六年级奥数同余除法题

合集下载

六年级奥数专题讲义(基础卷+提高卷)-第38讲 同余法解题 通用版(含答案)

六年级奥数专题讲义(基础卷+提高卷)-第38讲  同余法解题   通用版(含答案)

第三十八讲同余法解题基础卷1、乘积418×814×1616除以13所得的余数是多少418÷13=32…2,814÷13=62…8,1616÷13=124…4,2×8×4=64,64÷13=4…12;答:乘积418×814×1616除以13所得的余数是12.2、已知2000年的儿童节是星期四,求2021年的儿童节是星期几2000年到2021年由十二年天数为12*3653(04,08,12年为闰年)=4383天4383/7=6261即2021年的5月31日为周四,则周五即为2021年儿童节3、求除以7的余数。

2021=7*28622021³=7*2862³=7m1m为正整数)“2021的2021次方”2021^2021=2021³^668=7m1^668所以2021的2021次方除以7的余数是14、有一个整数,除300,262,205,得到的余数相同,这个整数是多少300-262=38262-205=57这个数可以同时整除38和57这个数为195、有一个整数,用它去除63,91,129得到3个余数的和是25,这个整数是多少也就是说,(6391129)除以这个数的余数是25即:6391129-25=258能够被这个数整除258=2*3*43那么这个数可能是:2、3、43、6、86、129又这个数应小于63,经检验,这个数是436、一个小于200的数,它除以11余8,除以13余10,这个数是多少设这个数为X,因为这个数除以11余8,也就是说,X加上3(11-8)就可以整除11了;同理,X除以13余10,也就是说,X加上3(13-10)就可以整除13了因此,(X3)可以整除11和13的最小公倍数143,即这个数为143的倍数再减3,又因为这个数小于200,所以这个数是143*1-3=140提高卷1、自然数nn〉分别除442,297和210得到相同的余数,这个相同的余数是多少这个相同的余数是7方法同基础卷第42、有一个自然数,用它分别去除63,90,130,都有余数,三个余数的和为25,这三个余数中最小的一个是几设这个自然数为m,m去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是m的倍数.可得:(63-a)(90-b)(130-c)=283-(abc)=283-25=258也是m的倍数.又258=2×3×43.则可能是2或3或6或43;abc=25,故a,b,c中至少有一个要大于8;根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.故答案为:1.3、号码分别为101,126,173,193的四个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数。

小学奥数之 同余问题(含详细解析)

小学奥数之 同余问题(含详细解析)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

六年级奥数专题训练-同余问题

六年级奥数专题训练-同余问题

六年级奥数专题训练-同余问题1.若a为自然数,证明10│(a 2005-a1949).2.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.3.求被3除余2,被5除余3,被7除余5的最小三位数.4.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.5.试证不小于5的质数的平方与1的差必能被24整除.参考答案:1.提示:对于任何自然数a,a5与a的个位数字相同.2.提示:有两个数的差能被11整除3.1734.分析这道题肯定不可能通过各数被2n+1除去求余数.那么我们可以考虑从反面入手,假设存在两个相同的余数的话,就会发生矛盾.而中间的推导是步步有根据的,所以发生矛盾的原因是假设不合理.从而说明假设不成立,因此原来的结论是正确的.证明:假设有两个数a、b,(a≠b,设b<a,且1≢a≢n,1≢b≢n),它们的平方a2,b2被2n+1除余数相同.那么,由同余定义得a2-b2≡0(mod(2n+1)).即(a+b)(a-b)≡0(mod(2n+1)),由于2n+1是质数.∴a+b≡0(mod(2n+1))或a-b≡0(mod(2n+1)).由于a+b,a-b均小于2n+1且大于零,可知,a+b与2n+1互质,a-b也与2n+1互质.即a+b与a-b都不能被2n+1整除.产生矛盾,∴原题得证.说明:这里用到一个重要的事实:如果A·B≡0(modp),p是质数,那么A或B 中至少有一个模p为零.p是质数这一条件不能少,否则不能成立。

例如2·3≡0(mod6),但2、3被6除余数不为0。

5.证明:∵质数中仅有一个偶数2,∴不小于5的质数是奇数.又不小于5的自然数按除以6所得的余数可分为6类:6n,6n+1,6n+2,6n+3,6n+4,6n+5,(n是自然数),其中6n,6n+2,6n+4都是偶数,又3│6n+3.∴不小于5的质数只可能是6n+1,6n+5.又自然数除以6余数是5的这类数换一记法是:6n-1,∴(不小于5的质数)2-1=(6n±1)2-1=36n2±12n=12n(3n±1),这里n与(3n±1)奇偶性不同,其中定有一个偶数,∴2│n(3n±1),∴24│12n(3n±1).∴结论成立.说明:按同余类造抽屉是解竞赛题的常用方法.-。

小学奥数同余定理单选题100道及答案

小学奥数同余定理单选题100道及答案

小学奥数同余定理单选题100道及答案1. 下列算式中,余数相同的是()A. 24÷5 35÷6B. 39÷5 27÷4C. 48÷7 45÷6答案:B解析:39÷5 = 7......4,27÷4 = 6......3,余数都是4。

2. 一个数除以8 余5,除以9 余6,这个数最小是()A. 69B. 72C. 77答案:C解析:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数是72 - 3 = 69。

3. 11÷4 = 2......3,如果被除数和除数都扩大10 倍,那么余数是()A. 3B. 30C. 0.3答案:B解析:被除数和除数都扩大10 倍,商不变,余数扩大10 倍,3×10 = 30。

4. 有一个数,除以5 余数是2,除以7 余数是3,这个数最小是()A. 22B. 23C. 27答案:B解析:通过列举,可得23 除以5 余数是2,除以7 余数是3。

5. 47 除以一个数,余数是7,这个数最小是()A. 8B. 9C. 10答案:B解析:除数要大于余数,所以这个数最小是9。

6. 一个数除以6 余4,除以8 余6,这个数最小是()A. 22B. 20C. 26答案:A解析:这个数加上2 就能被 6 和8 整除,6 和8 的最小公倍数是24,所以这个数是24 - 2 = 22。

7. 35÷()= 4......3,括号里应填()A. 8B. 7C. 9答案:A解析:(35 - 3)÷4 = 8。

8. 下列算式中,余数最大的是()A. 38÷5B. 47÷8C. 59÷9答案:C解析:38÷5 = 7......3,47÷8 = 5......7,59÷9 = 6......5,5 < 7 < 9。

六年级奥数同余问题

六年级奥数同余问题

六年级奥数同余问题
同余问题是奥数中常见的一个数论问题。

在六年级的奥数中,同余问题通常涉及到模运算和同余关系。

下面是一个简单的例子:
例题:求满足以下条件的最小正整数x:x除以7的余数为3,x除以5的余数为2。

解题思路:
根据题目的条件,我们可以设x = 7a + 3,又因为x除以5的余数为2,我们可以得到新的条件x ≡ 2 (mod 5)。

将前一个条件代入后一个条件得到7a + 3 ≡ 2 (mod 5)。

进一步化简得到2a ≡ 4 (mod 5),然后求解a的值,最后代回原方程解出x。

以上是一个简单的同余问题的求解过程,实际的同余问题可能会更加复杂,需要运用更多的数论知识和技巧来解决。

六年级奥数专题训练-同余问题

六年级奥数专题训练-同余问题

同余问题1、求437×309×1993被7除的余数。

2、求被3除余2,被5除余3,被7除余5的最小三位数.3、分别求满足下列条件的最小自然数(1)用3除余1,用5除余1,用7除余1。

(2)用3除余2,用5除余1,用7除余1。

(3)用3除余1,用5除余2,用7除余2。

4、有一个整数,除300、262、205得到相同的余数.这个整数是几?5、今天是星期四,过14389天后是星期几?7千克大米,用每袋50千克的袋子装,最后余下多少千克?6.试一试:粮库有717、数2001,2232除以整数n,得到相同的余数,而且这个余数是合数,求n.8、用一个自然数去除715和903所得余数相同,且商相差4.求这个数.9、若2836,4582,5146,6522四个自然数被一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?10、有三个不同的三位数,它们分别除以 a ,得到的余数相同而且是最大二位偶数,当a为两位数时,这三个数最小的和是多少?11、某年级有将近400名学生。

有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?12、希望小学六年级和五年级去春游,每辆车可乘36人.六年级先坐满几车,剩下的16人与五年级坐满一车,五年级又坐满若干车.到达目的地后,每一个五年级的学生和每一个六年级学生合影一张,每个胶卷可拍36张.全部学生照相完毕,最后一个胶卷还剩几张未拍?13、甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组,并使每组的人数尽可能多,以便乘车参观游览.已知甲、乙、丙三个学校分组后,所剩的人数相同,问丁校分组后还剩下几个人?14、试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球,每只盒子里装的小球同样多.真巧!剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个?15、计算机录入员平均每分钟可以输入72个汉字,输入一篇有X679Y个汉字的文章所用的分钟数恰好是整数,求五位数X679Y。

六年级同余问题练习题

六年级同余问题练习题

六年级同余问题练习题在六年级数学学习中,同余问题是一个重要的概念。

同余可以理解为两个数除以某个数得到的余数相等,即它们在模这个数下是等价的。

同余问题的练习可以帮助学生巩固对同余概念的理解和运用。

本文将为大家提供一些六年级同余问题的练习题。

1. 小明班上有45个学生,他们每次排队时,按照三个一组排队。

请问,排队后剩余几个学生不够组成一组?解:我们可以将小明班上的学生数45除以每组学生数3,得到除数为15,余数为0。

所以小明班排队后不剩余学生。

2. 有一个机器人在一个方格上移动,每次只能向右或向上移动一个格子。

如果机器人从左下角的格子开始移动,向右移动6个格子,向上移动8个格子,最后能到达的格子是哪个?解:我们可以将机器人向右移动6个格子看作是对6取余,向上移动8个格子看作是对8取余。

左下角的格子为(0,0),那么向右移动6个格子就是(0+6,0)=(6,0),向上移动8个格子就是(6,0+8)=(6,8)。

所以机器人最后能到达的格子是(6,8)。

3. 有一串数字:435289143764。

请问这串数字中能被3整除的数字有哪些?解:我们可以将这串数字中的每个数字相加,即4+3+5+2+8+9+1+4+3+7+6+4=56。

因为56除以3的余数为2,所以这串数字中没有能被3整除的数字。

4. 某班有32个学生,老师要将他们分成若干个小组。

要求每个小组都有7个学生,并且每个小组的学生之间不能互相交流。

请问老师最少能分成几个小组?解:我们可以将32除以7,得到商为4,余数为4。

所以老师最少能分成4个小组。

其中3个小组有7个学生,1个小组有4个学生。

5. 有一串数字:235892651971。

请问这串数字中能被9整除的数字有哪些?解:我们可以将这串数字中的每个数字相加,即2+3+5+8+9+2+6+5+1+9+7+1=58。

因为58除以9的余数为4,所以这串数字中没有能被9整除的数字。

通过以上练习题,我们可以加深对六年级同余问题的理解和应用。

(完整版)小学奥数同余问题

(完整版)小学奥数同余问题

同余问题(一)在平时解题中,我们经常会遇到把着眼点放在余数上的问题。

如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。

很明显这个问题的着眼点是放在余数上了。

1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。

记作:(mod7)“”读作同余。

一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。

)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数,同余还有一个非常有趣的现象:如果那么(的差一定能被k整除)这是为什么呢?k也就是的公约数,所以有下面我们应用同余的这些性质解题。

【例题分析】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?分析与解答:假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。

所以a最大是31。

例2. 除以19,余数是几?分析与解答:如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。

所以此题应用了同余的可乘性,同余的传递性。

例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几?分析与解答:这个数除以13,商是有规律的。

商是170940六个数循环,那么,即,我们从左向右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。

余数是几呢?则所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。

六年级奥数:第38讲 应用同余问题

六年级奥数:第38讲 应用同余问题

第38講應用同餘問題一、知識要點同餘這個概念最初是由偉大的德國數學家高斯發現的。

同餘的定義是這樣的:兩個整數a,b,如果它們除以同一自然數m所得的餘數想同,則稱a,b 對於模m同餘。

記作:a≡b(modm)。

讀做:a同餘於b模m。

比如,12除以5,47除以5,它們有相同的餘數2,這時我們就說,對於除數5,12和47同餘,記做12≡47(mod5)。

同餘的性質比較多,主要有以下一些:性質(1):對於同一個除數,兩個數之和(或差)與它們的餘數之和(或差)同餘。

比如:32除以5餘數是2,19除以5餘數是4,兩個餘數的和是2+4=6。

“32+19”除以5的餘數就恰好等於它們的餘數和6除以5的餘數。

也就是說,對於除數5,“32+19”與它們的餘數和“2+4”同餘,用符號表示就是:32≡2(mod5),19≡4(mod5),32+19≡2+4≡1(mod5)性質(2):對於同一個除數,兩個數的乘積與它們餘數的乘積同餘。

性質(3):對於同一個除數,如果有兩個整數同餘,那麼它們的差就一定能被這個除數整除。

性質(4):對於同一個除數,如果兩個整數同餘,那麼它們的乘方仍然同餘。

應用同餘性質幾萼體的關鍵是要在正確理解的基礎上靈活運用同餘性質。

把求一個較大的數除以某數的餘數問題轉化為求一個較小的數除以這個數的餘數,使複雜的題變簡單,使困難的題變容易。

二、精講精練【例題1】求1992×59除以7的餘數。

應用同餘性質(2)可將1992×59轉化為求1992除以7和59除以7的餘數的乘積,使計算簡化。

1992除以7餘4,59除以7餘3。

根據同餘性質,“4×3”除以7的餘數與“1992×59”除以7的餘數應該是相同的,通過求“4×3”除以7的餘數就可知道1992×59除以7的餘數了。

因為1992×59≡4×3≡5(mod 7)所以1992×59除以7的餘數是5。

小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  同余问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  同余问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

六年级奥数习题精选——同余

六年级奥数习题精选——同余

六年级奥数习题精选——同余六年级奥数习题精选——同余[学法点拨]同余,从字面上理解,就是余数相同.解答好此类题的前提是要很好地理解和掌握整除、公约数的一些知识,这样运用起来才能得心应手.1.求2008除以7的余数.(你们知道2008年是什么日子吗?)解:同学们也许会问,同余、同余,怎么求一个数除以另一个数的余数呢,它们两个数相除余数只有一个,谈不上"相同",你不要着急.因为只有你明白了这道题的来龙去脉,那么后面的题你也就会迎刃而解了.可以先去掉7的倍数1400余608,再去掉560还余下48,再去掉42最后余下6.这个过程可简单地记成:2008→608→48→6.从这几个数我们可以看出,它们除以7都余6.答:2008除以7的余数是6.因为2008、608、48、6除以7的余数相同,所以2008-608、608-48、2008-6、608-6这几个算式的结果能被7整除.由此不难得出这样十分有用的结论:如果若干的数被同一个数除余数相同,那么这若干个数两两之差(大减小)必能被这个数整除.1.试一试:求2008除以13的余数2.有一个大于1的整数,它除1000,2001,967得到相同的余数(不为0),那么这个整数是多少?解:由上面的结论,所求整数应能整除967,1000,2001的两两之差,即2001-1000=1001=7×11×131000-967=33=3×112001-967=1034=2×11×47这个整数是这三个差的公约数11.答:这个整数是11.你们想一想,只求出两个差行不行呢?2.试一试:有一个整数,用它去除300、262、205,得到的余数相同.这个数是多少?3. 数2001,2232除以整数n,得到相同的余数,而且这个余数是合数,求n.解:根据余数相同,所求的数应能整除2001与2232的差,即2232-2001=231=3×7×11由此我们知道n可能是3或7或11,究竟哪个符全合条件呢,这我们得认真对待,千万不能手懒.只要试一试即可,得7和11、21、33、77都符合条件.答:n是7或11或21或33或77.3.试一试:有141、206、271分别除以m,余数相同并且都是奇数.m最大是几?4.用一个自然数去除715和903所得余数相同,且商相差4.求这个数.解:根据两个数除以同一个数余数相同的特点,我们可以得到903 -715的差能被这个数整除,又因为所得的商相差4,也就是903 -715的差除以这个数应该得4,要求这个数,即可用(903-715)÷4=47,即所求的数为47.答:这个数是47.此类题可以归结为:甲乙两个数除以一个相同的数,余数相同,且商相差n(n>1),则这个相同的数为(甲-乙)÷n.4.试一试:某个大于1的整数,除1975,2008所得的余数相同,且商相差11.求这个数.5.若2836,4582,5146,6522四个自然数被一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?解:根据若干个自然数除以同一个自然数所得余数相同,那么它们两两的差定能被这个自然数整除.于是得:4582-2836=17465164-4582=5826522-5164=1358因为(1746,582,1358)=194,所以除数是194的大于10的约数.符合条件的只有97和194.如果除数=194,5164÷194=26……120(此处可以用原题中四个自然数中的任意一个都可,为什么?)余数不是两位数,与题意不符.如果除数是97,经检验,余数都是23,除数+余数=97+23=120.答:除数与余数的和是120.5.试一试:有一个整数,除1200,1314,1048所得的余数相同且大于5.问:这个数与余数的和是多少?6.有三个不同的三位数,它们分别除以a ,得到的余数相同而且是最大二位偶数,当a 为两位数时,这三个数最小的和是多少?解:这道题看似很难,但我们不妨换个角度去考虑.我们先从相同的余数入手,因为余数是最大的两位偶数,我们马上意识到余数是98,既然余数为98,a只能得99.这样此题便可很轻松的完成.最小的三位数是1×99+98=197,另外的两个三位数分别为296和395.(仔细看这三个数,有什么规律吗?对!相邻的两个数相差99)于是得到此题结果为197+396+395=1188.答:三个数的最小和是1188.如果给的不是三个三位数而是其它的任意情况,同样可以采取这种方法去解题.6.试一试:已知四个四位数分别去除以y,所得的余数相同并且是三位奇数,当y最小时这四个数的和最大是多少?7.将一批货物共375千克装入纸箱,每箱装10千克,最后余多少千克?解:此题我们不可能将求出来,然后去除以10,求出余数.但我们可以借助同余的办法来求,我们首先看下面一组说明:3 除以10的余数是3;32除以10的余数是9;33除以10的余数是7;34除以10的余数是1;35除以10的余数是3;36除以10的余数是9;37除以10的余数是7;38除以10的余数是1;……这就说明每隔4个数除以10的余数就相同.又因为75÷4=18 (3)即375除以10的余数与33除以10所得余数相同,得7.答:每箱装10千克最后余下7千克.7.试一试:粮库有771千克大米,用每袋50千克的袋子装,最后余下多少千克?8.在1~500的自然数中,除以16,40余数(0除外)相同的数有多少个?解:因为16与40的最小公倍数是80,1~500的自然数除以16与40相同的余数情况有:1,2,3,4……15,共15种,也就是在连续的80个数中有15个数符合条件,500个自然中有的个数为:500÷80=6……20,在余下的20个数中有15个余数相同.这证明有7个15,所以在1~500中除以16与40余数相同的数有15×7=105个.列式:[16,40]=80500÷80=6 (20)(6+1)×15=105答:在1~500的自然数中,除以16,40余数相同的数共有105个.8.试一试:在小于1000的自然数中,除以15及33而余数(0除外)相同的数有多少个?9.希望小学六年级和五年级去春游,每辆车可乘36人.六年级先坐满几车,剩下的16人与五年级坐满一车,五年级又坐满若干车.到达目的地后,每一个五年级的学生和每一个六年级学生合影一张,每个胶卷可拍36张.全部学生照相完毕,最后一个胶卷还剩几张未拍?解:解答此题的关键是求出最后一个胶卷归了几张,即以全影张数为被除数,36为除数,求余数.假如将五、六年级合乘一车的16名学生和20(36-16=20)人去掉,那么其余五、六年级的学生合影正好可以用掉整数卷胶卷.这样一来我们只考虑五年级那16人与六年级那么20人即可.因为每人都要与不同年级的人合影,所以这16人与20人要合影320(根据乘法原理16×20=320)张.所有人都拍完后的总张数除以36所得的余数与320除以36余数相同,为32,所以最后一个胶卷照了32张.于是有36-32=4张,即最后一个胶卷还剩4张.列式:36-16=20(人)16×20=320(张)320÷36=8 (32)36 - 32 = 4(张)答:最后一个胶卷还剩4张.9.试一试:甲、乙两个旅游团乘车参观,每辆车可乘35人,两团成员坐满若干辆车后,甲团余下的15人与乙团余下的成员正好又坐满一辆车.为了纪念这次参观,甲乙两团的每个成员都与不同团的每人合拍一张照片留念.如果每个胶卷可拍35张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?10.甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组,并使每组的人数尽可能多,以便乘车参观游览.已知甲、乙、丙三个学校分组后,所剩的人数相同,问丁校分组后还剩下几个人?分析:从表面上看,这道题目问的是"剩余"人数,但我们知道"剩余"是因为不能被整除而产生的,所以,解答这道题目的关键是求"每组有几人"(即求除数)这个除数在何处找呢?其实呀,它远在天边,近在眼前,这个除数就藏在它的"差"里.这是为什么呢?我们可以这样想:既然甲、乙、丙三个学校人数被某数除的余数相同,那么这三个数的两两之差一定能被这个数整除(因为它们相减时,余数恰好相互"抵消"了).懂得了以上这个道理之后,再来解答这个问题就不困难了.甲、乙、丙三校人数的差分别是:93-69=2485-69=1693-85=8不难看出,它们的最大公约数是8.这也正是我们所要寻找的"除数".验证如下:69÷8=8……5(分成8组,剩下5人)85÷8=10……5(分成10组,剩下5人)93÷8=11……5(分成11组,乘下5人)最后来推算丁校分组情况:97÷8=12 (1)答:丁校分组后剩下1人.10.试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球,每只盒子里装的小球同样多.真巧!剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个?[方法归纳]如果若干个自然数除以同一个自然数,余数相同,那么这些自然数两两之差必能被这个自然数整除.参考答案1. 6.2. 1或19.3. 65.4. 3.仿例4.5. 60.提示:这个整数为38,余数为22.6. 39368.提示:y为102,余数为101.这四个数分别是9995,9893,9791,9689.7. 43千克.提示:7的1次方开始除以50的余数分别是7,49,43,1,7,49,43,……8. 93.仿例89. 15张.仿例910. 19个。

六年级奥数同余问题附答案.docx

六年级奥数同余问题附答案.docx

六年级奥数同余问题附答案1、求 437×309×1993 被 7 除的余数。

思路分析:如果将 437×309×1993 算出以后,再除以 7,从而引得到,即437×309×1993=269120769,此数被7 除的余数1。

但是能否找更的法呢 ?437≡3(mod7)309≡1(mod7)由“同余的可乘性”知:437×309≡3×1(mod7)≡3(mod7)又因 1993≡5(mod7)所以: 437×309×1993≡3×5(mod7)≡15(mod7)≡1(mod7)即: 437×309×1993 被 7 除余 1。

2、70 个数排成一行,除了两的两个数以外,每个数的三倍恰好等于它两两个数的和,个行最左的几个数是的:0,1,3,8,21,⋯⋯,个行数最右的一个数被 6 除的余数是几 ?思路分析:如果将 70 个数一一列出,得到第 70 个数后,再用它去除以 6 得余数,是能的,但算量太大。

即然 70 个数中:中的一个数的 3 倍是它两的数的和,那么它被 6除以后的余数是否有似的律呢 ?0,1,3,8,21,55,144,⋯⋯被 6 除的余数依次是0,1,3,2,3,1,0,⋯⋯果余数有似的律,察,能得到:0,1,3,2,3,1,0,5,3,4,3,5,0,1,3,2,3,⋯⋯能看出余数前12 个数一段,将重复出。

70÷2=5⋯⋯ 10,第六段的第十个数 4,便是原来数中第 70 个数被 6 除的余数。

思路分析:我被直接用除法算式,果如何。

六年级上册奥数试题-第3讲:带余除法和同余_全国通用(含答案)

六年级上册奥数试题-第3讲:带余除法和同余_全国通用(含答案)

第3讲带余除法和同余知识网络一般地,整数a被自然数b除,必定有惟一的整数q和惟一的整数r,使得a=b×q+r其中r<b,当r=0时,就是整除的形式。

同样,可以把上式转化为a-r=b×q这样也可以看成(a-r)是b的倍数。

同样,就可以引出同余的定义。

如果a、b为整数,n为正整数,a、b被n除所得的余数相同,就称a、b对模n同余,并用符号a≡b mod(n)来表示。

如果a、b对模n同余,那么定有a-b是n的倍数。

重点·难点本讲的重点难点在于对同余的应用,这就要首先掌握同余的几个基本性质:对a、b、c、d均为整数,m、n为正整数,有(1)a≡a mod(n)。

(2)如果a≡b mod(n),那么b≡a mod(n)。

(3)如果a≡b mod(n)及b≡c mod(n),那么a≡c mod(n)。

(4)如果a≡b mod(n),c≡d mod(n),那么a+c≡(b+d) mod(n)。

(5)如果a≡b mod(n),c≡d mod(n),那么a×c≡b×d mod(n)。

(6)如果a≡b mod(n),那么。

学法指导带余除法的题一般数字较大、直接计算有难度,如何化繁为简就成为关键。

一般地,只要对题目有深入的分析,抓住隐藏在其中的规律,就能顺利解出题来。

、经典例题[例1]我国古代数学名著《孙子算经》有这样一道有关自然数的题目:今有物不知其数,三三数之剩2,五五数之剩3,七七数之剩2。

问物几何?翻译成现代文就是:一个数被3除余2,被5除余3,被7除余2。

求这个数。

思路剖析设这个数为a,则有a≡2 mod(3),a≡3 mod(5),a≡2 mod(7)可以取易得,是整数易得是整数易得是整数因此解答由上述分析因此这个数最小值是23。

[例2]菲波那契数列定义如下:前两个数都是1,从第三个数起,每个数是前面两个数的和。

于是其中前面几个数是1,1,3,5,8,13,21,34,55…(1)求其中第2002个数被4除的余数。

六年级奥数习题精选——同余

六年级奥数习题精选——同余

六年级奥数习题精选——同余[学法点拨]同余,从字面上理解,就是余数相同.解答好此类题的前提是要很好地理解和掌握整除、公约数的一些知识,这样运用起来才能得心应手.1.求2008除以7的余数.(你们知道2008年是什么日子吗?)解:同学们也许会问,同余、同余,怎么求一个数除以另一个数的余数呢,它们两个数相除余数只有一个,谈不上"相同",你不要着急.因为只有你明白了这道题的来龙去脉,那么后面的题你也就会迎刃而解了.可以先去掉7的倍数1400余608,再去掉560还余下48,再去掉42最后余下6.这个过程可简单地记成:2008→608→48→6.从这几个数我们可以看出,它们除以7都余6.答:2008除以7的余数是6.因为2008、608、48、6除以7的余数相同,所以2008-608、608-48、2008-6、608-6这几个算式的结果能被7整除.由此不难得出这样十分有用的结论:如果若干的数被同一个数除余数相同,那么这若干个数两两之差(大减小)必能被这个数整除.1.试一试:求2008除以13的余数2.有一个大于1的整数,它除1000,2001,967得到相同的余数(不为0),那么这个整数是多少?解:由上面的结论,所求整数应能整除967,1000,2001的两两之差,即2001-1000=1001=7×11×131000-967=33=3×112001-967=1034=2×11×47这个整数是这三个差的公约数11.答:这个整数是11.你们想一想,只求出两个差行不行呢?2.试一试:有一个整数,用它去除300、262、205,得到的余数相同.这个数是多少?3. 数2001,2232除以整数n,得到相同的余数,而且这个余数是合数,求n.解:根据余数相同,所求的数应能整除2001与2232的差,即2232-2001=231=3×7×11由此我们知道n可能是3或7或11,究竟哪个符全合条件呢,这我们得认真对待,千万不能手懒.只要试一试即可,得7和11、21、33、77都符合条件.答:n是7或11或21或33或77.3.试一试:有141、206、271分别除以m,余数相同并且都是奇数.m最大是几?4.用一个自然数去除715和903所得余数相同,且商相差4.求这个数.解:根据两个数除以同一个数余数相同的特点,我们可以得到903 -715的差能被这个数整除,又因为所得的商相差4,也就是903 -715的差除以这个数应该得4,要求这个数,即可用(903-715)÷4=47,即所求的数为47.答:这个数是47.此类题可以归结为:甲乙两个数除以一个相同的数,余数相同,且商相差n(n>1),则这个相同的数为(甲-乙)÷n.4.试一试:某个大于1的整数,除1975,2008所得的余数相同,且商相差11.求这个数.5.若2836,4582,5146,6522四个自然数被一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?解:根据若干个自然数除以同一个自然数所得余数相同,那么它们两两的差定能被这个自然数整除.于是得:4582-2836=17465164-4582=5826522-5164=1358因为(1746,582,1358)=194,所以除数是194的大于10的约数.符合条件的只有97和194.如果除数=194,5164÷194=26……120(此处可以用原题中四个自然数中的任意一个都可,为什么?)余数不是两位数,与题意不符.如果除数是97,经检验,余数都是23,除数+余数=97+23=120.答:除数与余数的和是120.5.试一试:有一个整数,除1200,1314,1048所得的余数相同且大于5.问:这个数与余数的和是多少?6.有三个不同的三位数,它们分别除以a ,得到的余数相同而且是最大二位偶数,当a 为两位数时,这三个数最小的和是多少?解:这道题看似很难,但我们不妨换个角度去考虑.我们先从相同的余数入手,因为余数是最大的两位偶数,我们马上意识到余数是98,既然余数为98,a只能得99.这样此题便可很轻松的完成.最小的三位数是1×99+98=197,另外的两个三位数分别为296和395.(仔细看这三个数,有什么规律吗?对!相邻的两个数相差99)于是得到此题结果为197+396+395=1188.答:三个数的最小和是1188.如果给的不是三个三位数而是其它的任意情况,同样可以采取这种方法去解题.6.试一试:已知四个四位数分别去除以y,所得的余数相同并且是三位奇数,当y最小时这四个数的和最大是多少?7.将一批货物共375千克装入纸箱,每箱装10千克,最后余多少千克?解:此题我们不可能将求出来,然后去除以10,求出余数.但我们可以借助同余的办法来求,我们首先看下面一组说明:3 除以10的余数是3;32除以10的余数是9;33除以10的余数是7;34除以10的余数是1;35除以10的余数是3;36除以10的余数是9;37除以10的余数是7;38除以10的余数是1;……这就说明每隔4个数除以10的余数就相同.又因为75÷4=18……3即375除以10的余数与33除以10所得余数相同,得7.答:每箱装10千克最后余下7千克.7.试一试:粮库有771千克大米,用每袋50千克的袋子装,最后余下多少千克?8.在1~500的自然数中,除以16,40余数(0除外)相同的数有多少个?解:因为16与40的最小公倍数是80,1~500的自然数除以16与40相同的余数情况有:1,2,3,4……15,共15种,也就是在连续的80个数中有15个数符合条件,500个自然中有的个数为:500÷80=6……20,在余下的20个数中有15个余数相同.这证明有7个15,所以在1~500中除以16与40余数相同的数有15×7=105个.列式:[16,40]=80500÷80=6 (20)(6+1)×15=105答:在1~500的自然数中,除以16,40余数相同的数共有105个.8.试一试:在小于1000的自然数中,除以15及33而余数(0除外)相同的数有多少个?9.希望小学六年级和五年级去春游,每辆车可乘36人.六年级先坐满几车,剩下的16人与五年级坐满一车,五年级又坐满若干车.到达目的地后,每一个五年级的学生和每一个六年级学生合影一张,每个胶卷可拍36张.全部学生照相完毕,最后一个胶卷还剩几张未拍?解:解答此题的关键是求出最后一个胶卷归了几张,即以全影张数为被除数,36为除数,求余数.假如将五、六年级合乘一车的16名学生和20(36-16=20)人去掉,那么其余五、六年级的学生合影正好可以用掉整数卷胶卷.这样一来我们只考虑五年级那16人与六年级那么20人即可.因为每人都要与不同年级的人合影,所以这16人与20人要合影320(根据乘法原理16×20=320)张.所有人都拍完后的总张数除以36所得的余数与320除以36余数相同,为32,所以最后一个胶卷照了32张.于是有36-32=4张,即最后一个胶卷还剩4张.列式:36-16=20(人)16×20=320(张)320÷36=8 (32)36 - 32 = 4(张)答:最后一个胶卷还剩4张.9.试一试:甲、乙两个旅游团乘车参观,每辆车可乘35人,两团成员坐满若干辆车后,甲团余下的15人与乙团余下的成员正好又坐满一辆车.为了纪念这次参观,甲乙两团的每个成员都与不同团的每人合拍一张照片留念.如果每个胶卷可拍35张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?10.甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组,并使每组的人数尽可能多,以便乘车参观游览.已知甲、乙、丙三个学校分组后,所剩的人数相同,问丁校分组后还剩下几个人?分析:从表面上看,这道题目问的是"剩余"人数,但我们知道"剩余"是因为不能被整除而产生的,所以,解答这道题目的关键是求"每组有几人"(即求除数)这个除数在何处找呢?其实呀,它远在天边,近在眼前,这个除数就藏在它的"差"里.这是为什么呢?我们可以这样想:既然甲、乙、丙三个学校人数被某数除的余数相同,那么这三个数的两两之差一定能被这个数整除(因为它们相减时,余数恰好相互"抵消"了).懂得了以上这个道理之后,再来解答这个问题就不困难了.甲、乙、丙三校人数的差分别是:93-69=2485-69=1693-85=8不难看出,它们的最大公约数是8.这也正是我们所要寻找的"除数".验证如下:69÷8=8……5(分成8组,剩下5人)85÷8=10……5(分成10组,剩下5人)93÷8=11……5(分成11组,乘下5人)最后来推算丁校分组情况:97÷8=12 (1)答:丁校分组后剩下1人.10.试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球,每只盒子里装的小球同样多.真巧!剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个?[方法归纳]如果若干个自然数除以同一个自然数,余数相同,那么这些自然数两两之差必能被这个自然数整除.参考答案1. 6.2. 1或19.3. 65.4. 3.仿例4.5. 60.提示:这个整数为38,余数为22.6. 39368.提示:y为102,余数为101.这四个数分别是9995,9893,9791,9689.7. 43千克.提示:7的1次方开始除以50的余数分别是7,49,43,1,7,49,43,……8. 93.仿例89. 15张.仿例910. 19个。

六年级奥数习题精选——余数与同余

六年级奥数习题精选——余数与同余

六年级奥数习题精选——余数与同余六年级奥数习题精选——余数与同余216 两数相除,商是499,余数是3,被除数最小是几?217 两个数被13除分别余7和10,这两个数的和被 13除余几?218 用108除一个数余100,如果改用36除这个数,那么余数是几?219 1111除以一个两位数,余数是66,求这个两位数。

220 用1—9这9个数码连续不断地排列成一个100位数123456789123456789…这个100位数除以9余几?221 把自然数从小到大依次无间隔地写成一个数。

问:从第1个数码到第300个数码所构成的数除以9余几?222 求这样的三位数,它除以9所得的余数等于组成它的三个数字的平方和。

223 求下列各数除以11的余数:224 将自然数1—40从左至右依次排列成一个71位数,求这个数除以11的余数。

225 已知大小两数之和是789,大数去掉个位数字后等于小数。

求大数。

226 分别求满足下列条件的最小自然数:(1)用3除余2,用5除余1,用7除余1;(2)用3除余1,用5除余2,用7除余2;(3)用3除余2,用7除余4,用11除余1。

227 一个自然数在1000到1200之间,且被3除余1,被5除余2,被7除余3。

求这个自然数。

228 A,B,C三人绕校园一周的时间分别为6分、7分、11分。

由开始点A出发后,B 比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C初次同时通过开始出发的地点是在A出发后多少分钟?229 有一类自然数,其中每一个数与2的和都是5的倍数,与5的差都是6的倍数。

问:这类自然数中最小的是几?230 有一类自然数,其中每一个数与5的和都是9的倍数,与5的差都是7的倍数。

请按从小到大的顺序写出这类自然数中的前三个。

231 在一个四位数除以19的竖式中,每商一次后的余数都是8。

满足条件的四位数有哪些?232 一个自然数,减去它除以7所得余数的5倍,结果是100,求原来的自然数。

六年级奥数之应用同余问题

六年级奥数之应用同余问题

应用同余问题1.求1992×59除以7的余数。

2.求4217×364除以6的余数。

3.求1339655×12除以13的余数。

4.求879×4376×5283除以11的余数。

5.已知2001年的国庆节是星期一,求2010年的国庆节是星期几?6.已知2002年元旦是星期二。

求2008年元旦是星期几?7.已知2002年的“七月一日”是星期一。

求2015年的“十月一日”是星期几?8.今天是星期四,再过365的15次方是星期几?9.求2001的2003次方除以13的余数。

10.求12的200次方除以13的余数。

11.求3的92次方除以21余几。

12.9个小朋友坐成一圈,要把35的7次方粒瓜子平均分给他们,最后剩下几粒?13.自然数16520,14903,14177除以m的余数相同,m最大是多少?14.若2836、4582、5164、6522四个整数都被同一个两位数相除,所得的余数相同。

除数是多少?15.一个整数除226、192、141都得到相同的余数,且余数不为0,这个整数是几?16.当1991和1769除以某一个自然数m时,余数分别为2和1,那么m最小是多少?17.某数用6除余3,用7除余5,用8除余1,这个数最小是几?18.某数除以7余1,除以5余1,除以12余9。

这个数最小是几?19.某数除以7余6,除以5余1,除以11余3,求此数最小值。

20.在一个圆圈上有几十个孔(如图38-1),小明像玩跳棋那样从A孔出发沿逆时针方向每隔几个孔跳一步,希望一圈以后能跑回A孔,他先试着每隔2孔跳一步,也只能跳到B孔。

最后他每隔6孔跳一步,正好跳回A孔。

问:这个圆圈上共有多少个孔?。

六年级奥数拉分提升-第28讲同余(一)

六年级奥数拉分提升-第28讲同余(一)

温故而知新
1.“带鱼”除法
a÷b=q…r
2.“鲨鱼”除法(凑整除)
3.“三文鱼”性质
和的余数等于余数和
差的余数等于余数差
积的余数等于余数积
同余式:
若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用“同余式”表示为a≡b(mod m) 意味着(我们假设a≧b)a-b是m的倍数,即m︱(a-b) 。

算式2007200720072007
1232006
++++结果的个位数字是多少?
89
143除以7的余数是多少?
(2006年第十一届“华罗庚金杯赛”初赛)在下面的算式中,汉字“第、十、一、届、华、杯、赛”,代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立。

则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于。

将从1开始的到103的连续奇数依次写成一个多位数:a=13579111315171921……9799101103。

则数a共有_____位,数a除以9的余数是___。

同余(一)。

六年级上册奥数试题-第3讲 带余除法和同余 全国通用(含答案)

六年级上册奥数试题-第3讲  带余除法和同余   全国通用(含答案)

第3讲带余除法和同余知识网络一般地,整数a被自然数b除,必定有惟一的整数q和惟一的整数r,使得a=b×q+r其中r<b,当r=0时,就是整除的形式。

同样,可以把上式转化为a-r=b×q这样也可以看成(a-r)是b的倍数。

同样,就可以引出同余的定义。

如果a、b为整数,n为正整数,a、b被n除所得的余数相同,就称a、b对模n同余,并用符号a≡b mod(n)来表示。

如果a、b对模n同余,那么定有a-b是n的倍数。

重点·难点本讲的重点难点在于对同余的应用,这就要首先掌握同余的几个基本性质:对a、b、c、d均为整数,m、n为正整数,有(1)a≡a mod(n)。

(2)如果a≡b mod(n),那么b≡a mod(n)。

(3)如果a≡b mod(n)及b≡c mod(n),那么a≡c mod(n)。

(4)如果a≡b mod(n),c≡d mod(n),那么a+c≡(b+d) mod(n)。

(5)如果a≡b mod(n),c≡d mod(n),那么a×c≡b×d mod(n)。

(6)如果a≡b mod(n),那么。

学法指导带余除法的题一般数字较大、直接计算有难度,如何化繁为简就成为关键。

一般地,只要对题目有深入的分析,抓住隐藏在其中的规律,就能顺利解出题来。

、经典例题[例1]我国古代数学名著《孙子算经》有这样一道有关自然数的题目:今有物不知其数,三三数之剩2,五五数之剩3,七七数之剩2。

问物几何?翻译成现代文就是:一个数被3除余2,被5除余3,被7除余2。

求这个数。

思路剖析设这个数为a,则有a≡2 mod(3),a≡3 mod(5),a≡2 mod(7)可以取易得,是整数易得是整数易得是整数因此解答由上述分析因此这个数最小值是23。

[例2]菲波那契数列定义如下:前两个数都是1,从第三个数起,每个数是前面两个数的和。

于是其中前面几个数是1,1,3,5,8,13,21,34,55…(1)求其中第2002个数被4除的余数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3、一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为多少?
例4、在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?

例5、一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数.
同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:
若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除
用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)
三、中国剩余定理
1.中国古代趣题
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。
例如对上面的问题加上限制条件“满足上面条件最小的自然数”,
那么我们可以计算 得到所求
如果加上限制条件“满足上面条件最小的三位自然数”,
我们只要对最小的23加上[3,5,7]即可,即23+105=128。
一、带余除法的定义和性质
例1、两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.
例5、设 的各位数字之和为 , 的各位数字之和为 , 的各位数字之和为 , 的各位数字之和为 ,那么 ?
四、中国剩余定理
例1、一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.
例2、一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少?
5、 的末三位数是多少?
6、有一个数,除以3余2,除以4余1,问这个数除以12余几?
课后反击
1、一个两位数除310,余数是37,求这样的两位数。
类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。
最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:
,其中k是从1开始的自然数。
也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。
例2、 被 除所得的余数是多少?
例3、 除以41的余数是多少?
例4、求所有的质数P,使得 与 也是质数.
例5、甲、乙、丙三数分别为603,939,393.某数 除甲数所得余数是 除乙数所得余数的2倍, 除乙数所得余数是 除丙数所得余数的2倍.求 等于多少?
三、余数综合应用
例1、设 是质数,证明: , ,…, 被 除所得的余数各不相同.
二、三大余数定理:
1.余数的加法定理
a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
2.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
3.同余定理
若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
P(Practice-Oriented)——实战演练
课堂狙击
1、有一个整数,除39,51,147所得的余数都是3,求这个数.
2、求 的最后两位数.
3、试求不大于100,且使 能被11整除的所有自然数n的和.
4、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位12345678910111213 20072008,试求这个多位数除以9的余数.
今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?
题目中我们可以知道,一个自然数分别除以3,5,7后,到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
先由 ,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数 是否可以,很显然70除以3余1
例2、从1,2,3,……,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少?
例3、已知n是正整数,规定 ,令 ,则整数m除以2008的余数为多少
例4、有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。
学科教师辅导讲义
学员编号:
年级:六年级
课时数:3
学员姓名:
辅导科目:奥数
学科教师:
授课主题
第27讲——同余法解题
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
授课日期及时段
T(Textbook-Based)——同步课堂
一、带余除法的定义及性质
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,
0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:
(1)当 时:我们称a可以被b整除,q称为a除以b的商或完全商
(2)当 时:我们称a不可以被b整除,q称为a除以b的商或不完全商
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
2.核心思想和方法
对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:
例2、用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?
例3、一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.
二、三大余数定理的应用
例1、一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和.那么这样的三位数中最大数是多少,最小数是多少?
相关文档
最新文档