高中数学复习第一轮知识点大汇总
高考数学知识点总结(全而精-一轮复习必备)
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高三数学一轮复习知识点详细
高三数学一轮复习知识点详细高三是整个中学生活的关键时期,对于将要面临高考的学生们来说,备考是最重要的任务之一。
而高考数学作为一门重要的科目,需要一轮复习提高自己的数学水平和应试能力。
本文将详细介绍高三数学一轮复习的知识点。
一、代数与函数在代数与函数中,我们需要重点复习的知识点有:1. 分式方程:包括分式的乘除与分式的方程与不等式;2. 二次函数:掌握二次函数的定义、性质以及相关的图像变换;3. 复杂函数的运算:包括函数的合并、分解、复合与反函数;4. 分式与整式的混合运算:理解分式与整式的加减及乘法与整式的除法运算;5. 二元一次方程组:熟悉二元一次方程组的解法;6. 等差数列与等比数列:掌握等差数列与等比数列的性质,并进行相关题目的解答;7. 幂指函数:理解幂函数与指数函数的图像变换与性质。
二、空间与几何在空间与几何中,我们需要重点复习的知识点有:1. 空间向量:包括向量的定义、加法、数量积与向量的共线与垂直关系;2. 圆锥曲线:掌握圆、椭圆、抛物线和双曲线的定义、相关性质与图像变换;3. 球与球面上的直线与平面:认识球与球面上直线与平面的性质、夹角、交点等;4. 空间几何体的体积与表面积:熟悉各种几何体的体积与表面积计算;5. 空间几何体的相交关系:包括平行与垂直关系、位似关系等。
三、数与统计在数与统计中,我们需要重点复习的知识点有:1. 随机事件与概率:理解随机事件的定义与基本性质,掌握概率的计算方法与相关公式;2. 二项式定理:掌握二项式展开的方法与应用;3. 组合数学与排列组合:了解排列组合计算的基本方法与公式,掌握应用技巧;4. 数据的整理与分析:学会收集数据、整理数据、制作统计图与分析统计结果。
四、解析几何在解析几何中,我们需要重点复习的知识点有:1. 平面直角坐标系与向量:理解平面直角坐标系的性质,掌握向量的加法、减法、数量积与向量的共线关系;2. 平面图形的方程:熟悉直线、圆、抛物线、双曲线及椭圆图形的方程;3. 几何变换:掌握平移、旋转、对称与放缩等几何变换的基本概念与性质。
新高考数学一轮知识点归纳总结
新高考数学一轮知识点归纳总结随着新高考的实施,数学成为了考试科目之一,为了更好地应对新高考数学考试,掌握数学知识点是非常关键的。
在这篇文章中,我将对新高考数学一轮的知识点进行归纳总结,并提供一些备考建议。
一、函数与方程1. 一次函数- 定义:一次函数是指函数的最高次数是1的函数,通常表示为y = kx + b。
- 性质:一次函数的图像是直线,具有斜率k和截距b。
2. 二次函数- 定义:二次函数是指函数的最高次数是2的函数,通常表示为y = ax^2 + bx + c。
- 性质:二次函数的图像是抛物线,开口方向由系数a的符号决定。
3. 指数函数- 定义:指数函数是指以常数e为底的函数,通常表示为y = a^x。
- 性质:指数函数的图像是增长或衰减的曲线,取决于底数a的大小。
4. 对数函数- 定义:对数函数是指与指数函数相对应的函数,通常表示为y = loga(x)。
- 性质:对数函数的图像是上升或下降的曲线,取决于底数a的大小。
二、数列与数学归纳法1. 等差数列- 定义:等差数列是指数列中相邻两项之差为常数的数列。
- 性质:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 等比数列- 定义:等比数列是指数列中相邻两项之比为常数的数列。
- 性质:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
3. 数学归纳法- 定义:数学归纳法是一种证明数学命题的方法,分为初值、归纳假设和归纳步骤三个部分。
- 步骤:首先证明当n取初值时命题成立;然后假设当n=k时命题成立;最后证明当n=k+1时命题也成立。
三、几何与空间1. 平面几何- 点、线、面的定义和性质- 直线与平面的位置关系- 平行线与垂线的性质2. 三角形- 三角形的分类和性质- 三角形的周长和面积计算公式 - 三角形的相似性质3. 圆与圆的位置关系- 圆的定义和性质- 圆的面积和周长计算公式- 圆与直线的位置关系四、概率与统计1. 概率- 事件与样本空间的定义- 概率的定义和性质- 概率计算公式的应用2. 统计- 数据收集和整理的方法- 数据的表示和分析- 统计指标的计算和应用以上是新高考数学一轮的主要知识点归纳总结,希望对大家的复习备考有所帮助。
高1数学知识点总结
高1数学知识点总结一、代数1. 集合与函数的概念- 集合的表示、运算及其性质- 函数的定义、性质和常见类型(线性函数、二次函数、指数函数、对数函数、三角函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 代数式的运算- 整式的加减乘除运算- 因式分解- 分式的运算3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式的性质和解集- 线性不等式的解集表示4. 二次方程与不等式- 二次方程的解法(开平方法、配方法、公式法、因式分解法)- 二次方程根的判别式- 二次不等式的解法5. 指数与对数- 指数的定义和运算性质- 对数的定义、性质和运算规则- 指数函数和对数函数的图像和性质二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和圆的方程- 空间几何体的表面积和体积计算2. 解析几何- 坐标系的建立和应用- 直线与平面的方程- 圆的方程- 空间直线与平面的方程三、三角学1. 三角函数- 三角函数的定义和性质- 三角函数的图像和周期性- 三角恒等变换2. 三角方程- 三角方程的解法- 三角形的解法(正弦定理、余弦定理)四、概率与统计1. 概率- 随机事件的概率- 条件概率和独立事件- 概率分布(二项分布、正态分布等)2. 统计- 数据的收集和整理- 描述性统计(平均数、中位数、众数、方差、标准差)- 推断性统计(抽样、置信区间、假设检验)以上是高1数学的主要知识点概述。
每个部分都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据这个总结来规划教学和学习的重点,确保覆盖所有重要的概念和技能。
高中数学一轮复习必备知识点大梳理
B
B C
A
C
.
②
A
B
或
A
A
B B
集合
A
与集合
B
相等;
③ A B 集合 A 是集合 B 的真子集.
例: N Z Q R C ; N Z Q R C .
④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:
①交集: A B {x x A且x B} 集合 A 与集合 B 的交集; ②并集: A B {x x A或x B} 集合 A 与集合 B 的并集; ③补集:设U 为全集,集合 A 是U 的子集,则由U 中所有不属于 A 的元素组 成的集合,叫做集合 A 在全集U 中的补集,记作 CU A.
f (x)
2 y n f (x) , f (x) 0 ; 3 y ( f (x))0 , f (x) 0 ; 4 y loga f (x) , f (x) 0 ;
⑤ y log f (x) N , f (x) 0 且 f (x) 1 .
第 5 页 共 75 页
(2)判断是否函数图像的方法:任取平行于 y 轴的直线,与图像最多只有一个 公共点;
的根的判别式
△ b2 4ac 0
△ b2 4ac 0
△ b2 4ac 0
第 3 页 共 75 页
y ax2 bx c(a 0)
ax 2 bx c 0(a 0)
{x1, x2}, x1 x2
{x0}
ax 2 bx c 0(a 0)
(, x1) (x2, )
(, x0 ) (x0 ,)
2
补充公式:
a2 b2 a b
2
2
ab
1
2
1
.
2024年高考数学第一轮复习知识点总结
2024年高考数学第一轮复习知识点总结一、函数与方程(约占25%)1. 函数的概念与性质:定义域、值域、单调性、奇偶性、周期性等。
2. 一次函数与二次函数:斜率、截距、图像特征、解析式、三要素表示法。
3. 指数函数与对数函数:性质、特征、解析式。
4. 三角函数:正弦函数、余弦函数、正切函数的性质、图像、周期与频率等。
5. 幂函数与反比例函数:性质、图像、变化规律。
6. 组合与复合函数:定义、性质、计算方法。
7. 方程与不等式:一元一次方程、一元二次方程、一元高次方程的解法、根的判别、关系式、二次函数与方程。
二、空间与向量(约占15%)1. 点、直线与平面:空间几何图形的基本概念、关系与性质。
2. 空间向量:向量的表示、运算、模与单位向量、数量积与向量积的意义与计算。
3. 空间直线与平面的方程:点线面关系、夹角与距离、平面投影问题。
4. 空间几何证明:基本证明方法与技巧。
三、导数与微分(约占15%)1. 函数的导数:导数的定义与性质、基本导数公式、导数的几何意义、高阶导数。
2. 导数的计算:四则运算法则、链式法则、乘法法则、常见函数的导数。
3. 函数的微分:微分的定义与计算、微分与导数的关系、微分中值定理。
4. 导数应用:切线、法线、函数的极值与最值、函数的单调性、函数的凹凸性与拐点、不定积分、定积分等。
四、概率与统计(约占15%)1. 随机事件与概率:事件的概念、样本空间、事件的运算、概率的定义与性质、基本事件、条件概率与乘法定理。
2. 随机变量:离散型与连续型随机变量、分布函数、概率分布列、概率密度函数、期望与方差。
3. 概率分布:离散型随机变量的分布、二项分布、泊松分布、连续型随机变量的分布、均匀分布、正态分布。
4. 统计与抽样:参数与统计量、抽样方法与数据处理、样本均值与总体均值的关系、抽样分布与中心极限定理。
五、数列与数列极限(约占13%)1. 数列与数列极限:数列的概念与性质、数列极限的定义与性质、等差数列、等比数列、收敛性判定、数列极限的性质。
高考数学第一轮复习知识点总结
高考数学第一轮复习知识点总结高考数学第一轮复习知识点总结高考数学作为重中之重的一门课程,对于很多考生来说是一道难关。
数学题目难,考点多,所以在备考过程中复习知识点是非常关键的一环。
在高考数学中,第一轮复习是非常重要的,因为它是考生们对于数学知识点的回顾和积累过程,对于巩固基础打下坚实的基础非常关键。
在这篇文章中,我们将对高考数学第一轮复习的知识点进行总结,帮助考生们更好地备考。
一、集合和函数1. 集合的基本概念和表示方法。
2. 集合的运算:交、并、差、补、对称差。
3. 集合的关系:包含关系、相等关系。
4. 数学函数的定义。
5. 常用函数:幂函数、指数函数、对数函数、三角函数等。
6. 函数的性质:奇偶性、周期性、单调性、最值等。
7. 反函数。
二、数列1. 数列的定义。
2. 等差数列和等比数列的性质。
3. 数列的通项公式和前n项和公式。
4. 数列极限的定义和性质。
5. 数列的收敛和发散。
三、函数图像与方程1. 一次函数。
2. 二次函数。
3. 线性方程组。
4. 二元一次方程和一元二次方程。
5. 一元两次方程,求根公式,有理系数情况的根的奇偶性判断,一次两个根判别式,一元二次方程的最值问题。
四、三角函数1. 弧度制和角度制的互相转换。
2. 常用角的正弦、余弦、正切、余切。
3. 三角函数的基本关系式。
4. 三角函数的图像和性质。
5. 三角函数的反函数。
五、立体几何1. 空间向量的概念。
2. 空间向量之间的运算。
3. 空间中直线和平面的基本概念。
4. 平面与平面的位置关系:平行、共面、垂直等。
5. 空间中直线与直线、直线与平面的位置关系:共面、垂直等。
6. 空间向量与平面的位置关系:平行、垂直等。
七、概率统计1. 随机事件及其概率。
2. 条件概率及其应用。
3. 离散型随机变量及其概率分布。
4. 连续型随机变量及其概率密度函数。
5. 随机事件的运算。
以上是高考数学第一轮复习的知识点总结。
复习数学可以多练习题,特别是选择题,可以涉及到很多数学知识点。
高中数学大一轮复习知识点
高中数学大一轮复习知识点数学作为一门基础学科,对于高中生来说至关重要。
在高中数学学习的最后阶段,进行一次全面的复习是非常必要的。
本文将概述高中数学大一轮复习的知识点,帮助学生回顾巩固。
一、函数与方程首先,函数与方程是高中数学的基础,掌握好这一部分的知识对于后续学习至关重要。
高中数学主要包括一次函数、二次函数、指数函数、对数函数等。
在复习时,同学们要掌握各种函数的性质、图像及相关的计算方法。
另外,方程的解析解和图解法也是复习的重点。
对于一元一次方程、一元二次方程等基础方程的解法,同学们要熟练掌握。
此外,还应了解不等式的基本性质,掌握解不等式的方法。
二、数列与数列的极限数列是数学中常见的概念,同时也是高中数学的重要内容。
同学们需要回顾数列的定义、公式及计算方法。
其中,常见的数列有等差数列、等比数列和斐波那契数列等。
除了数列本身,数列的极限也是重要的一部分。
同学们应理解数列极限的定义,能够准确求解极限值。
三、平面几何平面几何是高中数学的重点内容之一。
同学们需要熟悉平面几何中的各种基本定理和推理方法。
例如,面积计算公式、三角形的性质、相似、全等等。
在几何证明方面,同学们需要掌握正反推理、条件与结论的关系等。
此外,几何证明的方法也是值得关注的。
常见的证明方法有反证法、归谬法、分情况讨论法等。
四、立体几何除了平面几何,立体几何也是高中数学中的重要内容。
在复习期间,同学们应复习并掌握立体几何的基本概念和公式。
常见的几何体如三角锥、正四面体、正六面体等,对于其计算公式和性质都要有一定的了解。
此外,同学们还需要掌握立体几何中的投影问题。
投影是立体几何中的常见问题,包括正交投影和斜投影两种情况。
五、概率与统计概率与统计是高中数学课程的最后一部分。
在进行大一轮复习时,同学们应回顾概率的基本定义、计算方法以及常见的概率分布。
掌握概率问题的解题思路和方法,能够准确计算事件的概率,是非常重要的。
此外,同学们还要了解统计学中的基本概念和应用。
高三数学一轮知识点总结归纳
高三数学一轮知识点总结归纳高三数学是学生们备战高考的关键时期,对于数学知识点的总结归纳是非常重要的。
本文将对高三数学一轮知识点进行全面梳理,帮助同学们更好地复习与巩固学习内容。
一、函数与方程1. 函数的性质与图像a. 定义域、值域与奇偶性b. 函数的增减性与最值c. 函数的周期性与对称性d. 常见函数的图像与性质总结2. 一次函数与二次函数a. 一次函数的定义与性质b. 一次函数的图像与常见问题c. 二次函数的定义与性质d. 二次函数的图像与常见问题3. 指数与对数函数a. 指数函数的定义与性质b. 指数函数的图像与常见问题c. 对数函数的定义与性质d. 对数函数的图像与常见问题4. 幂函数与反比例函数a. 幂函数的定义与性质b. 幂函数的图像与常见问题c. 反比例函数的定义与性质d. 反比例函数的图像与常见问题二、三角函数1. 基本概念与性质a. 弧度制与角度制的转换b. 正弦、余弦、正切函数的定义与性质c. 正弦、余弦、正切函数的图像与常见问题2. 三角函数的基本关系a. 三角函数的周期性与对称性b. 三角函数的和差化积与积化和差c. 三角函数的倍角与半角公式3. 解三角函数方程a. 解简单的三角方程b. 解复杂的三角方程c. 解三角方程组与实际问题应用三、数列与数列的表示方法1. 基本概念与通项公式a. 数列的定义与性质b. 等差数列的通项公式与性质c. 等比数列的通项公式与性质2. 数列求和问题a. 等差数列求和与常见问题b. 等比数列求和与常见问题c. 常用数列求和公式总结3. 递推数列与特殊数列a. 递推数列的定义与常见问题b. 斐波那契数列与常见问题c. 等差数列与等比数列的特殊性质四、空间几何与向量1. 点、直线与平面a. 点的定义与性质b. 直线的定义与性质c. 平面的定义与性质2. 空间图形的方程a. 点、直线的位置关系与方程b. 直线与平面的位置关系与方程c. 平面与平面的位置关系与方程3. 向量的基本概念与运算a. 向量的定义与性质b. 向量的加减法与数量积c. 向量的数量积与向量积4. 空间几何的应用a. 点到直线的距离与投影b. 直线与平面之间的夹角与距离c. 空间图形的体积与表面积计算通过以上的知识点总结归纳,我们可以更好地复习数学知识,加深对各个知识点的理解,并且在解题过程中能够迅速找到思路,提高解题效率。
高三数学第一轮复习知识点
高三数学第一轮复习知识点高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高三数学第一轮知识点总结
高三数学第一轮知识点总结高三是每个学生都要经历的一段重要的时间,尤其是对于理科生来说,数学的学习显得尤为重要。
在高三的数学学习中,第一轮的知识点总结是至关重要的,这些知识点直接关系到高考的成绩。
一、函数与方程在高三的数学学习中,函数与方程是一个非常重要的基础知识点。
函数是数学中的一种重要的关系,可以帮助我们描述事物之间的变化规律。
而方程则是函数的一种特殊情况,通过方程我们可以求出未知数的值。
在高三中,我们需要掌握各种基本的函数与方程,如一次函数、二次函数、指数函数、对数函数、三角函数等,并能够灵活运用它们解决实际问题。
二、数列与数列的极限数列是一种按照一定规则排列的数的集合。
在高三数学中,数列与数列的极限是一个重要的知识点。
我们需要掌握数列的概念、数列的通项公式以及数列的极限运算规则等。
同时,我们还需要能够理解数列极限的几何意义,例如递推数列的极限可以用来求解一些几何问题。
三、不等式不等式是数学中的一种重要的关系,可以帮助我们描述事物之间的大小关系。
在高三的数学学习中,我们需要掌握不等式的概念、不等式的性质以及不等式的解法。
特别是在解一元二次不等式时,需要综合应用函数与方程、图像与不等式的关系等知识进行解题。
四、空间几何与向量空间几何与向量是高三数学中的一大难点,但同时也是一大亮点。
我们需要掌握三维空间的坐标表示、平面与直线的方程、点、向量的加减与数量积、向量的线性相关与线性无关等基本概念与性质。
在学习过程中,我们应该注重提高几何直观思维能力,善于运用向量的几何性质解决实际问题。
五、概率与统计概率与统计是高三数学中的一门应用型学科,它与现实生活的各个领域有着密切的联系。
在高三的数学学习中,我们需要学习概率与统计的基本概念、常见的概率分布、统计数据的收集与整理方法等。
我们还应该培养自己的概率思维能力,能够应用概率知识解决实际问题。
六、解析几何解析几何是高三数学中的一大难点,它要求我们掌握平面直角坐标系、点、直线、圆的方程等基本概念与性质。
高考数学一轮复习知识点归纳总结
高考数学一轮复习知识点归纳总结在高考备考过程中,数学是一个重要的科目。
为了能够顺利地完成高考数学科目的复习备考,有必要对之前学习过的知识点进行归纳总结,以便于加深理解和记忆。
本文将对高考数学一轮复习的知识点进行归纳总结,帮助考生进行有效的复习。
1. 函数与方程1.1 函数的定义和性质1.2 一次函数及其图像1.3 二次函数及其图像1.4 指数函数与对数函数1.5 三角函数及其图像1.6 方程与不等式的解法2. 数列与数列的应用2.1 等差数列2.2 等比数列2.3 数列的通项公式与前n项和公式2.4 等差数列和等比数列的应用3. 三角函数与解三角形3.1 三角函数的定义和基本性质3.2 三角函数的基本关系式3.3 解三角形的基本方法4. 平面向量与坐标系4.1 平面向量的定义和运算4.2 向量的坐标表示与方向角表示 4.3 向量共线与平行4.4 坐标系与平面几何5. 空间几何与立体几何5.1 空间几何中的点、直线和面5.2 空间几何中的位置关系5.3 立体几何中的体积与表面积计算6. 概率与统计6.1 随机事件与概率6.2 条件概率和独立事件6.3 统计与抽样调查7. 导数与微分7.1 导数的概念和性质7.2 常见函数的导数计算7.3 函数的极值与最值7.4 微分与应用8. 积分与定积分8.1 定积分的概念和性质8.2 定积分的计算方法8.3 曲线的长度与旋转体的体积以上是高考数学一轮复习的主要知识点。
在复习过程中,考生可以根据自己的掌握情况,有针对性地选择学习重点,并结合相关题目进行练习和巩固。
同时,复习过程中要注重总结归纳,将重要的公式和解题方法进行整理,以便于在考试中能够快速准确地运用到。
此外,做题时要注重思路和方法的灵活运用,培养解决问题的能力和思维能力。
希望本文所提供的高考数学一轮复习知识点归纳总结对考生们进行复习备考有所帮助,祝愿各位考生能够取得优异的成绩!。
高中数学一轮复习知识点总结汇总3篇
高中数学一轮复习知识点总结汇总3篇高中数学一轮复习知识点总结汇总3篇复习总结应该注重对自己的考试习惯和心态进行规范和调整。
复习总结应该注重平衡各科的复习时间和分配。
下面就让小编给大家带来高中数学一轮复习知识点总结,希望大家喜欢!高中数学一轮复习知识点总结1(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高中数学一轮复习知识点总结2一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
高三数学一轮知识点总结大全
高三数学一轮知识点总结大全高三是所有考生的关键时刻,是为了应对高考而付出努力的最后一年。
数学作为高考必考科目之一,具有重要的分数和排名权重。
为了帮助高三学生更好地备考,下面将对高三数学一轮知识点进行全面总结。
一、函数与方程1. 函数的定义:函数是一种特殊的关系,对于定义域内的每个自变量都有唯一对应的因变量。
2. 函数的性质:奇偶性、周期性、增减性、单调性等。
3. 方程与不等式的解:通过求解方程或者不等式,求取未知数的取值范围。
二、数列与递推关系1. 等差数列:一种常见的数列,其中任意两个相邻项之间的差值为常数。
2. 等比数列:一种常见的数列,其中任意两个相邻项之间的比值为常数。
3. 递推关系:通过已知项和递推关系式,求解数列中任意一项的值。
三、平面几何1. 直线与曲线:通过方程或者性质,判断直线与曲线的关系。
2. 圆与其相关概念:弦、弧、切线、切点等。
3. 三角形与多边形:根据性质和定理,解决三角形和多边形相关的问题。
四、空间几何1. 空间中的直线与平面:通过方向向量和点的坐标等信息,求解直线与平面的关系。
2. 空间中的角与距离:根据空间几何相关定理,求解角的大小和点的距离。
3. 空间中的曲线与曲面:通过方程和性质,求解曲线和曲面的特性。
五、立体几何1. 立体的体积和表面积:求解各种形状的体积和表面积,例如(球、圆柱、锥、棱柱、棱锥等)。
2. 空间向量:矢量的定义、性质、运算等。
3. 空间解析几何:点、直线、平面的坐标和性质。
六、概率与统计1. 随机事件:基本概念、性质和运算。
2. 概率计算:频率、概率、事件间的关系和计算方法。
3. 排列组合与分布:排列、组合、二项分布、正态分布等。
七、数学证明与推理1. 数学证明的基本方法:直接证明法、反证法、数学归纳法等。
2. 数学运算与性质:算术运算、整除性质、同余关系等。
3. 数学推理与连续性:数学推理的过程和方法,连续性的概念和性质。
八、复数与数域1. 复数的定义与运算:复数的基本运算、共轭、模长等。
高考第一轮复习数学知识点
高考第一轮复习数学知识点随着高考的逐渐临近,第一轮复习也已经开始,数学作为高考必考科目之一,需要我们提前进行系统性的复习。
下面将为大家详细介绍高考第一轮复习数学知识点。
1.函数与极限函数是数学中最基本的概念,是解决各种问题的基础,高考中对函数的考察也十分重要。
重点关注函数的性质、定义域、值域、单调性、奇偶性、对称性等。
极限是高等数学中最基本的概念之一,包括极限的定义、存在性、唯一性、极限运算法则等。
同时,需要重视初等数学常函数、幂函数、指数函数、对数函数、三角函数等中涉及到的极限。
2.微积分微积分是数学中最重要的分支之一,也是高考数学中的重点内容。
需要理解微分的概念、基本公式、运算法则、应用等;同时也需要掌握积分的概念、基本公式、基本性质、变量代换、分部积分等内容。
3.数列与数学归纳法数列在高考中也经常出现,需要重视各种数列的通项公式、求和公式、递推公式、极限等;同时还需要掌握数学归纳法的基本思想、基本步骤、典型例题等。
4.平面几何平面几何作为高考数学中最基础也是最重要的考点之一,需要掌握各种定理、公式,各种角的性质、直角三角形中的三角函数等内容。
5.解析几何解析几何是高考数学中比较难的一部分,也是很多学生认为比较抽象的一部分。
需要学习二维坐标系、一般式方程、斜率、距离公式、圆的方程等内容,同时也要掌握各种几何问题的解法,如角平分线、垂线定理、相交线定理等。
6.概率与统计概率与统计在高考数学考试中所占比重较大,需要掌握各种概率计算方法、常见的概率分布、概率统计中的参数估计、假设检验、线性回归分析等内容。
以上就是高考第一轮复习数学知识点的重点内容,希望同学们能够认真复习,掌握重点难点。
最后,提醒大家不要忽视对做题技巧的培养,通过多做题和独立思考,提高解题能力,从而为高考考试做好充分准备。
高一数学一轮复习知识点
高一数学一轮复习知识点一、函数与方程式1. 函数的定义与性质:函数的定义、定义域、值域、单调性、奇偶性、周期性等。
2. 一次函数:函数的一般式、斜率的概念与计算、函数图像的性质等。
3. 二次函数:函数的一般式、顶点坐标、对称轴、单调性、最值、函数图像的性质等。
4. 指数函数与对数函数:指数函数的定义、性质与图像、对数函数的定义、性质与图像、指数方程与对数方程等。
二、三角函数1. 三角函数的定义与性质:正弦函数、余弦函数、正切函数、余切函数的定义、周期性、奇偶性、单调性等。
2. 三角函数的图像与变换:函数图像的特点、振幅、相位差、图像平移、图像反射、图像压缩等。
3. 三角函数的基本关系式:同角三角函数的关系、倒数关系、和差化积、倍角公式、半角公式等。
三、平面向量1. 平面向量的定义与表示:向量的定义、向量的表示、向量的模长、单位向量、零向量等。
2. 平面向量的运算:向量的加法、向量的减法、向量的数量积、向量的夹角、平面向量的共线与垂直等。
3. 平面向量的坐标表示:向量的坐标表示、向量的加法与减法的坐标表示、数量积的坐标表示等。
四、解析几何1. 直线与圆的方程:直线的点斜式、两点式、截距式、一般式、圆的标准式与一般式等。
2. 直线与圆的位置关系:点与直线的关系、点与圆的关系、直线与直线的关系、直线与圆的关系等。
3. 二次曲线的方程与性质:椭圆的方程与性质、双曲线的方程与性质、抛物线的方程与性质等。
五、立体几何1. 空间几何体的名称与性质:多面体、棱柱、棱锥、棱台、四面体等。
2. 空间几何体的计算:多面体的体积与表面积、棱柱的体积与表面积、棱锥的体积与表面积等。
3. 空间坐标系与向量:三维坐标系、直线的方程、平面的方程、空间向量等。
六、概率统计1. 随机事件与概率:随机事件的概念、样本空间、事件的概率、基本事件与几何概率等。
2. 条件概率与独立事件:条件概率的概念与计算、独立事件的概念与计算、乘法定理、全概率公式、贝叶斯公式等。
高三数学第一轮复习知识点
高三数学第一轮复习知识点高三学生在备战期末考试时,数学科目无疑是他们必须重点复习的科目之一。
为了帮助同学们更好地复习,下面将罗列出高三数学第一轮复习的重点知识点。
希望同学们能够认真学习并熟练掌握这些知识点,为期末考试打下坚实的基础。
1. 数列与数列的表示方法数列是指按一定顺序排列的一组数,包括等差数列、等比数列、递推数列等。
同学们在复习数列时,要了解数列的概念、性质以及应用。
掌握数列的各种表示方法,并能够准确地求解数列中的各个元素。
2. 函数及其表示函数是描述两个变量之间关系的一种工具,包括线性函数、二次函数、指数函数、对数函数等。
同学们需要熟悉函数的概念、图像、性质以及函数的运算法则。
在复习过程中,要能够准确地表示函数,并能够根据函数的性质进行函数的运算与分析。
3. 三角函数三角函数是描述角度之间关系的一种工具,包括正弦函数、余弦函数、正切函数等。
同学们在复习三角函数时,需要掌握三角函数的定义、性质以及相关的基本公式。
熟练使用三角函数解决各种与角度、三角恒等式相关的问题。
4. 平面向量平面向量是描述平面上有大小和方向的量,包括向量的定义、向量的运算、向量的数量积等。
同学们需要了解向量在平面几何中的应用,并能够准确地进行向量的运算与分析。
5. 概率统计概率统计是一种研究随机事件发生的可能性以及收集、整理和分析数据的方法和工具。
同学们需要了解概率与统计的基本概念、概率与统计的基本原理,并能够应用概率统计解决实际问题。
以上就是高三数学第一轮复习的知识点,同学们在复习过程中,要注重理解与记忆,多做相关的练习题,加深对知识点的理解和应用能力。
同时,要保持良好的复习习惯,制定合理的学习计划,合理分配时间,提高学习效率。
相信通过努力与坚持,同学们一定能够在期末考试中取得优异的成绩。
加油!。
高三第一轮数学复习知识点
高三第一轮数学复习知识点在高三数学的学习过程中,第一轮复习是非常关键的一步。
在这个阶段,学生们要回顾并巩固自己在之前学习中所掌握的数学知识,同时要注意查漏补缺,填平知识漏洞,为接下来的复习打下坚实的基础。
一、函数与方程函数与方程是高三数学的基础。
在这一部分中,学生们需要掌握函数的概念、性质以及基本的图像变换知识。
此外,还需要了解常见的一次函数、二次函数、指数函数、对数函数等函数的性质与特点,并能熟练解决相关的题目。
在方程的学习中,需要掌握一元一次方程、一元二次方程等常见方程的解法,并能灵活应用于实际问题的解决过程中。
二、数列与数列的求和数列是高中数学中的重点知识,也是数学建模的基础。
在数列的学习中,学生们需要了解等差数列、等比数列、斐波那契数列等常见数列的概念、性质以及特点,并能运用差分法、通项公式等方法解决数列的相关问题。
此外,数列的求和也是数学学习中的重点内容,学生们需要学会通过列式法、分组求和法等方法求解数列的和,并能理解这些方法的推导过程。
三、几何图形与几何推理几何学是数学学科的基础,也是高三数学复习中不可或缺的一部分。
在几何图形的学习中,学生们需要掌握平面几何和立体几何相关的基本概念、性质以及定理,并能够灵活运用这些知识解决相关的几何问题。
在几何推理的学习中,学生们需要理解各种推理方法的基本原理,并能通过逻辑推理解决几何问题。
四、概率与统计概率与统计是高中数学中的实际应用部分。
在概率的学习中,学生们需要了解基本概率的概念、性质以及计算方法,并能够应用概率理论解决生活中的实际问题。
在统计的学习中,学生们需要熟悉数据的收集、整理、分析等基本方法,并能够通过统计理论解决实际问题。
五、解析几何与立体几何解析几何是数学学科的重要分支之一,立体几何是几何学的重要内容之一。
在解析几何的学习中,学生们需要掌握坐标系的建立与运用、直线与曲线的方程等相关内容,并能熟练解决相关的几何问题。
在立体几何的学习中,学生们需要了解空间几何中的基本概念、性质以及相关定理,并能运用这些知识解决实际问题。
高中数学大一轮知识点
高中数学大一轮知识点数学作为一门理工科学科,被广大学生视为一座难以逾越的高山。
在高中数学学习的第一轮中,学生将接触到许多基础知识点,这些知识点为后续数学学习的深化与拓展打下了坚实的基础。
本文将从代数、几何和概率统计这三个方面,展开对高中数学大一轮知识点的探讨。
一、代数知识点代数作为数学的一个重要分支,构成了数学体系的基础。
其中包括了代数式、方程和函数等内容。
在高中数学学习的第一轮中,学生会接触到一元一次方程、一元二次方程以及简单的函数。
1.一元一次方程一元一次方程是代数学习的起点之一,它是用一个未知数表示的一次方程。
学生需要学会如何根据题目中所给条件建立方程,然后用代数的方法求解未知数。
例如,一道经典的一元一次方程题目是:甲数的3倍与乙数的4倍之和等于50,且甲数比乙数多15,求甲数和乙数各是多少?在解题中,学生需要设甲数为x,乙数为y。
根据题目中所给条件,建立方程3x + 4y = 50和x - y = 15。
然后通过消元的方法求解出x和y的值。
2.一元二次方程一元二次方程是一元一次方程的延伸,也是高中数学学习中较为重要的一个知识点。
一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知系数,且a≠0。
学生需要学会通过配方法、公式法或因式分解法等方法解一元二次方程。
例如,求解方程2x² -5x + 3 = 0。
在解题中,学生可以通过因式分解法将方程化为(x-1)(2x-3)=0,然后得出x=1和x=3/2两个解。
3.简单函数简单函数是高中数学学习中最基础的函数内容。
学生需要学会用函数符号f(x)表示函数关系,并且掌握常见的函数类型如常数函数、线性函数和平方函数等。
例如,给定函数f(x) = 3x + 2,求其在x = 1处的函数值。
在解题中,学生将x = 1代入函数f(x) = 3x + 2中,得出f(1) =3(1) + 2 = 5。
二、几何知识点几何是研究空间、图形和变换的数学学科,在高中数学学习的第一轮中,学生将接触到平面几何和立体几何的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习第一轮知识点大汇总第一章集合与常用逻辑用语第1讲集合的概念和运算一、选择题1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于() A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}解析∵A={y|x2+y2=1},∴A={y|-1≤y≤1}.又∵B={y|y=x2},∴B={y|y≥0}.A∩B={y|0≤y≤1}.答案B2. 设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=()A.{1,2,3}B.{1,3,5}C.{1,4,5} D.{2,3,4}解析由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.答案B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是().A.2 B.3 C.4 D.5解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.答案B5.设集合M ={1,2},N ={a2},则“a =1”是“N ⊆M”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件解析 若N ⊆M ,则需满足a2=1或a2=2,解得a =±1或a =± 2.故“a =1”是“N ⊆M”的充分不必要条件.答案 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ).A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)} 解析 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2]. 答案 B二、填空题7.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 解析 ∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1.答案 18.已知集合A ={0,2,a2},B ={1,a},若A ∪B ={0,1,2,4},则实数a 的值为________. 解析 若a =4,则a2=16∉(A ∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A ∪B),∴a =2.答案 29.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.解析 ①中,-4+(-2)=-6∉A ,所以不正确.②中设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,n 1+n 2∈A ,n 1-n 2∈A ,所以②正确.③令A 1={n |n =3k ,k ∈Z },A 2={n |n =2k ,k ∈Z },3∈A 1,2∈A 2,但是,3+2∉A 1∪A 2,则A 1∪A 2不是闭集合,所以③不正确.答案 ②10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.解析 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.答案 8三、解答题11.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b . 解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎨⎧-a =-1+3=2,b =(-1)×3=-3,∴a =-2,b =-3. 12.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.13.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系;(2)若B ⊆A ,求实数a 组成的集合C .解 由x 2-8x +15=0,得x =3或x =5.∴A ={3,5}.(1)当a =15时,由15x -1=0,得x =5.∴B ={5},∴B A .(2)∵A ={3,5}且B ⊆A ,∴若B =∅,则方程ax -1=0无解,有a =0.若B ≠∅,则a ≠0,由方程ax -1=0,得x =1a ,∴1a =3或1a =5,即a =13或a =15,∴C =⎩⎨⎧⎭⎬⎫0,13,15. 14.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B ={9},求A ∪B. 解 由9∈A ,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去; 当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B ={9}满足题意,故A ∪B ={-7,-4,-8,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B ={-4,9}与A∩B ={9}矛盾,故舍去.综上所述,A ∪B ={-8,-4,4,-7,9}.第2讲 命题及其关系、充分条件与必要条件一、选择题1.若a ∈R ,则“a =1”是“|a|=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 解析 若a =1,则有|a|=1是真命题,即a =1⇒|a|=1,由|a|=1可得a =±1,所以若|a|=1,则有a =1是假命题,即|a|=1⇒a =1不成立,所以a =1是|a|=1的充分而不必要条件.答案 A2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析 原命题的逆命题是:若一个数的平方是正数,则它是负数.答案 B3.已知集合A ={x ∈R|12<2x<8},B ={x ∈R|-1<x<m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m≥2B .m≤2C .m>2D .-2<m<2解析 A ={x ∈R|12<2x<8}={x|-1<x<3}∵x ∈B 成立的一个充分不必要条件是x ∈A∴A B∴m +1>3,即m>2.答案 C4.命题:“若x2<1,则-1<x<1”的逆否命题是( )A .若x2≥1,则x≥1或x≤-1B .若-1<x<1,则x2<1C .若x>1或x<-1,则x2>1D .若x≥1或x≤-1,则x2≥1解析 x2<1的否定为:x2≥1;-1<x<1的否定为x≥1或x≤-1,故原命题的逆否命题为:若x≥1或x≤-1,则x2≥1.答案 D5.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ).A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析 否命题既否定题设又否定结论,故选B.答案 B6.方程ax 2+2x +1=0至少有一个负实根的充要条件是( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0 解析 法一 (直接法)当a =0时,x =-12符合题意.当a ≠0时,若方程两根一正一负(没有零根),则⎩⎪⎨⎪⎧ Δ=4-4a >0,1a <0⇔⎩⎨⎧ a <1,a <0⇔a <0; 若方程两根均负,则⎩⎪⎨⎪⎧ Δ=4-4a ≥0,-2a<0,1a >0⇔⎩⎨⎧a ≤1,a >0⇔0<a ≤1. 综上所述,所求充要条件是a ≤1.法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B ,所以选C.答案 C二、填空题7.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p1:|a +b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p2:|a +b|>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π p3:|a -b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3 p4:|a -b|>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π 其中真命题的个数是____________.解析 由|a +b|>1可得a2+2a·b +b2>1,因为|a|=1,|b|=1,所以a·b >-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a·b >-12,|a +b|2=a2+2a·b +b2>1,即|a +b|>1,故p1正确.由|a -b|>1可得a2-2a·b +b2>1,因为|a|=1,|b|=1,所以a·b <12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p4正确. 答案 28.若“x2>1”是“x<a”的必要不充分条件,则a 的最大值为________.解析 由x2>1,得x<-1或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a 的最大值为-1. 答案 -19.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x<8,x ∈R ,B ={x|-1<x<m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案 (2,+∞)10.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14.答案 充分不必要三、解答题11.写出命题“已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.解 (1)逆命题:已知a ,b ∈R ,若a2≥4b ,则关于x 的不等式x2+ax +b≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0没有非空解集,则a2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a2<4b ,则关于x 的不等式x2+ax +b≤0没有非空解集,为真命题.12.求方程ax2+2x +1=0的实数根中有且只有一个负实数根的充要条件. 解 方程ax2+2x +1=0有且仅有一负根.当a =0时,x =-12适合条件.当a≠0时,方程ax2+2x +1=0有实根,则Δ=4-4a≥0,∴a≤1,当a =1时,方程有一负根x =-1.当a<1时,若方程有且仅有一负根,则x1x2=1a <0,∴a<0.综上,方程ax2+2x +1=0有且仅有一负实数根的充要条件为a≤0或a =1.13.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若ab =0,则a =0或b =0;(2)若x2+y2=0,则x ,y 全为零.解 (1)逆命题:若a =0或b =0,则ab =0,真命题.否命题:若ab≠0,则a≠0且b≠0,真命题.逆否命题:若a≠0且b≠0,则ab≠0,真命题.(2)逆命题:若x ,y 全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x ,y 不全为零,真命题.逆否命题:若x ,y 不全为零,则x2+y2≠0,真命题.14.已知p :x2-8x -20≤0,q :x2-2x +1-a2≤0(a>0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x2-8x -20≤0⇔-2≤x≤10,q :x2-2x +1-a2≤0⇔1-a≤x≤1+a.∵p ⇒q ,q ⇒/ p ,∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }.故有⎩⎨⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).15.已知集合M ={x|x<-3,或x>5},P ={x|(x -a)·(x -8)≤0}.(1)求M∩P ={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件. 解 (1)由M∩P ={x|5<x≤8},得-3≤a≤5,因此M∩P ={x|5<x≤8}的充要条件是-3≤a≤5;(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a =0,此时必有M∩P ={x|5<x≤8};反之,M∩P ={x|5<x≤8}未必有a =0,故a =0是M∩P ={x|5<x≤8}的一个充分不必要条件.第3讲 简单的逻辑联结词、全称量词与存 在量词一、选择题1. 已知命题p :存在n ∈N,2n>1 000,则非p 为( )A .任意n ∈N,2n≤1 000B .任意n ∈N,2n>1 000C .存在n ∈N,2n≤1 000D .存在n ∈N,2n<1 000解析 特称命题的否定是全称命题,即p :存在x ∈M ,p(x),则非p :任意x ∈M ,非p(x).答案 A2. ax2+2x +1=0至少有一个负的实根的充要条件是( ).A .0<a≤1B .a <1C .a≤1D .0<a≤1或a <0解析 (筛选法)当a =0时,原方程有一个负的实根,可以排除A 、D ;当a =1时,原方程有两个相等的负实根,可以排除B ,故选C.答案 C3.下列命题中的真命题是 ( ).A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),ex>x +1C .∃x ∈(-∞,0),2x<3xD .∀x ∈(0,π),sin x>cos x解析 因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2<32,故A 错误;当x<0时,y =2x 的图象在y =3x 的图象上方,故C 错误;因为x ∈⎝ ⎛⎭⎪⎫0,π4时有sin x<cos x ,故D 错误.所以选B.答案 B4.已知命题p :∃a0∈R ,曲线x2+y2a0=1为双曲线;命题q :x2-7x +12<0的解集是{x|3<x <4}.给出下列结论:①命题“p ∧q”是真命题;②命题“p ∧綈q”是假命题;③命题“綈p ∨q”是真命题;④命题“綈p ∨綈q”是假命题.其中正确的是________.A .②③B .①②④C .①③④D .①②③④解析 因为命题p 和命题q 都是真命题,所以命题“p ∧q”是真命题,命题“p ∧綈q”是假命题,命题“綈p ∨q”是真命题,命题“綈p ∨綈q”是假命题. 答案 D5.已知命题p :∉x0∉R ,mx20+1≤0,命题q :∉x∉R ,x2+mx +1>0.若p∉q 为假命题,则实数m 的取值范围为( )A .m≥2B .m≤-2C .m≤-2或m≥2D .-2≤m≤2解析 若p∉q 为假命题,则p 、q 均为假命题,即綈p :∉x∉R ,mx2+1>0与綈q :∉x0∉R ,x20+mx0+1≤0均为真命题.根据綈p : ∉x∉R ,mx2+1>0为真命题可得m≥0,根据綈q :∉x0∉R ,x20+mx0+1≤0为真命题可得Δ=m2-4≥0,解得m≥2或m≤-2.综上,m≥2.答案 A6.以下有关命题的说法错误的是( )A .命题“若x2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x2-3x +2≠0”B . “x =1”是“x2-3x +2=0”的充分不必要条件C .若p∉q 为假命题,则p 、q 均为假命题D .对于命题p :∉x∉R ,使得x2+x +1<0,则綈p :∉x∉R ,均有x2+x +1≥0解析 A 、B 、D 正确;当p∉q 为假命题时,p 、q 中至少有一个为假命题,故C 错误. 答案 C 二、填空题7.命题“存在x ∈R ,使得x2+2x +5=0成立”的否定是________. 答案 对任意x ∈R ,都有x2+2x +5≠08.存在实数x ,使得x2-4bx +3b<0成立,则b 的取值范围是________. 解析 要使x2-4bx +3b<0成立,只要方程x2-4bx +3b =0有两个不相等的实根,即判别式Δ=16b2-12b>0,解得b<0或b>34. 答案 (-∞,0)∪⎝ ⎛⎭⎪⎫34,+∞9.若“∉x∉R ,(a -2)x +1>0”是真命题,则实数a 的取值集合是________. 解析 “∉x∉R ,(a -2)x +1>0”是真命题,等价于(a -2)x +1>0的解集为R ,所以a -2=0,所以a =2. 答案 {2}10.已知命题p :“∉x∉R 且x>0,x>1x ”,命题p 的否定为命题q ,则q 是“____________”;q 的真假为________.(选填“真”或“假”) 答案 ∉x∉R +,x≤1x 假11.命题“∉x0∉R,2x20-3ax0+9<0”为假命题,则实数a 的取值范围为________. 解析 题目中的命题为假命题,则它的否定“∉x∉R,2x2-3ax +9≥0”为真命题, 也就是常见的“恒成立”问题,只需Δ=9a2-4×2×9≤0,[来源:中_教_网z_z_s_tep] 即可解得-22≤a≤2 2. 答案 [-22,22]12.令p(x):ax2+2x +a >0,若对任意x ∈R ,p(x)是真命题,则实数a 的取值范围是________.解析 ∵对任意x ∈R ,p(x)是真命题.∴对任意x ∈R ,ax2+2x +a >0恒成立, 当a =0时,不等式为2x >0不恒成立, 当a≠0时,若不等式恒成立, 则{ a >0,Δ=4-4a2<0,∴a >1.答案 a >113.若命题“∀x ∈R ,ax2-ax -2≤0”是真命题,则实数a 的取值范围是________. 解析 当a =0时,不等式显然成立;当a≠0时,由题意知⎩⎨⎧a <0,Δ=a2+8a≤0,得-8≤a <0.综上,-8≤a≤0. 答案 [-8,0] 三、解答题14. 写出下列命题的否定,并判断真假. (1)q:x∉R ,x 不是5x -12=0的根;(2)r:有些素数是奇数; (3)s: x0∉R ,|x0|>0. 解 (1)q:x0∉R ,x0是5x -12=0的根,真命题.(2)r:每一个素数都不是奇数,假命题. (3)s:x∉R ,|x|≤0,假命题.15.已知c>0,设命题p :函数y =cx 为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f(x)=x +1x >1c 恒成立.如果“p 或q”为真命题,“p 且q”为假命题,求c 的取值范围.解 由命题p 为真知,0<c<1, 由命题q 为真知,2≤x +1x ≤52, 要使此式恒成立,需1c <2,即c>12, 若“p 或q”为真命题,“p 且q”为假命题, 则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c≤12; 当p 假q 真时,c 的取值范围是c≥1.综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c|0<c≤12或c≥1.16. 已知命题p :方程x2+mx +1=0有两个不等的负根;命题q :方程4x2+4(m -2)x +1=0无实根.若“p ∨q”为真,“p ∧q”为假,求实数m 的取值范围. 解 若方程x2+mx +1=0有两个不等的负根,则 ⎩⎨⎧Δ=m2-4>0,m >0,解得m >2,即命题p :m >2. 若方程4x2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m2-4m +3)<0, 解得1<m <3,即q :1<m <3.因“p ∨q”为真,所以p ,q 至少有一个为真, 又“p ∧q”为假,所以命题p ,q 至少有一个为假,因此,命题p ,q 应一真一假,即命题p 为真、命题q 为假或命题p 为假、命题q 为真.∴⎩⎨⎧ m >2,m≤1或m≥3或⎩⎨⎧m≤2,1<m <3.解得:m≥3或1<m≤2, 即实数m 的取值范围为[3,+∞)∪(1,2].第二章 函数与基本初等函数I第1讲 函数及其表示一、选择题1.下列函数中,与函数y =13x定义域相同的函数为( ).A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析 函数y =13x的定义域为{x |x ≠0,x ∈R }与函数y =sin xx 的定义域相同,故选D. 答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有 ( ). A .1个B .2个C .3个D .4个解析 由x 2+1=1,得x =0.由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).解析 根据函数的定义,观察得出选项B. 答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图可知0<a <1,1<b <10,10<c <12.∵f (a )=f (b ), ∴|lg a |=|lg b |,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b , ∴ab =1,10<abc =c <12.故应选C. 答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝⎛⎭⎪⎫-1,32 B .(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34 C.⎝⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2;当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎪⎨⎪⎧x 2-2⎝⎛⎭⎪⎫-1≤x ≤32,x -x 2⎝⎛⎭⎪⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数的图象为()解析注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D.答案 D二、填空题7.已知函数f(x),g(x)分别由下表给出,则f[g(1)]的值为的值是________.解析 ∵g (1)=3,∴f [g (1)]=f (3)=1,由表格可以发现g (2)=2,f (2)=3,∴f (g (2))=3,g (f (2))=1. 答案 1 28.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由题意有⎩⎨⎧ 1-x 2>0,2x <0或⎩⎨⎧1-x 2>2x ,2x ≥0解得-1<x <0或0≤x <2-1,∴所求x 的取值范围为(-1,2-1). 答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)=的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R)是单函数.下列命题: ①函数f (x )=x 2(x ∈R)是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确. 答案 ②③ 三、解答题11.设函数f (x )=⎩⎨⎧1,1≤x ≤2,x -1,2<x ≤3,g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ). (1)求函数h (a )的解析式;(2)画出函数y =h (x )的图象并指出h (x )的最小值. 解 (1)由题意知g (x )=⎩⎨⎧1-ax ,1≤x ≤2,(1-a )x -1,2<x ≤3,当a <0时,函数g (x )是[1,3]上的增函数,此时g (x )max =g (3)=2-3a ,g (x )min =g (1)=1-a ,所以h (a )=1-2a ;当a >1时,函数g (x )是[1,3]上的减函数,此时g (x )min =g (3)=2-3a ,g (x )max =g (1)=1-a ,所以h (a )=2a -1;当0≤a ≤1时,若x ∈[1,2],则g (x )=1-ax ,有g (2)≤g (x )≤g (1);若x ∈(2,3],则g (x )=(1-a )x -1,有g (2)<g (x )≤g (3),因此g (x )min =g (2)=1-2a ,而g (3)-g (1)=(2-3a )-(1-a )=1-2a ,故当0≤a ≤12时,g (x )max =g (3)=2-3a ,有h (a )=1-a ; 当12<a ≤1时,g (x )max =g (1)=1-a ,有h (a )=a .综上所述,h (a )=⎩⎪⎨⎪⎧1-2a ,a <0,1-a ,0≤a ≤12,a ,12<a ≤1,2a -1,a >1.(2)画出y =h (x )的图象,如图所示,数形结合可得h (x )min =h ⎝ ⎛⎭⎪⎫12=12.12.求下列函数的定义域: (1)f (x )=lg 4-x x -3;(2)y =25-x 2-lg cos x ;(3)y =lg(x -1)+lg x +1x -1+19-x .解 (1)⎩⎨⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎨⎧25-x 2≥0,cos x >0,即⎩⎨⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝⎛⎦⎥⎤3π2,5. (3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎨⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).13. 设x ≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)= ()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象. 解 当0<x <1时,x-1<0,x-2<0,∴g(x)= 312-=1.当1≤x <2时,x-1≥0,x-2<0,∴g(x)=61522-=;当x ≥2时,x-1>0,x-2≥0,∴g(x)= 622-=2.故g(x)=1(0x 1)5(1x 2),22(x 2)⎧⎪⎪≤⎨⎪≥⎪⎩<<< 其图象如图所示.14.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2ax +a +b ,由题意,得⎩⎨⎧2a =2,a +b =0,解得⎩⎨⎧a =1,b =-1, 故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减, 所以g (x )min =g (1)=-1,故m <-1.第2讲 函数的单调性与最值一、选择题1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A .y =x 2B .y =|x |+1C .y =-lg|x |D .y =2|x |解析 对于C 中函数,当x >0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x |为偶函数. 答案 C2.已知函数f (x )为R 上的减函数,则满足f (|x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f (x )在R 上为减函数且f (|x |)<f (1), ∴|x |>1,解得x >1或x <-1. 答案 D3.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( ) A .增函数B .减函数C .先增后减D .先减后增解析 ∵y =ax 与y =-b x在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a<0, ∴y =ax 2+bx 在(0,+∞)上为减函数. 答案 B4.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).故选B. 答案 B5.函数y =-x 2+2x -3(x <0)的单调增区间是( ) A .(0,+∞) B .(-∞,1] C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0). 答案 C6.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K ,取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间 为( ).A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析 f 12(x )=⎩⎪⎨⎪⎧2-|x |,2-|x |≤12,12,2-|x |>12⇔f 12(x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12|x |,x ≤-1或x ≥1,12,-1<x <1.f 12(x )的图象如右图所示,因此f 12(x )的单调递增区间为(-∞,-1). 答案 C 二、填空题7.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.解析 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎨⎧a 2-2a ,-2≤a <1,-1,a ≥1.答案 ⎩⎨⎧a 2-2a ,-2≤a <1-1,a ≥18.函数y =-(x -3)|x |的递增区间是_______. 解析 y =-(x -3)|x |=⎩⎨⎧-x 2+3xx >0,x 2-3xx ≤0.作出该函数的图像,观察图像知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案 ⎣⎢⎡⎦⎥⎤0,329.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.解析 ①当a =0时,f (x )=-12x +5在(-∞,3)上为减函数;②当a >0时,要使f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则对称轴x =3-aa必在x =3的右边,即3-aa ≥3,故0<a ≤34;③当a <0时,不可能在区间(-∞,3)上恒为减函数.综合知:a 的取值范围是⎣⎢⎡⎦⎥⎤0,34.答案 ⎣⎢⎡⎦⎥⎤0,3410.已知函数f (x )=⎩⎨⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意的x 1<0,x 2<0且x 1≠x 2,恒有 f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是____________.解析 根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确.答案 ①③④ 三、解答题11.求函数y =a 1-x 2(a >0且a ≠1)的单调区间.解 当a >1时,函数y =a 1-x 2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数;当0<a <1时,函数y =a 1-x 2在区间[0,+∞)上是增函数,在区间(-∞,0]上是减函数.12.已知函数f (x )=x 2+ax (x ≠0,a ∈R ). (1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围. 解 (1)当a =0时,f (x )=x 2(x ≠0)为偶函数; 当a ≠0时,f (-x )≠f (x ),f (-x )≠-f (x ), ∴f (x )既不是奇函数也不是偶函数.(2)设x 2>x 1≥2,则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=x 1-x 2x 1x 2[x 1x 2(x 1+x 2)-a ],由x 2>x 1≥2,得x 1x 2(x 1+x 2)>16,x 1-x 2<0, x 1x 2>0.要使f (x )在区间[2,+∞)上是增函数, 只需f (x 1)-f (x 2)<0,即x 1x 2(x 1+x 2)-a >0恒成立,则a ≤16.13.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,因为a ·2x ,b ·3x 都单调递增,所以函数f (x )单调递增;当a <0,b <0时,因为a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0. (i)当a <0,b >0时,⎝ ⎛⎭⎪⎫32x>-a 2b ,解得x >log 32⎝ ⎛⎭⎪⎫-a 2b ;(ii)当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,解得x <log 32⎝ ⎛⎭⎪⎫-a 2b .14.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3. 解 (1)证明 设x 1,x 2∈R ,且x 1<x 2, 则x 2-x 1>0,∴f (x 2-x 1)>1.f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0. ∴f (x 2)>f (x 1).即f (x )是R 上的增函数. (2) ∵f (4)=f (2+2)=f (2)+f (2)-1=5, ∴f (2)=3,∴原不等式可化为f (3m 2-m -2)<f (2), ∵f (x )是R 上的增函数,∴3m 2-m -2<2,解得-1<m <43,故解集为⎝⎛⎭⎪⎫-1,43.第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x ,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x -1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4,即2x=x+1x+4或2x=-x+1x+4,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f (x )是以4为周期的周期函数∴f (x -2)=f (x +2)=-f (x ),∴-f (x )=12(x -2), ∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ). 令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.第4讲 指数与指数函数一、选择题1.函数y =a |x |(a >1)的图像是( )解析 y =a |x |=⎩⎨⎧a x x ≥0,a -xx <0.当x ≥0时,与指数函数y =a x (a >1)的图像相同;当x <0时,y =a -x 与y =a x 的图像关于y 轴对称,由此判断B 正确. 答案 B2.已知函数f (x )=⎩⎨⎧log 3x ,x >02xx ≤0,则f (9)+f (0)=( )A .0B .1C .2D .3 解析 f (9)=log 39=2,f (0)=20=1, ∴f (9)+f (0)=3. 答案 D3.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是( ).A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝ ⎛⎭⎪⎫-1,12 解析 y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a-1)2x -a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C4.定义运算:a *b =⎩⎨⎧a ,a ≤b ,b ,a >b ,如1*2=1,则函数f (x )=2x *2-x 的值域为 ( ).A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f (x )=2x *2-x=⎩⎨⎧2x ,x ≤0,2-x ,x >0,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1. 答案 C5.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值为( ) A. 6 B .2或-2 C .-2D .2解析 (a b +a -b )2=8⇒a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4. 又a b >a -b (a >1,b >0),∴a b -a -b =2. 答案 D6.若函数f (x )=(k -1)a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是下图中的( ).解析 函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A 二、填空题7.已知函数f (x )=⎩⎨⎧a x ,x <0,(a -3)x +4a ,x ≥0,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,148.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________. 解析 函数y =2-x +1+m =(12)x -1+m ,∵函数的图象不经过第一象限, ∴(12)0-1+m ≤0,即m ≤-2. 答案 (-∞,-2]9.若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点; 若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞)10.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x-m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞三、解答题11.已知函数f (x )=2x -12x +1.(1)判断函数f (x )的奇偶性; (2)求证f (x )在R 上为增函数.(1)解 因为函数f (x )的定义域为R ,且f (x )=2x -12x +1=1-22x +1,所以f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1=2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1=2-2(2x +1)2x +1=2-2=0,即f (-x )=-f (x ),所以f (x )是奇函数. (2)证明 设x 1,x 2∈R ,且x 1<x 2,有f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)<f (x 2),∴函数f (x )在R 上是增函数.12.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)求f (x );(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解析 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得 ⎩⎨⎧6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎨⎧a =2,b =3.∴f (x )=3·2x .(2)要使(12)x +(13)x ≥m 在(-∞,1]上恒成立,只需保证函数y =(12)x +(13)x 在(-∞,1]上的最小值不小于m 即可.∵函数y =(12)x +(13)x 在(-∞,1]上为减函数,∴当x =1时,y =(12)x +(13)x 有最小值56.∴只需m ≤56即可.∴m 的取值范围(-∞,56]13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减, 而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2). (2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3, 所以h (x )应有最小值-1,因此必有⎩⎨⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.14.已知定义在R 上的函数f (x )=2x -12|x |. (1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1),。