在勾股定理的教学中渗透数学思想方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在勾股定理的教学中渗透数学思想方法
东莞东华初级中学 陈佩弟
《全日制义务教育数学课程标准》指出:“通过数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.”数学思想方法是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁.因此,在数学教学活动中,教师应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,为学生的持续学习和发展作好奠基.勾股定理是平面几何有关度量的最基本、最重要的定理,也是中考的重要考点之一,其中蕴涵着多种数学思想,现小结如下:
一.勾股定理与数形结合思想
所谓数形结合思想,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的.
勾股定理反映了直角三角形三条边之间的关系,它是把三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.
例1:(课本P76习题18.2 T5)△ABC 中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求AC 思考与分析:解答本题一定要先根据题意画出相应的图形,求出BD=CD=5cm ,再将题目所给的数据标在图上,得到如图,因此很容易就想到本题的解答思路是:先利用勾股定理的逆定理说明∠ADB=90°,从而∠ADC=90°,再用勾股定理即可求得AC
解: ∵AD 是BC 边上的中线
∴BD=CD=
21BC=21×10=5cm (由形到数) ∵169144251252222=+=+=+AD BD
1691322==AB
∴222AB AD BD =+
∴△ADB 为直角三角形,且∠ADB=90°(由数到形)
∴∠ADC=180°-∠ADB=90°
∴△ADC 为直角三角形 (由数到形) ∴131695122222==+=+=CD AD AC cm (由形到数)
B C D 13 12 5 5
反思:此题综合运用了勾股定理及逆定理,充分体现了由形到数,再由数到形的数形结合的思想,从中你可以体会到数形结合的奥妙.
二.勾股定理与分类讨论思想
分类讨论思想是指在解题过程中,当条件或结论不确定或不唯一时,往往会产生几种可能的情况,这就需要依据一定的标准对问题进行分类,再针对各种不同的情况分别予以解决,最后综合各类结果得到整个问题的结论.分类讨论实质上是一种“化整为零,各个击破,再积零为整”的数学方法.
例2:(课本P76习题18.2 T3)小明向东走80m 后,沿另一方向又走了60m,再沿第三个方向走100m 回到原地.小明向东走80m 后又向哪个方向走的?
思考与分析:观察数据80、60、100,根据勾股定理的逆定理可以判断出小明所走的路线形成了一个直角三角形,即小明向东走的80m 是一直角边,转了90°角后走的60m 是另一直角边,最后走的100m 是斜边.因此得到本题的关键是弄清楚转的90°是往哪个方向转的.情况不确定,故须分类讨论:如果往右转90°,则向南走;如果往左转90°,则向北走.从而得到答案是向南或北走.本题若利用数形结合的思想,根据题意画出如图,思考起来会更直观.
教师在讲解本题时也可以先让学生做课本P76练习 T3:A 、B 、C 三地的两两距离如图所
示,A 地在B 地的正东方向,C 地在B 地的什么方向?
这样设计的目的是让学生经历由易到难的过程,
通过类比学习,明白这两题的本质是:一题是明确给
出图形,情况唯一;另一题没有给图,情况不唯一,须 分类讨论.还有一道常考题:直角三角形的两条边长分别为3和4,则第三边长为 ,学生审题不清,或容易受到定势思维的影响而漏掉一种情况.教师也可以让学生先做:直角三角形的两条直角边长分别为3和4,则第三边长为 .对比学习,学生印象更深刻
反思:当已知条件中没有给出图形时,应认真读句画图,避免遗漏情况;另在直角三角形中,已知两边长但不明确是直角边还是斜边时,应分类讨论.
A B C 12km
13km
5km
北 南
南 北
三.勾股定理与方程思想
方程思想就是指在解决数学问题时,从分析问题的数量关系入手,通过设未知数,把问题中的已知量与未知量之间的数量关系联系起来,从而建立方程或方程组的数学模型,然后求解方程或方程组使问题得以解决.用方程思想分析、处理问题,思路清晰,解题灵活、简便.
例3:(课本P81复习题18 T7)一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、
尺是长度单位,1丈=10尺.)
思考与分析:本题若想直接在Rt △ABC 中运用勾股
定理求AB 是行不通的,因为只知道一条边BC 的长,AC 的长不知道,但AC 与AB 有关系AC+AB=10,因此可设AB 为x 尺,则AC 为(10-x )尺,利用勾股定理可列出方程()222103x x -=+,解得x=4.55
反思:勾股定理说到底是一个等式,而含有未知数的等式就是方程,所以,在利用勾股定理求线段的长时常常利用列方程来解决.勾股定理表达式中有三个量,当无法已知两个量求第三个量时,应采用间接求法,灵活地寻找题中的数量关系,利用勾股定理列方程.
四.勾股定理与转化思想
转化思想是指将陌生的问题转化为熟悉的问题,将特殊的问题转化为一般的问题,将复杂的问题转化为简单的问题,将综合的问题转化为基本的问题等一种解题的手段.如解方程(组)问题中,高次转化为一次,多元转化为一元;在几何问题中,将多边形转化为三角形,将空间图形转化为平面图形等都是转化思想的具体体现.
例4:(课本P81复习题18 T8)已知圆柱的底面半径为6cm,高为10cm,蚂蚁从A 点爬到B 点的最短路程是多少厘米?(结果保留小数点后1位)
思考与分析:我们知道蚂蚁在圆柱表面爬行的路线是一条曲线,
目前学生还无法用所学的知识求曲线的长,另外,在一个曲面上,最
短的路线怎样走更是无从知道.但我们知道在平面几何中有一个结
论“两点之间,线段最短”,因此我们可以借助平面展开的方法,把圆
柱的侧面展开成一个矩形如图,AB 即为所求.通过分析可知AC 对应
圆柱的高10cm,BC 是底面圆的周长的一半即为π6,根据勾股定理得 ()m AB 3.213610061022
2≈+=+=ππ 反思:在立体图形的表面讨论最短距离,应先将立体图形转化为平面图形,再利用“两点
3尺 A
x
10-x B A ●
C