⎪⎭⎫ ⎝⎛-x , -3移到右边,乘以2去掉小括号,得42321=-x 易得90=x说明:①解此方程要边去括号,边运算、化简;②解法2运算量小.。

七年级数学去括号试卷

七年级数学去括号试卷

一、选择题(每题3分,共15分)1. 下列去括号后表达式正确的是()A. 3(a + b) = 3a + 2bB. 2(a - b) = 2a - bC. 4(a - b) = 4a + 2bD. 5(a + b) = 5a - 5b2. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x - 2yB. 3(x + y) = 3x + 2yC. 4(x - y) = 4x - 4yD. 5(x + y) = 5x - 5y3. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x + 2yB. 3(x + y) = 3x - 3yC. 4(x - y) = 4x - 4yD. 5(x + y) = 5x + 5y4. 去括号后,下列表达式等于原表达式的是()A. 2(x + y) = 2x + 2yB. 3(x - y) = 3x - 3yC. 4(x + y) = 4x + 4yD. 5(x - y) = 5x + 5y5. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x - 2yB. 3(x + y) = 3x + 2yC. 4(x - y) = 4x + 4yD. 5(x + y) = 5x - 5y二、填空题(每题5分,共20分)6. 去括号后,表达式 3(a + 2b) 等于 _______。

7. 去括号后,表达式 4(x - 3y) 等于 _______。

8. 去括号后,表达式 5(a + b - c) 等于 _______。

9. 去括号后,表达式 2(x - y + z) 等于 _______。

10. 去括号后,表达式 3(a + 2b - c) 等于 _______。

三、解答题(每题10分,共30分)11. 去括号并合并同类项:2(a + 3b) - 3(a - 2b)。

12. 去括号并合并同类项:4(x - y) + 5(y - x)。

人教版七年级上册数学整式的加减--去括号同步练习

人教版七年级上册数学整式的加减--去括号同步练习

人教版七年级上册数学2.2整式的加减--去括号同步练习一、单选题1.将2(2)3x x --去括号得( )A .223x x --B .223x x -+C .223x x -D .223x x + 2.a +b -c 的相反数是( )A .-a -b -cB .-a -b +cC .-a +b -cD .a +b -c 3.下列各式中与多项式a b c --不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()b c a ---4.整式1525x y ⎛⎫-- ⎪⎝⎭去括号后正确的是( ) A .10x y -- B .105x y -+ C .10x y -+ D .55x y -+ 5.把代数式2(31)a b --去括号正确的是( )A .62a b --B .61a b -+C .61a b --D .62a b -+ 6.下列去括号中错误的是( )A .a 2-(a ﹣b+c )=a 2-a +b -cB .5+a -2(3a -5)=5+a -6a +5C .()2212332333a a a a a a --=-++ D .a 3-[a 2-(-b)]=a 3-a 2-b 7.下列各题去括号正确的是( )A .22(2)2x x y x x y --+=-++B .(231)231x x y x x y --+-=+-+C .3[5(1)]351x x x x x x ---=--+D .()22(1)212x x x x ---=--- 8.如图,数轴上点A B C ,,所对应的数分别为a b c ,,,且都不为0,点C 是线段AB 的中点,若2220a b a b c b c a c +-+-+---=,则原点O 的位置( )A .在线段AC 上B .在线段CA 的延长线上C .在线段BC 上D .在线段CB 的延长线上二、填空题9.(1)222x xy y x -+=-(_____________);(2)2a -3(b -c )=___________.10.化简3()m n --的结果为_________.11.去括号:a -(-2b +c )=____.添括号:-x -1=-____.12.若a 、b 互为相反数,则()2a b --的值为______.13.一个多项式A 与x 2-2x+1的和是x-8,则这个多项式A 为______.14.已知代数式()()22223a a b a a mb +--++的值与b 无关,则m 的值是________. 15.已知4a b +=,3c d -=,则()()b c d a +--的值为________.16.若有理数a 、b 、c 在数轴上对应点的位置如图,则||||||a c b a c b --++-=______.三、解答题17.化简:(1)3a 2-3a -5a 2-6a ; (2)(8mn -3m 2)-2(3mn -2m 2).18.先化简,再求值:2a +8b ﹣(5a ﹣3b ),其中a =﹣2,b =1.19.已知:22321A a ab a =+--,21B a ab =-+-.(1)求2A B +;(2)若2A B +的值与a 的取值无关,求b 的值.20.已知:有理数a ,b ,c 在数轴上的位置如图所示,化简:a a b c b a c -++--+.参考答案1.B【分析】根据去括号的法则:同号取正,异号取负,即可得到结果.【详解】解:22()2323x x x x --=-+.故选:B .【点睛】本题考查整式的加减-去括号,掌握同号取正,异号取负是解答本题的关键.2.B【分析】根据相反数的定义,即可得到答案.【详解】解:a+b-c 的相反数是: −(a+b−c )=-a−b+c ;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟记定义.3.B【分析】根据去括号的法则逐一对每个选项进行去括号,从而可得答案.【详解】解:(),a b c a b c -+=--故A 不符合题意,(),a b c a b c --=-+故B 符合题意,()(),a b c a b c -+-=--故C 不符合题意,(),b c a b c a a b c ---=--+=--故D 不符合题意,故选:.B【点睛】本题考查的是去括号,掌握去括号的法则是解题的关键.4.C【分析】直接利用去括号法则分别分析得出答案.【详解】 解:1525x y ⎛⎫-- ⎪⎝⎭=10x y -+, 故选C .【点睛】此题主要考查了去括号法则,正确去括号是解题关键.5.D【分析】根据去括号法则计算即可;【详解】原式62a b =-+;故答案选D .【点睛】本题主要考查了去括号法则,准确计算是解题的关键.6.B【分析】根据整式的去括号法则依次计算后判断.【详解】A 、a 2-(a ﹣b+c )=a 2-a +b -c ,故该项正确;B 、5+a -2(3a -5)=5+a -6a +10,故该项错误;C 、()2212332333a a a a a a --=-++,故该项正确; D 、a 3-[a 2-(-b)]=a 3-a 2-b ,故该项正确;故选:B.【点睛】此题考查整式的去括号法则:括号前是正号,去掉括号后各项不改变符号;括号前是负号,去掉括号后括号内各项改变符号.7.B【分析】根据去括号法则,如果括号外的因数是负数,去括号后原括号内各项 的符号与原来符号相反.【详解】解:根据去括号法则可知:A.22(2)2x x y x x y --+=-+-,故A 错.B.(231)231x x y x x y --+-=+-+,故B 正确.C.3[5(1)]351x x x x x x ---=-+-, 故C 错.D.()22(1)212x x x x ---=-+- 故D 错. 故选:B【点睛】本题主要考查的用去括号法则进行运用,特别注意符号的改变.8.A【分析】根据中点的定义得到b-c=c-a ,即a+b=2c ,然后把2c=a+b 代入2220a b a b c b c a c +-+-+---=,则有|a+b|=|b|-|a|>0,根据绝对值的意义得a 与b 异号,并且|b|>|a|,于是有b 为整数,a 为负数,点B 离原点比点A 离原点要远,即可判断原点的大致位置.【详解】解:∵C 为AB 之中点,∴b-c=c-a ,即a+b=2c , ∴2220a b a b c b c a c +-+-+---=,∴|a+b|-|b|+|a|=0,∴|a+b|=|b|-|a|>0,∴a 与b 异号,并且|b|>|a|,即b 为整数,a 为负数,点B 离原点比点A 离原点要远, ∴原点在点A 与点C 之间.故选:A .【点睛】本题考查了整式的加减:有括号先去括号,然后合并同类项.9.2xy y - 233a b c -+ 25137x x --【分析】(1)通过添括号,括号前面是“-”号,括到括号内的各项都改变符号,从而可得答案; (2)通过去括号,括号前面是“-”号,把“-”号与括号都去掉,括号内的各项都改变符号,从而可得答案;(3)利用减法的意义,由被减式减去差,从而可得答案.【详解】解:(1)222x xy y x -+=-(2xy y -);(2)2a -3(b -c )=233a b c -+.(3)()225617856178x x x x x x -+-+=-+--25137x x =--所以:2561x x -+-()25137x x --=7x +8.故答案为:(1)2xy y -(2)233a b c -+(3)25137x x --【点睛】本题考查的是添括号,去括号,合并同类项,掌握添括号与去括号的法则是解题的关键. 10.33m n -+【分析】直接利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而得出答案.【详解】解:3()33m n m n --=-+,故填:33m n -+.【点睛】本题主要考查去括号,掌握去括号的法则是解题的关键.11.a +2b -c (x +1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b +c )=a +2b -c-x -1=-(1+x )故答案为:a +2b -c ;(x +1)【点睛】本题主要考查去添括号法则,解题的关键是能够熟练地掌握去添括号时项什么情况符号改变,什么情况项的符号不变即可.12.-2【分析】由a 、b 互为相反数,可得a +b =0,代入所给代数式计算即可.【详解】解:∵a 、b 互为相反数,∴a +b =0,∴()2a b --=a-2+b=a+b-2=0-2=-2.故答案为:-2.【点睛】本题考查了互为相反数的定义,去括号法则,整体代入法求代数式的值,掌握互为相反数相加得零是解答本题的关键.13.239.x x -+-【分析】已知和与一个加式,求另一个加式,用减法,从而可得:()()2821A x x x =---+,再去括号,合并同类项即可得到答案.【详解】解:由题意得:()()2821A x x x =---+2821x x x =--+-239x x =-+-故答案为:239.x x -+-【点睛】本题考查的是加减法的意义,整式的加减,去括号,掌握以上知识是解题的关键. 14.-2【分析】先将原式合并同类项化简,再找到对应项令其系数为0,即可求解.【详解】原式=()222232a a b a a mb a m b +----=--+,∵与b 的取值无关,∴20m +=,2m =-,故答案为:-2.【点睛】本题考查整式的化简,理解与某项取值无关即为系数为0是解题关键.15.7【分析】把原式去括号后再根据加法交换律和结合律转化成由已知式组成的算式,然后把已知式的值代入计算即可得到答案.【详解】解:原式=b+c-d+a=(a+b )+(c-d ),由已知,a+b=4 , c−d=3 ,∴原式=4+3=7,故答案为7.【点睛】本题考查整式加减法的化简求值,熟练掌握整式加减法的运算法则和整体代入的思想方法是解题关键 .16.2c -【分析】由题意可得:c <a <0<b ,b >a ,从而可得:a c ->0,b a +>0,c b -<0,再化简绝对值,去括号,合并同类项即可得到答案.【详解】 解: c <a <0<b ,b >a ,a c ∴->0,b a +>0,c b -<0,∴ ||||||a c b a c b --++-()()a c b a c b =--+--a cb ac b =----+2c =-故答案为:2.c -【点睛】本题考查的是有理数的大小比较,代数式的符号的判定,绝对值的化简,有理数的加减运算的应用,去括号,合并同类项,掌握以上知识是解题的关键.17.(1)-2a 2-9a ;(2)2mn +m 2.【分析】(1)根据合并同类项法则计算即可;(2)先去括号,再合并同类项计算即可;【详解】(1)解:原式=(3a 2-5a 2)+(-3a -6a ),=-2a 2-9a ;(2)解:原式=8mn -3m 2-6mn +4m 2,=(8mn -6mn )+(-3m 2+4m 2),=2mn +m 2;【点睛】本题主要考查了去括号法则和合并同类项法则,准确计算是解题的关键.18.311a b -+;17【分析】先去括号合并同类项化简,再代入计算即可.【详解】解:原式2853a b a b =+-+311a b =-+,当a =﹣2,b =1时,原式()32111=-⨯-+⨯611=+17=.【点睛】本题考查整式的加减(给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算),解题的关键是熟练掌握去括号法则,合并同类项法则,属于中考常考题型.19.(1)2523A B ab a +=--;(2)25b =. 【分析】(1)合并同类项计算即可;(2)确定a 的系数,令其为零即可.【详解】解:(1)∵22321A a ab a =+--,21B a ab =-+-,∴2A B +=222321222a ab a a ab +---+-=523ab a ;(2)∵2A B +的值与a 的取值无关,∴(52)3b a 中a 的系数为零,∴5b -2=0,答案第9页,共9页 解得25b =. 【点睛】本题考查了去括号,合并同类项,整式的无关问题,熟练掌握去括号法则,灵活掌握取值与字母无关的条件是解题的关键.20.a -【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】因为0a <,0a b +>,0c b -<,0a c +< 所以a a =-,a b a b +=+,c b b c -=-,()a c a c a c +=-+=-- 原式a a b c b a c -+--=++()()()a a b b c a c =--++-++a ab bc a c =---+-++a =-【点睛】此题考查了整式的加减,数轴,以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.。

七年级数学上册整式的加减去括号专题训练

七年级数学上册整式的加减去括号专题训练

七年级数学上册整式的加减去括号专题训练1归纳出去括号的法则吗?2. 去括号:(1)a+(-b+c-d);(2)a-(-b+c-d) ;(3)-(p+q)+(m-n);(4)(r+s)-(p-q).3.下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c;=-x-y+xy-1.(3)(y-x) 2 =(x-y) 2(4) (-y-x) 2 =(x+y) 2(5) (y-x)3 =(x-y) 34.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z;(6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。

作业:1.根据去括号法则,在___上填上“+”号或“-”号:(1) a___(-b+c)=a-b+c;(2)a___(b-c-d)=a-b+c+d;(3) ___(a-b)___(c+d)=c+d-a+b2.已知x+y=2,则x+y+3= ,5-x-y= .3.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)];(2)3b-2c-[-4a+(c+3b)]+c.拔高题:1. 化简2-[2(x+3y)-3(x-2y)]的结果是().A.x+2; B.x-12y+2; C.-5x+12y+2; D.2-5x.2. 已知:1-x+2x=3,求{x-[x2-(1-x)]}-1的值.-1.下列各式中,与a-b-c的值不相等的是() A.a-(b+c) B.a-(b-c)C.(a-b)+(-c) D.(-c)+(-b+a)2.化简-[0-(2p-q)]的结果是() A.-2p-q B.-2p+q C.2p-q D.2p+q3.下列去括号中,正确的是() A.a-(2b-3c)=a-2b-3cB.x3-(3x2+2x-1)=x3-3x2-2x-1C.2y2+(-2y+1)=2y2-2y+1D.-(2x-y)-(-x2+y2)=-2x+y+x2+y24.去括号:a+(b-c)=;(a-b)+(-c-d)=;-(a-b)-(-c-d)=;5x3-[3x2-(x-1)]=.5.判断题.(1)x-(y-z)=x-y-z ( )(2)-(x-y+z)=-x+y-z ( )(3)x-2(y-z)=x-2y+z ()(4)-(a-b)+(-c-d)=-a+b+c+d () 6.去括号:-(2m-3);n-3(4-2m);(1)16a-8(3b+4c);(2)-12(x+y)+14(p+q);(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 27.先去括号,再合并同类项:-2n-(3n-1);a-(5a-3b)+(2b-a);-3(2s-5)+6s;1-(2a-1)-(3a+3);3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).8.把-︱-[ a-(b-c)]︱去括号后的结果应为() A.a+b+c B.a-b+c C.-a+b-c D.a-b-c 9.化简(3-π)-︱π-3︱的结果为()A.6 B.-2πC.2π-6 D.6-2π10.先去括号,再合并同类项:ab);2(2a-b)-[4b-(-2a+b)] 6a2-2ab-2(3a2-12a2) ];9a3-[-6a2+2(a3-232 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.。

去括号 练习题

去括号 练习题

去括号练习题1. 3 + 5 × (6 - 2) = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 6 - 2 = 4。

然后将得到的结果代入原式,得到 3 + 5 × 4 = 3 + 20 = 23。

2. [(3 + 4) × (2 + 5)] ÷ 9 = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 (3 + 4) × (2 + 5) = 7 × 7 = 49。

然后将得到的结果代入原式,得到 49 ÷ 9 = 5余4。

3. 4 - [5 × (2 - 3)] = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 2 - 3 = -1。

然后将得到的结果代入原式,得到 4 - [5 × -1] = 4 - (-5) = 9。

4. 2 × [6 + (8 - 3) × 4] = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 8 - 3 = 5。

然后将得到的结果代入原式,得到 2 × [6 + 5 × 4] = 2 × [6 + 20] = 2 × 26 = 52。

5. 9 + [7 × (5 - 3 × 2) + 4] = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 3 × 2 = 6,然后将得到的结果代入原式,得到 9 + [7 × (5 - 6) + 4] = 9 + [7 × (-1) + 4] = 9 + (-7 + 4) = 9 - 3 = 6。

6. 12 - [9 + (4 - 2) × (6 - 3)] = ?解:根据数学运算的优先级,首先计算括号内的运算式,得到 4 - 2 = 2,6 - 3 = 3,将得到的结果代入原式,得到 12 - [9 + 2 × 3] = 12 - [9 +6] = 12 - 15 = -3。

七年级数学上册去括号和绝对值专项练习

七年级数学上册去括号和绝对值专项练习

七年级数学上册去括号和绝对值专项练习【1】1.先去括号,再合并同类项:(1)a-(2a+b)+2(a-2b) (2)3(5x+4)-(3x-5)(3)x+[x+(-2x-4y)] (4) (a+4b)- (3a-6b)(5)8x +2y +2(5x -2y ) (6)(x 2-y 2)-4(2x 2-3y 2)2.如果关于字母x 的代数-3x 2+mx+nx 2-x+10的值与x 的取值无关,求m,n 的值.2、求代数式的值:3m 2n-mn 2-1.2mn+mn 2-0.8mn-3m 2n,其中m=6,n=2.4.已知2x 2+xy=10,3y 2+2xy=6,求4x 2+8xy+9y 2的值.5.已知:|x-y-3|+(a+b+4)2=0,求)(22)(3)(2b a b a x y y x +-+---6.化简求值.(1)5a 3-2a 2+a -2(a 3-3a 2)-1,a =-1.(2)(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1.7.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .8.化简:)32()54(722222ab b a ab b a b a --+-+. 9.已知a =1,b =2,c =21,计算2a -3b -[3abc -(2b -a )]+2abc 的值.10.已知2x m y 2与-3xy n 是同类项, 计算m -(m 2n +3m -4n )+(2nm 2-3n )的值.11.如果关于x 的多项式:-2x 2+mx +nx 2-5x -1的值与x 的取值无关,求m 、n 的值.12.先化简,再求值(1)4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314.(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1.13.求值:(1)x x x x 45222++-,其中3-=x .(2) 先化简,后求值:y y x 32)2(31++-,其中1,6-==y x . 14.如果|a|=4,|b|=3,且a>b ,求a ,b 的值.15.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值. 16.若2<a<4,化简|2-a|+|a -4|.17.(1)已知|x|=3 ,|y|=1,且x -y <0, 求x +y.(2)已知|a|=3, |b|=5 ,且a<b, 求a-b(3)已知∣a-4∣+∣B-2∣=0,求a,b的值(4)已知|4+a|+|2-5b|=8, 求a+b18.已知a<b<0<c,化简:(1)|2a-b|+2|b-c|-2|c-a|+3|b|(2)|a-b|+|b|+|c-a|19.已知c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|20.已知b<c<0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|。

去括号练习题及答案

去括号练习题及答案

去括号练习题及答案篇一:七年级数学去括号练题】1.去括号的法则是什么?2.去括号:1) a-b+c-d;2) a+b-c+d;3) -p-q+m-n;4) r+s-p+q。

3.下列去括号是否正确?若有错误,请改正:1) a^2-2a+b-c;(2) -x-y+xy-1.3) (y-x)^2=(x-y)^2;4) (-y-x)^2=(x+y)^2;5) y-x=x-y。

4.化简:1) 7x+y;2) 4a-2b;3) -b-a;4) 18x+11;5) 4x-3y+z;6) 9x-5;7) x^2+x;8) 2a+4.1.根据去括号法则,在空格上填上“+”号或“-”号:1) a-(-b+c)=a+b-c;2) a-(-b+c-d)=a+b-c+d;3) -(a-b)-(c+d)=-a+b-c-d。

2.已知x+y=2,则3x-2y=2.3.去括号:1) a+6b+3c-3d;2) 3x-6y-4z;3) a+2b-4a-2b;4) -10x+5y。

4.化简:1) 3a+2b;2) 7b-4a+c;3) -3a-b;4) 45x+29;5) x-y+4z;6) -8x^2+18x+5;7) x^2+2x+1;8) 3a。

1.化简2-[2(x+3y)-3(x-2y)]的结果是()。

b.x-12y+2.2.已知:x÷(1+x)=1/3,求{x-[x^2-(1-x)]}-1的值。

1/3.1.根据去括号法则,在空格上填上“+”号或“-”号:1) a-(-b+c)=a+b-c;2) a-(b-c-d)=a-b+c+d;3) -(a-b)-(c+d)=-a+b-c-d2.已知x+y=2,则x-y=2x-2.3.去括号:1) a+6b+3c-3d;2) 3x-6y-4z;3) a+2b;4) -10x+5y。

4.化简:1) 3a+2b;2) 5b-2a+2c。

5.化简2-[2(x+3y)-3(x-2y)]的结果是c。

(完整版)人教版数学七年级上册2.2《去括号》训练(有答案)

(完整版)人教版数学七年级上册2.2《去括号》训练(有答案)

课时2去括号基础训练知识点1(去括号)1.下列去括号正确的是()A.﹣3a-(2b-c)=﹣3a+2b-cB.﹣3a-(2b-c)=﹣3a-2b-cC.﹣3a-(2b-c)=﹣3a+2b+cD.﹣3a-(2b-c)=﹣3a-2b+c2.下列运算正确的是()A.﹣2(3x-1)=﹣6x-1B.-2(3x-1)=-6x+1C.﹣2(3x-l)=-6x-2D.﹣2(3x-1)=-6x+23.化简-(2x-y)+(-y+3)的结果为()A.﹣2x-2y-3B.﹣2x+3C.2x+3D.﹣2x-2y+34.[2017四川泸州县石马中学期中]下列式子中去括号错误的是()A.5x-(x-2y+5z)=5x-x+2y-5zB.2a2+(﹣3a-b)-(3c-2d)=2a2-3a-b-3c+2dC.3x2-3(x+6)=3x2-3x-6D.-(x-2y)-(-x2+y2)=﹣x+2y+x2﹣y25.利用去括号法则化简求值.(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)-(a2-6ab+9)+2(a2+4ab+92),其中a=6,b=﹣23;(3)3x2y2-[5xy2-(4xy2-3)+2x2y2],其中x=-3,y=2.知识点2(去括号的应用)6.如果某三位数的百位数字是a-b+c,十位数字是b-c+a,个位数字是c-a+b. (1)列出这个三位数的式子,并化简;(2)当a=2,b=5,c=4时,求这个三位数.7.[2017河北承德丰宁期中]某工厂第一车间有x人,第二车间比第一车间人数的45少30人.(1)两个车间共有多少人?(2)如果从第二车间调出10人到第一车间,问第一车间的人数比第二车间的人数多多少人?参考答案1.D2.D3.B【解析】因为﹣(2x-y)+(-y+3)=﹣2x+y-y+3=﹣2x+3,所以B正确.故选B.4.C【解析】C项,3x2-3(x+6)=3x2-3x-18,故C错误.故选C.名师点睛本题考查去括号的方法:去括号时,运用乘法的分配律,把括号前的数字与括号里各项相乘,当括号前是“+”时,去括号后,括号里的各项都不改变符号;当括号前是“-”时,去括号后,括号里的各项都改变符号.5.【解析】(1)﹣(9x3-4x2+5)-(﹣3-8x3+3x2)=﹣9x3+4x2-5+3+8x3-3x2=-x3+x-2.当x=-2时,原式=﹣(-2)3+(-2)2-2=8+4-2=10.(2)﹣(a2-6ab+9)+2(a2+4ab+92)=﹣a2+6ab-9+2a2+8ab+9 =a2+14ab.当a=6,b=﹣23时,原式=62+14×6×(-23)=36-56=-20.(3)3x2y2-[5xy2-(4xy2-3)+2x2y2] =3x2y2-(5xy2-4xy2+3+2x2y2)=3x2y2-(xy2+3+2x2y2)=3x2z2-xy2-3-2x2y2当x=-3,y=2时,原式=(﹣3)2×22-(﹣3)×22-3=36+12-3=45.归纳总结解答此类题,先根据去括号法则去掉括号,再合并同类项,把结果化为没有括号和没有同类项的式子后,再把字母的取值代入这个式子求值.6.【解析】(1)100(a-b+c)+10(b-c+a)+(c-a+b)=100a-100b+100c+10b-10c+10a+c-a+b=109a-89b+91c.(2)当a=2,b=5,c=4时,百位数字是1,十位数字是3,个位数字是7,所以这个三位数是137.7.【解析】(1)第二车间有(45x-30)人,所以两个车间共有x+45x-30=(95x-30)(人).(2)(x+10)-( 45x-30-10)=x+10-(45x-40)=x+10-45x+40=15x+50.所以第一车间的人数比第二车间的人数多(15x+50)人.课时2去括号提升训练1.[2018湖北武汉二中课时作业]下列式子中去括号正确的是()A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c2.[2018天津市南开中学课时作业]当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是()A.3的倍数B.4的倍数C.5的倍数D.10的倍数3.[2018吉林东北师大附中课时作业]把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和为()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm4.[2018江西上饶二中课时作业]若式子(2x2+3ax-y)-2(bx2-3x+2y-1)的值与字母x的取值无关,则式子(a-b)-(2a+b)的值是________.5.[2018河北张家口五中课时作业]甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累积购买商品超过400元后,超过部分按原价的7折优惠;在乙超市购买商品全部按原价的8折优惠.设顾客累计购物x(x >400)元.(1)用含x的整式分别表示顾客在两家超市购物所付的费用;(2)当x=1100时,顾客到哪家超市购物更划算?6.[2018河南洛阳五中课时作业]有理数a,b,c在数轴上的位置如图所示,化简:|c -a|+|b-c|-|a-b|+|a+b|.7.[2018安徽芜湖二十七中课时作业]有这样一道题:(2x3-3x2y-2xy2+2y3)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1.甲同学把“x=12,y=-1”错抄成“x=-12,y=1”,但他计算的结果也是正确的.你说这是怎么回事?参考答案1.B【解析】选项A,﹣(a+b-c)=﹣a-b+c,所以A错误;选项B,﹣2(a+b-3c)=﹣2a -2b +6c ,所以B 正确;选项C ,﹣(﹣a -b -c)=a +b +c ,所以C 错误;选项D ,﹣(a -b -c)=﹣a +b +c ,所以D 错误.故选B.2.C 【解析】a 3-3a 2+7a +7+(3-2a +3a 2-a 3)=a 3-3a 2+7a +7+3-2a +3a 2-a 3=5a +10=5(a +2),所以该整式一定是5的倍数.故选C.3.B 【解析】设题图1中长方形的长为x cm ,宽为y cm ,则题图2中两块阴影部分的周长和为2[x +(n -2y)]+2[(m -x)+(n -x)]=[4n +2m -2(x +2y)](cm),由题图2,知x +2y=m ,所以4n +2m -2(x +2y)=4n.故选B.4.0【解析】(2x 2+3ax -y)-2(bx 2-3x +2y -1)=2x 2+3ax -y -2bx 2+6x -4y +2=(2-2b)x 2+(3a +6)x -5y +2,因为其值与字母x 的取值无关,所以2-2b=0,3a +6=0,所以a=﹣2,b=1,则(a -b)-(2a +b)=a -b -2a -b=﹣a -2b=﹣(-2)-2×1=0.5.【解析】(1)顾客在甲超市购物所付的费用是400+0.7(x -400)=(0.7x +120)(元), 顾客在乙超市购物所付的费用是0.8x 元(2)当x=1100时,0.7x +120=0.7×1100+120=890,0.8x=0.8×1100=880,因为880<890, 所以当x=1100时,顾客到乙超市购物更划算.6.【解析】由题中数轴,可得b <0<c <a ,∣b ∣<∣a ∣,所以c -a <0,b -c <0,a -b >0,a +b >0,则∣c -a ∣+∣b -c ∣-∣a -b ∣+∣a +b ∣=a -c -(b -c)-(a -b)+(a +b) =a -c -b +c -a +b +a +b=a +b.技巧点拨解答此类题,关键是根据数轴提供的信息,确定各个绝对值符号内式子的正负性,再根据绝对值的意义去掉绝对值符号,然后利用去括号和合并同类项进行化简.7.【解析】(2x 3-3x 2y -2xy 2+2y 3)-(x 3-2xy 2+y 3)+(﹣x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2+2y 3-x 3+2xy 2-y 3-x 3+3x 2y -y 3=(2x 3-x 3-x 3)+(-3x 2y +3x 2y)+(﹣2xy 2+2xy 2)+(2y 3-y 3-y 3)=0.可见原式的值与x ,y 的取值无关,所以甲同学计算的结果也是正确的技巧点拨通过换一种说法来考查学生是否真正形成了先化简再求值的意识,因此当遇到复杂的式子时,应先化简再来分析、解决剩下的有关问题.去括号的技巧在进行含有括号的整式加减运算时,若能根据算式的特点,灵活去括号,就能减少运算环节,提高解题效率.下面介绍几种技巧,供同学们学习时参考.一、先局部合并,再去括号例1.计算222222123(0.5)32a b ab a b ab a b a b ----+.解:原式22253()a b ab ab =---22253a b ab ab =-+2252a b ab =-.二、先整体合并,再去括号例2.计算223153(1)(1)(1)x x x x x x +---++-+-.分析:若按常规思路先去括号再合并,不但运算量很大,而且也容易出错.将2(1)x x -+看作一个整体,先合并,然后再去括号,则显得简捷明快.解:原式2231533(1)(1)x x x x x x =+---++-+-3183x x =--.三、由外向里去括号例3.计算23222318[6(12)]x y xy xy x y ---.分析:去括号通常是由里向外去括号,即先去掉小括号,再去掉中括号,最后再去掉大括号,但对于本题来说,若先去掉中括号,则小括号前的“-”变为“+”号,再去小括号时,括号内的各项都不用变号,这样就减少了某些项的反复变号,从而不易出错.解:原式232223186(12)x y xy xy x y =-+-23222318612x y xy xy x y =-+-23265x y xy =-.四、一次去掉多重括号例4.计算5{4[3(21)]}a a a a ----.分析:根据某项前面各层括号前“-”的个数来决定去掉括号后该项的符号.具体地说,若负号的个数是偶数个,则该项保持原来的符号,若负号的个数为奇数个,则改变该项原来的符号.只要掌握了这一法则,就可以一次去掉多重括号.解:原式54321a a a a =-+-+21a =+.。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (4)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (4)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案)解方程(1)5(x+2)=2(5x-1). (2)314225x x +--=1. 【答案】(1)x=2.4.(2)x 17=. 【解析】【分析】(1)依次去括号,移项,合并同类项,系数化为1,可得答案;(2)依次去分母,移项,合并同类项,系数化为1,可得答案.【详解】(1)解:去括号得:5x+10=10x-2,移项合并得:-5x=-12,解得:x=2.4.(2) 解:去分母得:15x+5-8x+4=10,移项合并得:7x=1,解得:x 17=. 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.32.解下列方程:(1)131124x x ---=;(2)01.0.2110.020.5x x ---=. 【答案】(1)x=-5;(2)x=3.【解析】【分析】(1)先对原式去分母,再去括号移项合并,最后求解即可得到;(2) 先对原式去分母,再去括号移项合并,最后系数化为1即可得到的答案;【详解】解:(1) 131124x x ---= 去分母得到:2(1)(31)4x x ---=,去括号移项得到:23421x x -=+-,合并得:5x -=,解得:5x =-;(2)01.0.2110.020.5x x ---= 去分母得:50(0.10.2)2(1)1x x ---=,去括号得:510221x x --+=,移项合并得:39x =,解得:3x =;【点睛】本题主要考查了解一元一次方程,熟练掌握解方程的步骤是解题的关键.33.解方程:(1)4-x =3(2-x)(2)2x 1x 134-+- =1 (3)2x 113-= (4)x 1x 13-+= (5)x 232x 34--= (6)4x ﹣5=2x 12-. 【答案】(1)x=1;(2)195x =;(3)x=2;(4)x=1;(5)x=1.7;(6)x=32 【解析】【分析】(1)先去括号,再移项,合并同类项,化系数为1即可;(2)先去分母,再去括号,移项,合并同类项,化系数为1即可;(3)先在方程两边同时乘以3去分母,再移项,合并同类项,化系数为1即可;(4)先在方程两边同时乘以3去分母,再去括号,移项,合并同类项,化系数为1即可;(5)先去分母,再去括号,移项,合并同类项,化系数为1即可;(6)先去分母,再去括号,移项,合并同类项,化系数为1即可;【详解】解:(1)4-x=3(2-x)4-x=6-3x2x=2x=1(2)2x 1x 134-+- =1 4(2x-1)-3(x+1)=128x-4-3x-3=125x-7=12 5x=19195x = (3)2x 113-= 2x-1=32x=4x=2(4)x 1x 13-+= x-1+3x=34x=4x=1(5)x 232x 34--= 4(x-2)=3(3-2x )4x-8=9-6x10x=17x=1.7(6)4x ﹣5=2x 12-. 2(4x ﹣5)=2x-18x ﹣10=2x-16x=9 x=32【点睛】本题考查解一元一次方程,一般步骤是去分母、去括号、移项、合并同类项、化系数为1.34.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 【答案】(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫- ⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对”将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a nb n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.35.解方程:()()103421x x x --=+.【答案】2x =-【解析】【分析】根据解一元一次方程的方法和步骤解答即可.【详解】解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.【点睛】本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.36.解方程:(1)7357x x -=-;(2)122236x x x -+-=-. 【答案】(1)x=﹣2;(2)x=14-. 【解析】【分析】(1)方程移项合并,将x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:(1)移项合并得:2x=﹣4,系数化为1得:x=﹣2(2)解:去分母得:6x ﹣3(x ﹣1)=4﹣(x+2),去括号得:6x ﹣3x+3=4﹣x ﹣2移项合并得:4x=﹣1,系数化为1得:x=﹣14. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.37.解方程:(1)2(5)2x x -=- (2)3142 1.25x x -+=- 【答案】(1)x=4;(2)x=17- 【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【详解】解:(1)去括号得:2x-10=2-x ,移项合并得:3x=12,解得:x=4;(2)去分母得:5(3x-1)=2(4x+2)-10,去括号得:15x-5=8x-6,移项合并得:7x=-1,解得:x=-17. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.38.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.【答案】(1)是差解方程;(2)m的值为214【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【详解】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;m+,(2)方程5x=m+1的解为:x=15∵关于x的一元一次方程5x=m+1是差解方程,m+,∴m+1﹣5=15.解得:m=214.故m的值为214【点睛】本题考查了一元一次方程解的应用,准确理解差解方程的意义是解题的关键.39.(1)计算:2211363()(2)32----⨯-+-÷ (2)解方程: 212134x x -+=- 【答案】(1)6-;(2)x=0.4-【解析】【分析】(1)根据有理数混合运算的法则和运算顺序计算即可;(2)根据去分母、去括号、移项合并同类项、系数化为1的步骤进行计算即可.【详解】解:(1)()2211363232⎛⎫----⨯-+-÷ ⎪⎝⎭96142=--++⨯148=-+6=-(2)212134x x -+=- 两边都乘以12,得:()()4213212x x -=+-去括号,得843612x x -=+-移项,合并同类项得52x =-两边都除以5,得0.4=-x【点睛】本题主要考查有理数混合运算以及解一元一次方程,熟练掌握相关的法则和解一元一次方程的一般步骤是解题的关键.40.解方程:(1) 5(x +8)-5= 6(2x -7);(2)225353x x x ---=-. 【答案】(1)x =11;(2)x =38-.【解析】【分析】(1)解一元一次方程,先去括号,然后移项,合并同类项,最后系数化1;(2)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1.【详解】解:(1) 5(x +8)-5= 6(2x -7)5x +40-5= 12x -425x - 12x =-42+5-40-7x =-77x =11(2)225353x x x ---=- 153(2)5(25)45x x x --=--153+6102545x x x -=--1531025456x x x --=---276x=-x=-38【点睛】本题考查解一元一次方程,掌握解方程的步骤,正确计算是本题的解题关键.。

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)课前练习一、知识回顾1、所含字母相同,并且相同字母的指数也相同的项叫做__________.把多项式中的同类项合并成一项,叫做____________.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数_________.二、学习新知识例12. 学校图书馆内起初有a位同学,后来某年级组织阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内共有______________位同学.我们还可以这样理解:后来两批一共来了________位同学,因而,图书馆内共有_____________位同学.由于________和________均表示同一个量,于是得到:a+(b+c)=a+b+c例23. 若学校图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,那么可以得到:____________.4. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.三、课前小练习5. 下列去括号中,正确的是()A. a2-(2a-1)=a2-2a-1B. a2+(-2a-3)=a2-2a+3C. 3a-[5b-(2c-1)]=3a-5b+2c-1D. -(a+b)+(c-d)=-a-b-c+d6. 下列各式中,与a-b-c的值不相等的是()A. a-(b+c)B. a-(b-c)C. (a-b)+(-c)D. (-c)+(-b+a)7. 已知a−b=−3,c+d=2,那么(b+c)−(a−d)的值为()B. 5C. -1D. 1A. 58. 去括号:(1)-(2m-3);(2)n-3(4-2m);(3)16a-8(3b+4c);(4)(2x2+x)−[4x2−(3x2−x)]课前练习参考答案1. ①. 同类项②. 合并同类项③. 和④. 不变2. ①. a+b+c②. b+c③. a+(b+c)④. a+(b+c)⑤. a+b+c3.a-(b+c)=a-b-c4. ①. 相同②. 相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为相同,相反.5.C【解析】根据添括号的法则,即可作出判断.【详解】A. a2-(2a-1)=a2-2a+1,故错误;B. a2+(-2a-3)=a2-2a-3,故错误;C. 3a-[5b-(2c-1)]= 3a-[5b-2c+1]=3a-5b+2c-1 ,正确;D. -(a+b)+(c-d)=-a-b+c-d,故错误;故选:C.6.B7.B【解析】先将代数式(b+c)−(a−d)化成只含有(a-b)和(c+d)的形式,最后代入求值即可.【详解】解:∵a−b=−3,c+d=2∴(b+c)−(a−d)=b+c−a+d=−(a−b)+(c+d)=−(−3)+2=3+2=5.故答案为B.8.(1)-2m+3;(2)n-12+6m;(3)16a-24b-32c;(4)2x【详解】(1)原式=-2m+3;(2)原式=n-12+6m;(3)原式=16a-24b-32c;(4)原式=(2x2+x)−(4x2−3x2+x)=2x2+x−(x2+x)=2x2+x−x2−x=2x课堂练习知识点1 去括号1.下列去括号正确的是( )A .﹣(a +b ﹣c )=a +b ﹣cB .﹣2(a +b ﹣3c )=﹣2a ﹣2b +6cC .﹣(﹣a ﹣b ﹣c )=﹣a +b +cD .﹣(a ﹣b ﹣c )=﹣a +b ﹣c2.式子a −(b −c +d )去括号后得___________.3.计算(1﹣2a )﹣(2﹣2a )=___.知识点2 添括号4.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“—”号的括号中,正确的是()A .3b 3−(2ab 2−4a 2b +a 3)B .3b 3−(2ab 2+4a 2b +a 3)C .3b 3−(−2ab 2+4a 2b −a 3)D .3b 3−(2ab 2+4a 2b −a 3)5.添括号:(1)−9a 2+16b 2=−(________);(2)b −a +3(a −b)2=−(________)+3(a −b)2.6.下列各式中,去括号或添括号正确的是( )A .a 2−(−b +c)=a 2−b +cB .−2x −t −a +1=−(2x −t)+(a −1)C .3[5(21)]3521x x x x x x ---=--+D .321(321)a x y a x y -+-=+-+-课堂练习7.下列去括号正确的是( )A .(2)2a b c a b c --=--B .(2m +n)−3(p −1)=2m +n +3p −1C .−(m +n)+(x −y)=−m −n +x −yD .a −(3x −y +z)=a −3x −y −z8.下列选项中,等式成立的是( )A .a −b −c −d =a −(b +c −d)B .2x +3y −4z =2x −(−3y +4z)C .3x −2y +4z =3x −2(y −4z)D .3m −n +2t =−(3m +n −2t)9.已知a 2+3a =1,则代数式2a 2+6a −3的值为( )A .−1B .0C .1D .210.化简:(1)3a 2+2a −4a 2−7a ;(2)13(9x −3)+2(x +1).11.已知|a +4|+(b ﹣2)2=0,数轴上A ,B 两点所对应的数分别是a 和b ,(1)填空:a = ,b = ;(2)化简求值2a 2b +3ab 2−2(−a 2b +3ab 2−2)+7ab 2.课堂练习参考答案1.B【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.2.a−b+c−d【分析】先去括号,再合并同类项即可得出答.【详解】解:a−(b−c+d)=a-b+c-d,故答案为:a-b+c-d.3.﹣1.【解析】原式去括号合并即可得到结果.【详解】原式=1﹣2a﹣2+2a=﹣1,故答案为﹣1.4.A【分析】根据添括号法则来具体分析.【详解】解:3b3-2ab2+4a2b-a3=3b3-(2ab2-4a2b+a3);故选:A.5.9a2−16b2a−b【分析】(1)(2)利用添括号法则计算得出答案.【详解】解:(1)−9a2+16b2=−(9a2−16b2),(2)b−a+3(a−b)2=−(a−b)+3(a−b)2,故答案为:(1)9a2−16b2;(2)a−b.6.D【分析】利用去括号法则和添括号法则即可作出判断.【详解】解:A、a2−(−b+c)=a2+b−c,故错误;B、−2x−t−a+1=−(2x+t)−(a−1),故错误;C、3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D 、321(321)a x y a x y -+-=+-+-,故正确;故选:D .7.C【分析】利用去括号添括号法则计算.根据去括号时,前面是负号的括号里的每项符号都改变,前面是正号的符号不变.【详解】解:A 、a -(2b -c )=a -2b +c ,故选项错误;B 、(2m +n )-3(p -1)=2m +n -3p +3,故选项错误;C 、正确;D 、a -(3x -y +z )=a -3x +y -z ,故选项错误.故选:C .8.B【分析】利用添括号的法则求解即可.【详解】解:A 、a −b −c −d =a −(b +c +d),故错误;B 、2x +3y −4z =2x −(−3y +4z),故正确;C 、3x −2y +4z =3x −2(y −2z),故错误;D 、3m −n +2t =−(−3m +n −2t),故错误;故选:B .9.A【分析】先化简原式,再整体代入求值即可.【详解】原式=2(a 2+3a )−3,将 a 2+3a =1代入,得原式=2×1−3=−1,故选:A .10.(1)−a 2−5a ;(2)51x +【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】解:(1)3a 2+2a −4a 2−7a=−a 2−5a ;(2)13(9x −3)+2(x +1)=3x −1+2x +2=51x +.11.(1)-4,2;(2)4a 2b +4ab 2+4,68.【分析】(1)直接利用绝对值及完全平方式的非负性求解即可;(2)先化简整式,再代入(1)的结论即可.【详解】(1)根据绝对值及完全平方式的非负性得:a +4=0,b −2=0,∴a =−4,b =2;(2)原式=2a 2b +3ab 2+2a 2b −6ab 2+4+7ab 2=4a 2b +4ab 2+4,将a =−4,b =2代入得:原式=4×(−4)2×2+4×(−4)×22+4=128−64+4=68.课后练习1.下列等式恒成立的是( )A .7x −2 =5B .m +n −2=m −(−n −2)C .x −2(y −1)=x −2y +1D .2x −3(13x −1)=x +3 2.要使等式4a −2b −c +3d =4a −( )成立,括号内应填上的项为A .2a −c +3dB .2b −c −3dC .2b +c −3dD .2b +c +3d3.下列变形正确的是( )A .−(a +2)=a −2B .−12(2a −1)=−2a +1C .−a +1=−(a −1)D .1−a =−(a +1)4.三个连续的奇数,中间的一个是2n +1,则三个数的和为( )A .6n −6B .3n +6C .66n +D .63n + 5.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2c −aB .2a −2bC .a -D .a6.去括号:a -(-2b +c )=____.添括号:-x -1=-____.7.计算:2a 2−(a 2+2)=__________.8.小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.9.已知下面5个式子:① x 2-x +1,② m 2n +mn -1,③x 4+1x +2, ④ 5-x 2, ⑤ -x 2. 回答下列问题:(1)上面5个式子中有 个多项式,次数最高的多项式为 (填序号);(2)选择2个二次多项式..运算......,并进行加法10.化简:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y);(2)2(2x﹣7y)﹣3(3x﹣10y).11.(1)化简:−(x2−2xy−y2)−2(5x2−2xy−3y2).(2)若关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,试求当x=−1时,这个多项式的值.12.已知A=2x2+xy+3y−1,B=x2−xy.(1)若A−2B的值与y的值无关,求x的值.(2)若A−mB−3x的值与x的值无关,求y的值.13.某水果批发市场苹果的价格如下表:千克(x超过20千克但不超过40千克)需要付费_______元(用含x的式子表示)(2)小强分两次共买100千克,第二次购买的数量多于第一次购买数量,且第一次购买的数量为a千克,请问两次购买水果共需要付费多少元?(用含a的式子表示)课后练习参考答案1.D【分析】根据合并同类项,添括号法则,去括号合并同类项的运算法则逐一进行计算,再判断.【详解】A:7x−2 =5x,原计算错误,故本选项不符合题意;B:m+n−2=m−(−n+2),原计算错误,故本选项不符合题意;C:x−2(y−1)=x−2y+2,原计算错误,故本选项不符合题意;x−1)=x+3,原计算正确,故本选项符合题意.D:2x−3(132.C【分析】根据添括号法则解答即可.【详解】解:根据添括号的法则可知,原式=4a-(2b+c-3d),故选:C.3.C【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.,故本选项变形错误.B、原式=−a+12C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.4.D【分析】三个连续的奇数,它们之间相隔的数为2,分别表示这三个奇数,列式化简即可.【详解】解:∵中间的一个是2n+1,∴第一个为2n-1,最后一个为2n+3,则三个数的和为(2n-1)+(2n+1)+(2n+3)=6n+3.故选:D.5.C【分析】首先利用数轴得出a+b<0,c-a>0,b+c<0,进而利用绝对值的性质化简求出即可.【详解】解:由数轴可得:b<a<0<c,∴a+b<0,c-a>0,b+c<0,∴|a|−|a+b|+|c−a|+|b+c|=−a+(a+b)+(c−a)−(b+c)=−a+a+b+c−a−b−c=a故选C.6.a+2b-c(x+1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b+c)=a+2b-c-x-1=-(1+x)故答案为:a+2b-c;(x+1)7.a2−2【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2a2−a2−2=a2−2,故答案是:a2−2.8.4yz+xy【分析】利用和减去(xy﹣2yz),运用去括号,合并同类项即可得到正确的结果.【详解】解:由题意得:2yz+2xy-(xy﹣2yz)=2yz+2xy-xy+2yz=4yz+xy故答案为:4yz+xy9.(1)3,②;(2)−x+6【分析】(1)根据多项式的概念和次数定义进行解答即可;(2)根据整式的加减法运算法则进行计算即可.【详解】解:(1)①是二次多项式,②是三次多项式,④二次多项式,③是分式,⑤是单项式,故答案为:3,②;(2)选择多项式①和④相加,得(x2−x+1)+(5−x2)=x2−x+1+5−x2=−x+6.10.(1)9x2y﹣9xy2;(2)﹣5x+16y【分析】(1)直接去括号,再合并同类项得出答案;(2)按照去括号,合并同类项的法则计算即可.【详解】解:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y)=4x2y﹣6xy2﹣3xy2+5x2y=9x2y﹣9xy2;(2)2(2x﹣7y)﹣3(3x﹣10y)=4x﹣14y﹣9x+30y=﹣5x+16y.11.(1)−11x2+6xy+7y2;(2)10【分析】(1)先去括号,再合并同类项,即可化简;(2)由题意可得a-2=0,b-1=0,求得a,b的值,进而确定多项式,再代入求值,即可求解.【详解】解:(1)原式=−x2+2xy+y2−10x2+4xy+6y2=−11x2+6xy+7y2;(2)∵关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,∴a-2=0,b-1=0,即:a=2,b=1,∴原式=x4−6x+3,当x=−1时,原式=(−1)4−6×(−1)+3=10.12.(1)x的值为−1;(2)y的值为1.【分析】(1)将A,B代入A-2B,再去括号,再由题意可得x+1=0,求解即可;(2)将A,B代入A−mB−3x,再去括号,再由题意可得2−m=0,y+my−3=0,求解即可;【详解】解:(1)∵A=2x2+xy+3y−1,B=x2−xy,∴A-2B=(2x2+xy+3y−1)−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1=3(x+1)y−1,∵A-2B的值与y的值无关,∴x+1=0,∴x=−1;∴x的值为−1;(2)∵A=2x2+xy+3y−1,B=x2−xy,∴A−mB−3x=(2x2+xy+3y−1)−m(x2−xy)−3x=2x2+xy+3y−1−mx2+mxy−3x=(2−m)x2+(y+my−3)x+3y−1∵A−mB−3x的值与x的值无关,∴2−m=0,y+my−3=0,∴m=2,y=1;∴y的值为1.13.(1)70,6x+20;(2)当a≤20时,2a+560(元);当20<a≤40时,a+580(元);当40<a<50时,620(元)【分析】(1)图中可以知道:10千克在“不超过20千克的总分”按7元/千克收费;x超过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,最后再把2个费用相加.(2)“小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量”可以知道第一次购买的数量要小于50千克;由于a的取值范围不确定,需要用分类讨论的思想进行解答,当a≤20时,分别算第一次和第二次的总费用;当20<a≤40时,注意第一次购买有2段费用,第二次购买有3段费用,然后再相加;当40<a<50时,注意第一次购买有3段费用,第二次购买也有3段费用,然后再相加;记得最后结果要化为最简的形式.【详解】解:(1)∵10千克在“不超过20千克的总分”按7元/千克收费,∴10×7=70元;∵过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,∴20×7+6(x-20)=(6x+20)元故答案为:70,6x+20;(2)∵再次共购买100千克,第二次购买的数量多于第一次购买的数量,∴a<50,当a≤20时,需要付费为:7a+20×7+20×6+5×(100-a-40)=2a+560(元);当20<a≤40时,需要付费为:7×20+6×(a-20)+20×7+20×6+5×(100-a-40)=a+580(元);当40<a<50时,需要付费为:7×20+6×20+5×(a-40)+20×7+20×6+5×(100-a-40)=620(元).第11页共11页。

【七年级数学】去括号测试题及答案

【七年级数学】去括号测试题及答案

去括号测试题及答案34整式的加减(3)去括号◆随堂检测1、下列各式去括号正确的是( )A、4a—(3b—2c—d)=4a—3b—2c—dB、—(x—)=—x—c、(3a—5b)+(2—n)=3a—5b—2+n D、—(x—)—(1—x2+x3)=—x+—1+x2—x32、化简—{[—(2x—)]}的结果是()A、2x—B、2x+ c、—2x+ D、—2x—3、下列去括号中错误的是()A、—2x2—(x+2—5z)=—2x2—x—2+5zB、5a2+(—3a—b)—(2c+3d)=5a2+3a—b—2c—3dc、2x2—3(x—)=2x2—3x+3 D、—(x—2)—(—x2+22)=—x+2+x2—224、化简a+(2b—3c—4d)=_________;a—(—2b—3c+4d)=________;3x—[5x—2(2x—1)]=________;4x2—[6x—(5x—8)—x2]=___________。

5、化简,求值。

,其中x=1◆典例分析例化简求值,其中x=3,。

解===当x=3,时,原式= =-1评析本例化简时应注意两个方面(1)准确运用去括号法则;(2)仔细寻找并合并同类项。

◆下作业●拓展提高1、将(2—3)—(n—2)去括号合并同类项是()A、4—n—3B、—3—n c、—3+n D、4—3+n2、下列各式中,错误的式子的个数有()①a—(c—b)=a—b—c ②(x2+)—2(x—2)=x2+—2x+2③—a+b+x—=—(a+b)—(—x+) ④—3(x—)+(x—)=—2x+2A、1个B、2个 c、3个 D、4个3、下列各题去括号所得结果正确的是()A、 B、c、 D、4、把多项式去括号后按字母的降幂排列为________________________。

5、某三角形第一条边长厘米,第二条边比第一条边长厘米,第三条边比第一条边的2倍少b厘米,那么这个三角形的周长是厘米。

6、化简求值(1),其中。

七年级数学上,解一元一次方程2——去括号与去分母练习题

七年级数学上,解一元一次方程2——去括号与去分母练习题

解一元一次方程 基础练习题2去括号去分母1.在解方程:()()312236x x --+=时,去括号正确的是A .31436x x --+=B .33466x x ---=C .31436x x +--=D .31466x x -+-=2.解方程342x x -+=()去括号正确的是A .3–x +2=xB .3–4x –8=xC .3–4x +8=xD .3–x –2=x 3.在解方程123123x x -+-=时,去分母正确的是 A .()()312231x x --+=B .()()312236x x --+=C .31431x x --+=D .31436x x --+= 4.解方程151412x x x +-=-时,去分母正确的是 A .3(x +1)=x –(5x –1)B .3(x +1)=12x –5x –1C .3(x +1)=12x –(5x –1)D .3x +1=12x –5x +1 5.在解方程1135x x -=-时,去分母后正确的是 A .()51531x x =--B .()131x x =--C .()5131x x =--D .()5331x x =-- 6.下列变形中: ①由方程1225x -=去分母,得x –12=10; ②由方程2992x =两边同除以29,得x =1; ③由方程6x –4=x +4移项,得7x =0; ④由方程53262x x -+-=两边同乘以6,得12–x –5=3(x +3). 错误变形的个数是 A .4个B .3个C .2个D .1个7.把方程2113332x x x -++=-去分母正确的是 A .3x +2(2x –1)=3–3(x +1)B .3x +(2x –1)=3–(x +1)C .18x +(2x –1)=18–(x +1)D .18x +2(2x –1)=18–3(x +1) 8.代数式12m +与m –14的值互为相反数,则m 的值为 A .32 B .–16 C .–13D .12 9.关于x 的方程2(x –2)–3(4x +1)=9,下面解答正确的是A .2x –4–12x +3=9,–10x =9+4–3=10,x =1B .2x –4–12x +3=9,–10x =10,x =–1C .2x –4–12x –3=9,–10x =16,x =–85D .2x –2–12x –3=9,–10x =2,x =–15 10.方程3x +2(1–x )=4的解是A .x =25B .x =65C .x =2D .x =111.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只?设鸡为x 只得方程A .2x +4(14–x )=44B .4x +2(14–x )=44C .4x +2(x –14)=44D .2x +4(x –14)=44 12.解方程21101136x x ++-=时,去分母正确的是 A .()211011x x +-+=B .411016x x +-+=C .()()2211011x x +-+=D .()()2211016x x +-+= 13.将方程21123x x -+-=去分母,得到的整式方程是 A .1–3(x –2)=2(x +1)B .6–2(x –2)=3(x +1)C .6–3(x –2)=2(x +1)D .6–3x –6=2x +2 14.在解方程14123x x -=+时,去分母后正确的是__________. 15.当y =__________时,1–256y -与36y -的值相等. 16.如果代数式16422x x ⎛⎫-+ ⎪⎝⎭与1713x ⎛⎫-- ⎪⎝⎭的值相等,那么x =__________.17.对于任意有理数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a –b ,例如:5⊗2=2×5–2=8,(–3)⊗4=2×(–3)–4=–10.若(x –3)⊗x =2011,则x 的值为__________.18.解方程:(1)4–3(2–x )=5x ;(2)2181236x x x -++-=-.19.解下列方程:(1)2(x +3)=5(x –3);(2)214335x x x --=-.20.已知关于x 的方程mx +2=2(m —x )的解满足|x –12|–1=0,求m 的值.21.对于非零的两个实数a 、b ,规定2a b b a ⊗=-,若111x ⊗+=(),则x 的值为A .1-B .1C .12D .022.解方程2x +3(2x –1)=16–(x +1)的第一步应是A .去分母B .去括号C .移项D .合并 23.解方程1–362x x +=,去分母,得 A .1–x –3=3xB .6–x –3=3xC .6–x +3=3xD .1–x +3=3x 24.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为A .2B .2-C .1D .1- 25.把方程213148x x --=-去分母后,正确的结果是 A .2x –1=1–(3–x )B .2(2x –1)=1–(3–x )C .2(2x –1)=8–3+xD .2(2x –1)=8–3–x26.对方程21512034x x---+=去分母,正确的是A.4(2x–1)–3(5x–1)+2=0 B.4(2x–1)–3(5x–1)+24=12C.3(2x–1)–4(5x–1)+24=0 D.4(2x–1)–3(5x–1)+24=027.汪涵同学在解方程7a+x=18时,误将+x看作–x,得方程的解为x=–4,那么原方程的解为A.x=4 B.x=2 C.x=0 D.x=–228.对于有理数a,b,规定一种新运算:a⊕b=ab+b,则方程(x–4)⊕3=–6的解为__________.29.对任意四个有理数a,b,c,d定义新运算:a bc d=ad–bc,已知241xx-=18,则x=__________.30.阅读材料:规定一种新的运算:a bc d=ad–bc.例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5624的值;(2)按照这个规定,当242122xx--+=5时,求x的值.31.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的: ()()421132x x -=-+…………………①84136x x -=--………………………②83164x x +=-+………………………③111x =-…………………………………④111x =-…………………………………⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)3(3x +5)=2(2x –1);(2)2157146y y ---=.32.已知关于x 的方程:()211x x -+=与()31x m m +=-有相同的解,求关于y 的方程3332my m y --=的解.A .2x –1+6x =3(3x +1)B .2(x –1)+6x =3(3x +1)C .2(x –1)+x =3(3x +1)D .(x –1)+x =3(x +1)35.(2017·武汉)解方程:432(1)x x -=-.参考答案1. B2. B3. B4. C5. A6. B7. D8. B9. C10. C11. A12. D13. C14. ()3186x x -=+.15. 816. 617. 201718. (1)x =–1.(2)x =3.19. (1)7;(2)1/220. 所以m 的值为10或25. 21. D22. B23. B24. D25. C26. D27. A28. 129. 330. (1)8;(2)1;31. ① 32. 1213y =-. 33. B34. -1735. 1/2。

七年级数学上册去括号配套练习及答案

七年级数学上册去括号配套练习及答案

3.5 去括号(一)一、基础训练1.去括号法则:(1)括号前面是“+”号,____________________________________.(2)括号前面是“-”号,____________________________________.2.去掉下列各式中的括号:(1)(a +b )-(c +d )=________; (2)(a -b )-(c -d )=________;(3)(a +b )-(-c +d )=_______; (4)-[a -(b -c )]=________.3.下列去括号过程是否正确?若不正确,请改正.(1)a -(-b +c -d )=a +b +c -d . ( )______________.(2)a +(b -c -d )=a +b +c +d . ( )______________.(3)-(a -b )+(c -d )=-a -b +c -d .( )______________.二、典型例题例1 先去括号,再合并同类项.(1)(2m -3)+m -(3m -2); (2)3(4x -2y )-3(-y +8x ).分析 去括号时,括号前面如果有数字,要根据乘法分配律用它与括号内各项相乘,再把所得的积相加.例2 化简:2222318[6(12)]x xy xy x y ---分析 若有多重括号,一般“先去小括号,再去中括号,最后去大括号”,去完括号,若有同类项,则必须合并.三、拓展提升例3 对a 随意取几个值,求出代数式16{8[9(36)]}a a a a +-----的值,从中你能发现什么现象?试说明理由.分析 代数式的化简,有括号,必须先去括号,再合并同类项,本题化简后,不含“a ”,因此代数式的值与“a ”的取值无关.四、课后作业1.去括号:(1)()()x a y b +---=______________________.(2)22()()m n m n -++--=__________________.(3)[()]a b c d ---=______________.(4)3(2)2()a b x y ----=____________________.(5)2(3)(4)x x ---+=________.2.化简:(1)2(34)(72)m m n m n --+- (2)2229[7(2)3]a a a a a -+---(3)9{3[3(72)]5}x x x x --+---- (4)222211(48)(6)23xy x y xy x y --+-3.先化简,再求值:(1)3a 2-2(2a 2+a )+2(a 2-3a ),其中a =-2;(2)(9a 2-12ab +5b 2)-(7a 2+12ab +7b 2),其中a =12,b =-12.4.在计算多项式M 加上237x x -+时,因误认为加上237x x ++,答案是2524x x +-, 试求出M 及正确答案.3.5 去括号(一)一、基础训练1.略2.(1)a b c d +-- (2)a b c d --+ (3)a b c d ++- (4)a b c -+-3.(1)× a +b -c +d (2)× a +b -c -d (3)× -a +b +c -d二、典型例题例1(1)-1 (2)-12x -3y例2 222318512x xy x y --三、拓展提升例3 16{8[9(36)]}a a a a +-----=4四、课后作业1.(1) x a y b +++(2)22m n m n ----(3)a b c d -+- (4)6322a b x y -+-+(5)310x -2.(1)62m n + (2)25a a -- (3)223x + (4)22523xy x y -+ 3.(1)20 (2)64. 2411M x x =-- 正确答案:2544x x --3.5 去括号(二)一、基础训练1.化简:2(572)x a x a ---=_____________;2(3)(4)x x ---+=_______________.2.331p q -+-=+_______________3q =-(_____________).3.(1)x y z --=x +( )=x -( );(2)2212x xy y -+-=1-( );(3)22x y x y --+=22x y --( )=(2x x -)-( ). 二、典型例题例1 一个多项式与32111343x x x +--的和是21042x x --,求这个多项式.分析 由题意,可列式为232(1042)(111343)x x x x x ---+--,进行整式的加减时,如果有括号先去括号,再合并同类项.例2 22225)(233)a ab b a ab b -+--+求(4的值,其中225a b -=,2ab =. 分析 先去括号,再合并同类项得22222a b ab --,为能使条件整体代入,可进一步整理为222()2a b ab --.三、拓展提升例 多项式222(232)(536)ax x x x x bx -++---的值与x 无关,求:(1)a 、b 的值;(2)23[2(2)3()]ab a a b ab b -+-+--的值.分析 本题应先化简(去括号,合并),若与x 无关,则含有x 项的系数为0,则可求出a 、b 的值.四、课后作业1.22(32)___________4x y xy x y xy -+-=+.2.比2234m m --多22m m +的多项式为_______________.3.一个多项式减去2(321)x x --的2倍,得2234x x ++,则这个多项式是__________. 4.若2A a ab =-,2B ab b =+,则______A B +=,_________A B -=.5.先化简,再求值:(1)4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314.(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1.6.若265A x x =-+,334B x x =+-,25C x =-,求当2x =时,()B A C --的值.7.已知2(2)10x y +++=,求22225[2(2)]xy x y x y xy ---的值.8.已知a 、b 为已知数,且22ax xy x +-与2323x bxy y -+的差中不含二次项,求:23a b - 的值.3.5 去括号(二)一、基础训练1.93x a - 310x -2.331q p -- 31p +3.略二、典型例题例1 321131x x --+例2 6三、拓展提升例3(1)3a =,1b =- (2)3-四、课后作业1.27x y xy -+2.234m m --3.282x x -+4.22a b + 222a ab b --5.(1)8-8x ,676 (2)10a 2b -3ab 2-2,-1.66.1240-或7. -88. 12。

七年级数学上册解一元一次方程去括号与去分母练习题

七年级数学上册解一元一次方程去括号与去分母练习题

七年级数学上册解一元一次方程去括号与去分母练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.有理数a 在数轴上的对应点的位置如图所示,化简2a a --的结果是______.2.把同类项的系数_______,所得的结果作为_____,字母和字母的指数______.3.有理数a 满足等式|-4|2|-1|a a =,则a 所有可能的值为____.4.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.5.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 6.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b -1.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-=_______;(2)当满足等式(5,32)5x m -+=的x 是正整数时,则m 的正整数值为_______.二、单选题7.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n 个图中有201张黑色正方形纸片,则n 的值为( )A .99B .100C .101D .1028.一本故事书,小明看了全书的14后,还剩90页没有看,这本故事书的总页数为( )A .360B .120C .72D .1509.若方程2(21)33x x +=+的解与关于x 的方程262(3)k x +=+的解相同,则k 的值为( )A .1B .1-C .7D .7-10.数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确11.下列说法中,不正确的个数是( ) ①若a +b =0,则有a ,b 互为相反数,且a b=﹣1;①若|a |>|b |,则有(a +b )(a ﹣b )是正数;①三个五次多项式的和也是五次多项式;①a +b +c <0,abc >0,则||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个;①方程ax +b =0(a ,b 为常数)是关于x 的一元一次方程.A .1个B .2个C .3个D .4个12.如图,已知数轴上点A 表示的数为a ,点B 表示的数为b,(a ﹣10)2+|b +6|=0.动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.若点P 、Q 同时出发,当P 、Q 两点相距4个单位长度时, t 的值为( )A .3B .5C .3或5D .1或53三、解答题13.解方程:(1)()()413217x x --+=; (2)12123x x -+-=. 14.求未知数x . (1)916x =1336(2)(1-23)x =20 (3)58+2x =7815.已知关于x 的方程2233x m x x ---=的解是非负数,m 是正整数,求m 的值.参考答案:1.2-【分析】由题意可得a >2,利用绝对值化简可求解.【详解】解:由题意可得:a >2,222,a a a a --=--=-∴故答案为:2-【点睛】本题考查绝对值的化简,利用数轴比较数的大小从而正确化简计算是解题关键.2. 相加 系数 保持不变【解析】略3.2±【分析】根据绝对值的性质分类讨论,去掉绝对值符号,即可求解.【详解】当4a ≥时,()421a a -=-,解得:2a =-,不合题意,舍去;当14a ≤<时,()421a a -=-,解得:2a =;当1a <时,()421a a -=--,解得:2a =-;综上,2a =±,故答案为:2±.【点睛】本题考查了绝对值的应用,对a 的取值分类讨论是解题的关键.4.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.5.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.6. 0 1或4##4或1【分析】(1)根据定义求解即可;(2)由定义可得53215x m -++-=,解方程得1123m x -=,再由题意,可得1123,1129m m -=-=,求出相应的m 值即可.【详解】解:(1)①(a ,b )=a +b -1①(2,1)=2+(1)1=11=0----故答案为:0;(2)①(5,32)5x m -+=①53215x m -++-= ①1123m x -= ①x 是正整数,m 的值也是正整数①1123,1129m m -=-=解得,41m m ==,故答案为:4或1【点睛】本题考查新定义,理解定义,将所求问题转化为一元一次方程进行求解即可.7.B【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律,第n 个图形中正方形的个数为201求解即可.【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8.B【分析】设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数,列方程运算即可.【详解】解:设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数, 列方程为1904x x -=, 解得120x =.故选:B .【点睛】本题主要考查一元一次方程的实际应用,属于基础题,比较简单,根据题意列出合适的方程是解题的关键.9.A【分析】先解方程2(21)33x x +=+可得1x =,再将1x =代入方程262(3)k x +=+,得262(13)k +=⨯+,由此即可求得k 的值.【详解】解:2(21)33x x +=+,去括号,得:4233x x +=+,移项,得:4332x x -=-,合并同类项,得:1x =,将1x =代入方程262(3)k x +=+,得:262(13)k +=⨯+,整理,得:268k +=,解得:1k =,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤(去分母、去括号、移项、合并同类项,系数化为1)是解决本题的关键.10.C【分析】设左下阴影矩形的宽为x ,则AB =CD =a +x , 分别表示出左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l ,根据已知条件即可求得3b =,进而即可求解.【详解】设左下阴影矩形的宽为x ,则AB =CD =a +x ,∴右上阴影矩形的宽为a +x -2b∴左下阴影矩形的周长l1=2(a +x ),右上阴影矩形的周长l 2=2(a +x -b )∴l 1-l 2=2(a +x )-2(a +x -b )=2b ,即2b =6,解得b =3,此时a 不确定,故选C.【点睛】本题考查了整式加减的应用,一元一次方程的应用,数形结合是解题的关键.11.C【分析】根据相反数的概念、平方差公式、合并同类项、一元一次方程的概念判断.【详解】解:①若a +b =0,则有a ,b 互为相反数,当a =b =0时,a b无意义,不正确; ①①|a |>|b |,①a 2>b 2,①(a +b )(a ﹣b )=a 2﹣b 2>0,是正数,正确;①(2a 5+a ﹣3)+(﹣a 5+2a ﹣3)+(﹣a 5+a 2﹣30)=a 2+3a ﹣36,则三个五次多项式的和不一定是五次多项式,不正确;①当a +b +c <0,abc >0时,a 、b 、c 有一个正数、两个负数,当a>0,b<0,c<0时,原式=-1-1-1-1=-4;当a<0,b>0,c<0时,原式=-1+1+1-1=0;当a<0,b<0,c>0时,原式=1+1-1-1=-2; ①||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个,正确; ①方程ax +b =0(a ,b 为常数),当a =0时,不是关于x 的一元一次方程,不正确;故选:C .【点评】本题考查了相反数的概念、绝对值的定义、平方差公式、整式的加减、一元一次方程的概念,熟练掌握定义是解答本题的关键.12.C【分析】根据(a ﹣10)2+|b +6|=0,得a =10,b =﹣6,由已知得P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣4t ,而P 、Q 两点相距4个单位长度,故可列方程|(10﹣8t )﹣(﹣6﹣4t )|=4,即可解得答案.【详解】解:①(a ﹣10)2+|b +6|=0,①a ﹣10=0,b +6=8,①a =10,b =﹣6,①动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,①P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣6t ,①|(10﹣8t )﹣(﹣6﹣6t )|=4,即|16﹣4t |=6,解得t =3或t =5,故选:C .【点睛】本题考查了数轴上两点间的距离,一次方程的应用,解题的关键是用含t 的代数式表示P 、Q 表示的数,再列方程解决问题.13.(1)x =-7;(2)x =1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,得:4x -4-6x -3=7,移项,得:4x -6x =7+4+3,合并同类项,得:-2x =14,系数化为1,得:x=-7.(2)解:去分母,得:6-3(x-1)=2(x+2),去括号,得:6-3x+3=2x+4,移项,得:-3x-2x=4-6-3,合并同类项,得:-5x=-5,系数化为1,得:x=1.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.14.(1)x=52 81(2)x=60(3)x=1 8【分析】(1)将系数化为1即可求出答案;(2)将系数化为1即可求出答案;(3)移项,将系数化为1即可求出答案.(1)解:916x=133613165236981x=⨯=;(2)解:(1-23)x=20120 3x=60x=;(3)解:58+2x=78 124 x=18x . 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的方法是解题的关键. 15.m 的值为1或2【分析】先求出方程2233x m x x ---=的解,再由x 为非负数,可得到关于m 的不等式,解出即可. 【详解】解:2233x m x x ---= 去分母得:()322x x m x --=- , 解得:x =22m -, 因为x 为非负数,所以22m -≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档