步进电机工作原理、驱动控制系统与选型

合集下载

步进电机选型手册

步进电机选型手册

负载稳定性:考虑负载的稳定性对电机性能的影响
运动特性
步进电机的精度与步距角成正比
步进电机的转速与脉冲频率成正比
步进电机的转矩与电流成正比
步进电机的响应速度与驱动电路有关
环境条件
温度:需要考虑电机的工作温度范围,以及环境温度对电机性能的影响
湿度:需要考虑电机的工作湿度范围,以及环境湿度对电机性能的影响
步进电机的特点:精确定位、易于控制、响应速度快
步进电机的应用:广泛应用于自动化设备、机器人、数控机床等领域
步进电机的分类
按照控制方式分类:开环控制、闭环控制、半闭环控制
按照驱动方式分类:直流驱动、交流驱动、混合驱动
按照结构分类:永磁式、混合式、感应式
按照步距角分类:整步、半步、微步、超微步
步进电机的性能参数
感谢您的观看
汇报人:
噪音:步进电机的噪音越小,工作环境越安静
控制方式:选择合适的控制方式,如开环控制、闭环控制等
驱动器:选择合适的驱动器,如直流驱动器、交流驱动器等
步进电机品牌与型号推荐
国际品牌推荐
德国西门子:SINAMICS系列步进电机,性能稳定,质量可靠
美国罗克韦尔:PowerFlex系列步进电机,性能优异,价格适中
步距角:电机每转一圈的步数
效率:电机输出的能量与输入的能量的比值
响应时间:电机从静止到启动的时间
转速:电机每分钟的转数
精度:电机定位的精确度
扭矩:电机输出的力矩
步进电机选型要点
负载特性
负载类型:恒定负载、周期性负载、冲击性负载等
负载大小:根据实际需求选择合适的电机功率
负载频率:根据电机的转速和转矩特性选择合适的负载频率
海拔:需要考虑电机的工作海拔范围,以及海拔对电机性能的影响

步进电机控制系统原理

步进电机控制系统原理
• CH250环形脉冲分配器是三相步进电动机的理想脉冲分配器, 通过其控制端的不同接法可以组成三相双三拍和三相六拍的不 同工作方式,如图7、图8所示.
图7 CH250三相双三拍接法
图8 CH250三相六拍接法
CH250环形脉冲分配器的功能关系如表1所列
讨论:
• 单片机输出步进脉冲后,再由脉冲分配电路按事先确定的顺序控制各相的 通断.
二、由软件完成脉冲分配工作
• 用微型机代替了步进控制器把并行二进制码转换成 • 串行脉冲序列,并实现方向控制. • 只要负载是在步进电机允许的范围之内, • 每个脉冲将使电机转动一个固定的步距角度. • 根据步距角的大小及实际走的步数,只要知道初始 • 位置,便可知道步进电机的最终位置. • 特点:由软件完成脉冲分配工作,不仅使线路简化,成本下
LOOP2: MOV A,R3 ADD A,#07H MOV R3,A AJAMP LOOP1
DELAY:
;求反向控制模型的偏移量 ;延时程序
POINT
COUNT POINT
DB 01H,03H,02H,06H,04H,05H,00H ;正向控制模型 DB 01H,05H,04H.06H,02H,03H,00H ;反向控制模型 EQU 30H, EQU 0150H
01 100
3、步进电机与微型机的接口及程序设计
总之, 只要按一定的顺序
改变 P1.0~P1.2 三位通电的状况, 即可控制步进电机依选定的方向步进.
3、步进电机与微型机的接口及程序设计
由于步进电机运行时功率较大,可在微型机与驱动器 之间增加一级光电隔离器,以防强功率的干扰信号反 串为进什么主步控进系电统机.功如率图驱所动示电路. 采用光电隔离?
2、步进电机控制系统原理

步进电机结构、原理与设计计算及选型方法

步进电机结构、原理与设计计算及选型方法

步进电机结构、原理与设计计算及选型方法一、步进电机概述:1、步进电机是一种直接将电脉冲转化为机械运动的机电装置,通过控制施加在电机线圈上的电脉冲顺序、频率和数量,可以实现对步进电机的转向、速度和旋转角度的控制。

2、在不借助带位置感应的闭环反馈控制系统的情况下、使用步进电机与其配套的驱动器共同组成的控制简便、低成本的开环控制系统,就可以实现精确的位置和速度控制。

二、步进电机基本结构和工作原理:1、基本结构:2、工作原理:⑴、步进电机驱动器根据外来的控制脉冲和方向信号,通过其内部的逻辑电路,控制步进电机的绕组以一定的时序正向或反向通电,使得电机正向/反向旋转,或者锁定。

⑵、以1.8度两相步进电机为例:当两相绕组都通电励磁时,电机输出轴将静止并锁定位置。

在额定电流下使电机保持锁定的最大力矩为保持力矩。

如果其中一相绕组的电流发生了变向,则电机将顺着一个既定方向旋转一步(1.8度)。

⑶、如果是另外一项绕组的电流发生了变向,则电机将顺着与前者相反的方向旋转一步(1.8度)。

当通过线圈绕组的电流按顺序依次变向励磁时,则电机会顺着既定的方向实现连续旋转步进,运行精度非常高。

对于1.8度两相步进电机旋转一周需200步。

⑷、两相步进电机有两种绕组形式:双极性和单极性。

双极性电机每相上只有一个绕组线圈,电机连续旋转时电流要在同一线圈内依次变向励磁,驱动电路设计上需要八个电子开关进行顺序切换。

⑸、单极性电机每相上有两个极性相反的绕组线圈,电机连续旋转时只要交替对同一相上的两个绕组线圈进行通电励磁。

驱动电路设计上只需要四个电子开关。

在双极性驱动模式下,因为每相的绕组线圈为100%励磁,所以双极性驱动模式下电机的输出力矩比单极性驱动模式下提高了约40%。

三、负载:1、力矩负载(Tf):Tf=G*r;G表示:负载重量;R表示:半径。

2、惯量负载(TJ):T=J*dw/dtJ=M*(R12+R22)/2(Kg*cm);表示M:负载质量,R1表示:外圈半径,R2表示:内圈半径,dω/dt表示:角加速度。

步进电机工作原理

步进电机工作原理

步进电机工作原理步进电机是一种常用的电机类型,它能够将电能转换成机械运动,广泛应用于电子设备、机器人、自动控制和数码设备等领域,是现代化生产制造和智能化系统的重要组成部分。

那么,步进电机工作原理是什么呢?下面,我们来详细了解一下。

一、步进电机的基本概念步进电机,也称作脉冲电机、节拍电机、定位电机等,是一种由电脉冲控制旋转角度或移动距离的电机。

它通过控制电脉冲的频率和顺序,来控制电机旋转的角度和步进的距离。

步进电机是一种数字控制电机,需要使用数字逻辑控制芯片或单片机进行控制。

步进电机通常由转子、定子、传动机构、驱动电路和控制系统组成,其中转子和定子是步进电机的核心部件。

转子是由多个磁极组成的,定子则是由绕组和磁铁芯组成的。

步进电机的运动是由定子和转子的磁性作用所引起的。

二、步进电机的工作原理1、磁极的排列和控制步进电机的转轴上有若干个定量的磁极,一般称之为步数。

在某些情况下,如可编程型步进电机,步数可任意调节。

电机的旋转原理是通过不断翻转电磁铁的极性,使转子在几个磁极之间按顺序分别吸引和排斥,从而产生转动的力矩。

2、磁性的转换和电流的控制步进电机的磁性转换是通过定子和转子之间磁场的吸引和排斥作用所实现的。

当通过一个完整的正弦周期电流后,磁极之间相对的位置不会变化,但后面的周期中,所谓的下一步,就是指磁极的相对位置发生了变化。

在步进电机运动过程中,控制电路会通过绕组施加不同的电流,来操纵转子的运动。

电流的变化可以导致磁场的极性变化,转子随之按照预定的步数顺序旋转。

电机转动的精度和稳定性都与电流的控制有关。

3、脉冲控制步进电机的运动是由一定的脉冲频率和脉冲顺序控制的。

控制器会将以往与转子运动有关的信息预先编码成指令序列,这些指令在控制电路的作用下,逐一发送给电机。

每一个指令都会对应一定量的脉冲信号,这些信号会传输到电机的驱动电路中,通过变化电流来控制电机的运动。

三、步进电机的分类步进电机的分类较多,常见的分类如下:1、单相步进电机单相步进电机只有一个储能元件,也称单相杆式步进电机。

电机驱动器的选型与控制策略比较分析

电机驱动器的选型与控制策略比较分析

电机驱动器的选型与控制策略比较分析引言:电机驱动器是将电能转换为机械能的重要装置,广泛应用于工业生产和日常生活中。

在选择电机驱动器和制定控制策略时,需要综合考虑多种因素,如效率、成本、功率密度和可靠性等。

本文将对电机驱动器的选型和控制策略进行比较分析,以帮助读者了解不同的选择和控制策略在实际应用中的优劣势。

一、电机驱动器的选型1. 直流电机驱动器直流电机驱动器是较早应用的一种驱动器,其优点是速度调节范围广、响应快、转矩平滑,适应性强。

然而,直流电机的机械结构复杂,维护成本较高,且容易发生火花和腐蚀等现象,因此在某些场合有一定的局限性。

2. 交流电机驱动器交流电机驱动器是当前主流的驱动器类型之一,其优点是结构简单、成本较低、维护方便。

交流电机驱动器可以分为感应电机驱动器和永磁同步电机驱动器两种类型。

感应电机驱动器适用于大功率和高转速的应用,而永磁同步电机驱动器则适用于小功率和低转速的应用。

3. 步进电机驱动器步进电机驱动器是一种将电机旋转通过精确的步进控制来实现的驱动器。

步进电机驱动器的优点是定位精度高、转矩稳定、速度控制容易,适用于精确控制的领域,如印刷机械、数控机床等。

二、电机驱动器的控制策略比较分析1. 电压源控制电压源控制是常用的一种控制策略,通过电压的调节来控制电机的转速和转矩。

优点是控制简单、可靠性高,适用于大多数应用场景。

但在低速和高速工作条件下,电机转矩的精度会有一定抖动,且滞后性较大。

2. 电流源控制电流源控制是一种更为精确的控制策略,通过电流的调节来控制电机的转速和转矩。

相比电压源控制,电流源控制可以提供更稳定的转矩和更精确的转速控制。

然而,电流源控制对电机的参数要求较高,且易受负载扰动影响。

3. 矢量控制矢量控制是基于电机的转子定向原理,通过提供转子磁场定向的控制量来实现电机的转速和转矩控制。

矢量控制具有高精度、高动态响应和稳态性能好等优点,适用于高性能和高要求的应用场景,如电动汽车和电梯等。

步进电机的选型及计算方法

步进电机的选型及计算方法

步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。

但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。

一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。

下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。

●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。

必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。

驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。

(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。

自启动运行方式通常在转速较低的时候使用。

同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。

自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。

其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。

加/减速时间需要根据传送距离、速度和定位时间来计算。

在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。

加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。

步进电机的工作原理

步进电机的工作原理

步进电机的工作原理步进电机是一种常见的电动机,广泛应用于各种机械和自动化设备中。

它以其精准的控制和高度可靠性而受到青睐。

本文将介绍步进电机的基本原理和工作方式。

1. 基本工作原理步进电机是一种将电能转换为机械能的设备,通过电磁原理实现驱动。

其基本构造包括定子与转子。

定子通常由两种或多种电磁线圈组成,这些线圈按照特定的顺序被激活。

转子则是由一组磁体组成,以使定子磁电流激活时能产生磁通。

2. 单相步进电机单相步进电机也称为单相混合式步进电机。

它具有两个电磁线圈,相位差为90度。

当线圈被激活时,会产生磁场。

根据磁场的相互作用,电机转子就可以旋转到一个新的位置。

单相步进电机的工作原理是通过改变线圈通电的顺序来控制运动。

3. 双相步进电机双相步进电机是一种更为常见的类型,它具有四个电磁线圈,相位差为90度。

每个线圈都可以单独激活,控制电机的运动。

在双相步进电机中,每次只有两个线圈被激活,以产生磁场。

通过交替激活不同的线圈,可以实现电机的旋转。

双相步进电机具有较高的转矩和精确的位置控制能力。

4. 步进电机的特点步进电机具有以下几个特点:4.1 准确定位:通过激活特定的线圈顺序,步进电机可以以特定的角度准确旋转,从而实现准确定位。

4.2 高度可编程:步进电机通过控制电流和脉冲的频率来控制转动速度和转动方向。

4.3 高度精密:由于线圈的激活顺序可以精确控制,步进电机可以实现非常精确的运动。

4.4 无需反馈系统:相比其他类型的电机,步进电机无需附加的位置反馈系统即可实现精确控制。

5. 应用领域由于其精准的控制和高度可靠性,步进电机在许多领域得到广泛应用,包括:5.1 3D打印机:步进电机用于控制打印头在XYZ轴上的位置,从而实现精确的打印。

5.2 CNC机床:步进电机用于控制刀具的位置和转动角度,从而实现自动化的数控加工。

5.3 机器人:步进电机用于控制机器人的运动,包括旋转和定位。

5.4 线性驱动器:步进电机也可以应用于线性驱动器,实现对物体位置的精确控制。

简述步进电机的工作原理

简述步进电机的工作原理

简述步进电机的工作原理步进电机是一种特殊的电动机,其运动是由控制信号驱动的,每次控制信号的到来会使电机向前或向后转动一定的角度。

步进电机的工作原理是通过电磁场的变化来实现转动。

本文将从步进电机的结构、原理、分类及应用等方面进行详细阐述。

一、步进电机的结构步进电机由转子和定子两部分组成。

转子是由一组磁极组成,通常有两种类型:永磁转子和电磁转子。

定子是由一组线圈组成,线圈的数目和磁极数目相等。

当通电时,定子线圈中会产生磁场,与磁极相互作用,从而使转子转动。

二、步进电机的原理步进电机的原理是利用电磁场的变化来实现转动。

当定子线圈通电时,会产生磁场,磁场会与转子的磁极相互作用,从而使转子转动。

通常情况下,步进电机是通过控制信号来控制定子线圈的通断,从而实现电机的转动。

控制信号的波形可以是脉冲信号、方波信号等。

三、步进电机的分类步进电机根据其结构和工作原理的不同,可以分为以下几种类型: 1、永磁式步进电机永磁式步进电机的转子由永磁体组成,定子由线圈组成。

当定子线圈通电时,会产生磁场,与永磁体相互作用,从而使转子转动。

永磁式步进电机具有结构简单、工作可靠、转矩大等优点。

2、单相步进电机单相步进电机是一种简单的步进电机,由一组线圈和一个铁芯组成。

当线圈通电时,会产生磁场,与铁芯相互作用,从而使转子转动。

单相步进电机的结构简单,但转矩较小,通常用于一些低功率的应用。

3、双相步进电机双相步进电机是一种常用的步进电机,由两组线圈和一个铁芯组成。

当两组线圈交替通电时,会产生磁场,与铁芯相互作用,从而使转子转动。

双相步进电机具有转矩大、精度高等优点,广泛应用于一些自动化设备中。

4、混合式步进电机混合式步进电机是一种综合了永磁式和电磁式步进电机的特点的电机。

其转子由永磁体和电磁线圈组成,具有转矩大、精度高等优点,广泛应用于一些高精度的自动化设备中。

四、步进电机的应用步进电机具有结构简单、精度高、转矩大等优点,广泛应用于一些自动化设备中。

步进电机驱动器原理

步进电机驱动器原理

步进电机驱动器原理
步进电机驱动器是控制步进电机运动的关键部件,它通过控制电流的大小和方向,从而驱动步进电机按照既定的步距进行运动。

在实际应用中,步进电机驱动器的选择和使用对步进电机的性能和稳定性起着至关重要的作用。

下面将详细介绍步进电机驱动器的原理和工作过程。

首先,步进电机驱动器的原理是基于步进电机的工作原理。

步进电机是一种将
电脉冲信号转换为角位移的电动机,它通过控制电流的大小和方向,从而使得电机按照一定的步距进行运动。

而步进电机驱动器则是根据步进电机的特性,提供适当的电流和脉冲信号,以控制步进电机的转动角度和速度。

其次,步进电机驱动器通常由电源模块、控制模块和功率输出模块组成。

电源
模块负责提供稳定的电源电压和电流,以满足步进电机的工作要求。

控制模块则接收外部的控制信号,并将其转换为适当的脉冲信号,以控制步进电机的转动。

功率输出模块则根据控制模块的信号,提供适当的电流和方向,驱动步进电机进行运动。

在工作过程中,步进电机驱动器首先接收外部的控制信号,然后将其转换为相
应的脉冲信号。

这些脉冲信号将通过功率输出模块,控制步进电机的转动角度和速度。

在每个脉冲信号到达时,步进电机将按照设定的步距进行旋转,从而实现精确的位置控制和运动控制。

总的来说,步进电机驱动器的原理是通过控制电流和脉冲信号,驱动步进电机
按照一定的步距进行运动。

它是实现步进电机精确位置控制和运动控制的重要组成部分,对步进电机的性能和稳定性起着至关重要的作用。

因此,在实际应用中,选择合适的步进电机驱动器,并合理使用和维护,对于保证步进电机的正常工作和提高其性能具有重要意义。

步进电机工作原理及实现

步进电机工作原理及实现

步进电机工作原理及实现步进电机是一种基于数字信号控制的电机,其优点是精确性高、稳定性好、反应速度快、精度高等,在各种电子设备、工业自动化生产线等领域得到广泛应用。

本文将介绍步进电机的工作原理及实现方法。

一、工作原理步进电机是将数字信号转化为机械运动的电机,其工作原理是利用永磁体磁极和电磁体之间的相互作用力实现转动。

永磁体磁极作为转子,电磁体作为定子,电流通过定子线圈时产生磁场,使磁极旋转。

由于永磁体上的磁极和定子线圈之间的相互作用力,可以在定子线圈上加上电流来控制永磁体的旋转角度和速度。

实际上,步进电机工作原理可归纳为两种类型:一种是单相驱动,另一种是双相驱动。

单相驱动是通过两相线圈相互作用实现电机旋转,而双相驱动是两组线圈交替工作以实现电机转向。

二、实现方法步进电机基本上由步进电机控制器、运动控制系统和驱动器组成。

其中,步进电机控制器负责发出电信号,指示步进电机在何时如何转动。

驱动器则将电信号转成电流信号,提供足够强度的电流使步进电机运转。

步进电机控制器可分为两种:基于程序控制的、基于手动控制的。

基于程序控制的步进电机控制器使用软件编程语言,例如C语言、Java语言、Python语言等,可控制步进电机的准确位置、速度、加减速度和方向等等。

而基于手动控制的步进电机控制器通常是用旋转式开关或者按钮控制电机运行,控制程序相比较需更加麻烦,但是控制完成后通常可以不用再次调整。

在实现步进电机工作过程中,关键的一点是需要确定操作步骤的顺序及其所对应控制信号。

实现步进电机的3步过程如下:第一步:控制驱动器将电流脉冲传至电机控制器,控制器发出相应改变线圈电流方向的信号。

第二步:驱动电流流过线圈,形成磁场,改变磁极方向,推动转子转动一定角度。

第三步:将此过程重复,形成连续的步进电机运动。

最后,实现步进电机运行还需要注意以下几点:一是步进电机控制器通常都是基于矢量运算而设计的,所以控制器在处理步进电机的控制信号时会有一定的延迟;二是驱动器输出的电流越大,电机的扭矩越大,控制电流需小心控制,否则电机可能会损坏;三是步进电机能够保持持续相对稳定的速度,因此能够承受比起直流电机耐久度更长。

步进电机系统的组成及原理

步进电机系统的组成及原理

步进电机系统的组成及原理摘要:步进电机控制系统应含有步进电机、步进驱动器、直流电源以及控制器,本文将从控制器的选型及使用方法,驱动器的使用方法等方面着重阐述。

关键词:步进电机,驱动器,步距角,细分,脉冲1。

步进控制系统的组成步进电机控制系统主要是由控制器、步进驱动器、步进电机以及直流电源组成。

控制器,主要的功能是每秒发射一定数量的脉冲给步进电机驱动器的脉冲接收端子,通常这一部分每秒发射的脉冲数量是可以人为控制;第二部分是步进电机驱动器,主要是由脉冲接收端子、步进电机正反装的控制、步进电机脱机控制、细分调节、步进电机工作电流调节、电源和步进电机接线端子组成;第三部分是步进电机,通常有4引线、6引线、8引线,所谓引线也就是指步进电机的外接电线。

2.控制器选型步进电机控制器又称精准定位控制模块,此模块可以是晶体管型PLC或是脉冲发生器.以三菱FX2N系列的晶体管PLC为例,其主体型号分为交直流MR继电器型和直流MT晶体管型,根据步进马达驱动器的工作原理,若想发射出脉冲,则必须选用MT晶体管型PLC。

3.驱动器各部分含义以及用法根据步进电机的组成,脉冲接收端子也就是环形分配器,其主要功能是是把外部CP+与CP-间所产生的脉冲进行分配,给功率放大器,功率放大器相应相的晶体管导通,使步进电机的每一相绕组有规律的得电。

DIR+和DIR—,是步进电机的方向信号,即电动机的正反转,当DIR+与DIR-形成回路时步进电动机则反转,反之则正转.另外步进电机在停止时,通常有一相得电,电机的转子被锁住,所以当需要转子松开时,可以使用脱机信号ENA+与ENA—形成回路。

步进电机的另外两个主要的组成部分是步进电机驱动器的细分调节和所带负载步进电机的工作电流的选择。

为了更好的了解什么叫细分之前,应当先了解下什么叫步距角,电机每拍转动的角度,称步距角,步距角和电机的结构有关。

步距角其实就是一个度量单位,也就是如何衡量马达行走的距离,也就是脉冲马达旋转的角度,步距角越小,步进电机旋转的精度就越高,所以我们可以根据步距角来控制马达转动的精确角度。

(整理)步进电机及驱动器原理

(整理)步进电机及驱动器原理

步进电机及驱动器原理步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化设备中。

步进电机和普通电动机不同之处在于它是一种将电脉冲信号转化为角位移的执行机构,它同时完成两个工作:一是传递转矩,二是控制转角位置或速度。

1.步进电机工作原理2.步进电机结构图1.2 步进电机结构图3.驱动器原理步进电机必须有驱动器和控制器才能正常工作。

驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电,控制电机转动。

图1.3 步进电机控制系统以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为,其四个状态周而复始进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为,电机就逆时针转动。

图1.4 步进电机驱动电路原理图分析步进电机驱动电路原理图1.4,当T导通时有:R为电路中存在的等效电阻。

如果,电机不转动,感应电动势E=0,则:随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。

其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。

重复上述过程,使绕组电流的平均值增加,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。

步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、力矩越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力矩越大。

4.细分控制原理为了提高步进电机的性能,细分驱动器已经广泛应用。

细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

图1.7 步进电机细分原理图细分数越高,电流越平滑,电机转动就越平稳。

步进电机和伺服电机的原理和区别以与如何选型

步进电机和伺服电机的原理和区别以与如何选型
不使用永久磁在结构,且由于转矩及惯性量之密切配合下,又有着低的二次转子阻抗,使在所有 的范围内有着高的加减速动态特性。
特点详细讲解
运转变化佳∶ 因转矩是由感应式电流产生,具有完美磁性分ห้องสมุดไป่ตู้之高密度磁通所产生,故籍由保持整个速 域非常佤之转矩涟波而可得到全然稳定之旋转运动及伺服动作。 最大与额定轻矩之良好关系∶
步进和伺服马达的区别
总结:伺服马达和步进的区别,一是速度,步进电机的速度比伺服电机的速度慢了很多, 第二个区别就是马达的解析度,伺服电机的更高。 线性电机是一种可以直接产生直动的 电机,不需要要转换设备(如丝杆或是皮带)。这样一说的话大家都可以很容易的知道线 性电机和伺服电机相比有哪些优势了。由于去掉了传动的皮带(或是丝杆),工作头动作 的启停更快。没有了传动部分,当然也没有了传动过程中的动作失真。在定位系统中,最 常用的马达不外乎是步进马达和伺服马达,其中,步进马达主要可分为2相,5相,微步进 系统。伺服马达则主要是驱动器所表现出来之分辨率不同,2相步进系统马达每转最细可 分为400格,5相则为1000格,微步进则可从200-50000(或以上)格,表现出来的特性以 微步进最好,加减速时间较短,动态惯性较低。 AC和DC伺服马达主要分为DC伺服比AC伺服马达多一个碳刷,会有维护上的问题,而AC伺 服马达因没有碳刷,所以后续不会有太多的维护问题。所以基本上来说AC伺服系统是较 DC伺服系统更优,但DC伺服系统主要的优势则是价位上比AC伺服系统较便宜,而此两种 的控制精度皆为相同。
步进和伺服马达的区别
2、伺服马达分为交流和直流两大类,功率相对较大,精度高;两者主要的区别是看 马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的. 顺便提一下闭环控制又可分半闭环和全闭环两种,但是普遍使用的是半闭环装置, 只有非常精密的设备才用全闭环装置:

步进电机的工作原理及其原理图

步进电机的工作原理及其原理图

步进机电是将电脉冲信号转变为角位移或者线位移的开环控制元件。

在非超载的情况下,机电的转速、住手的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给机电加一个脉冲信号,机电则转过一个步距角。

这一线性关系的存在,加之步进机电惟独周期性的误差而无积累误差等特点。

使得在速度、位置等控制领域用步进机电来控制变的非常的简单。

虽然步进机电已被广泛地应用,但步进机电并不能象普通的直流机电,交流机电在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进机电却非易事,它涉及到机械、机电、电子及计算机等许多专业知识。

目前,生产步进机电的厂家的确不少,但具有专业技术人员,能够自行开辟,研制的厂家却非常少,大部份的厂家只一、二十人,连最基本的设备都没有。

仅仅处于一种盲目的仿制阶段。

这就给用户在产品选型、使用中造成许多麻烦。

签于上述情况,我们决定以广泛的感应子式步进机电为例。

叙述其基本工作原理。

望能对泛博用户在选型、使用、及整机改进时有所匡助。

由于反应式步进机电工作原理比较简单。

下面先叙述三相反应式步进机电原理。

机电转子均匀分布着不少小齿,定子齿有三个励磁绕阻,其几何轴线挨次分别与转子齿轴线错开。

0、1/3て、2/3て, (相邻两转子齿轴线间的距离为齿距以て表示),即A 与齿1相对齐,B 与齿2向右错开1/3て,C 与齿3向右错开2/3て,A'与齿5相对齐, (A'就是A,齿5就是齿1) 下面是定转子的展开图:如A 相通电,B,C 相不通电时,由于磁场作用,齿1与A 对齐, (转子不受任何力以下均同)。

如B 相通电,A,C 相不通电时,齿2应与B 对齐,此时转子向右移过1/3て,此时齿3与C 偏移为1/3て,齿4与A 偏移(て- 1/3て) =2/3て。

如C 相通电,A ,B 相不通电,齿3应与C 对齐,此时转子又向右移过1/3て,此时齿4与A 偏移为1/3て对齐。

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。

1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。

其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。

这种特性使它适用于多种应用。

2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。

定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。

稍后我们将更深入地介绍不同的转子结构。

图1显示的电机截面图,其转子为可变磁阻铁芯。

图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。

图2显示了其工作原理。

首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。

下图中定子小齿的颜色指示出定子绕组产生的磁场方向。

图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。

实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。

3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。

这种转子可以保证良好的扭矩,并具有制动扭矩。

这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。

但与其他转子类型相比,其缺点是速度和分辨率都较低。

图3显示了永磁步进电机的截面图。

图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。

这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。

步进电动机的工作原理及驱动方法

步进电动机的工作原理及驱动方法

步进电动机的工作原理及驱动方法步进电动机是一种将电脉冲信号转换成角位移或线位移的机电元件。

步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。

正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。

由于步进电动机能直接接受数字量的控制,所以特别适宜采用微机进行控制。

1. 步进电动机的种类目前常用的有三种步进电动机(1) 反应式步进电动机(VR)。

反应式步进电动机结构简单,生产成本低,步距角小;但动态性能差。

(2) 永磁式步进电动机(PM)。

永磁式步进电动机出力大,动态性能好;但步距角大。

(3) 混合式步进电动机(HB)。

混合式步进电动机综合了反应式、永磁式步进电动机两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的步进电动机。

它有时也称作永磁感应子式步进电动机。

2. 步进电动机的工作原理/图1三相反应式步进电动机的结构示意图1 ――定子2 ――转子3 ――定子绕组{{分页}}图1是最常见的三相反应式步进电动机的剖面示意图。

电机的定子上有六个均布的磁极,其夹角是600。

各磁极上套有线圈,按图1连成A B、C三相绕组。

转子上均布40个小齿。

所以每个齿的齿距为0 E=360O/40=9O,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。

由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。

若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即30。

因此,B、C极下的磁阻比A磁极下的磁阻大。

若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3O;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。

步进电机及驱动器参数计算与选型

步进电机及驱动器参数计算与选型

三、电机选型计算方法
1. 电机最大速度选择
2. 电机定位精度的选择 3. 电机力矩选择
三、电机选型计算方法
选择电机一般应遵循以下步骤:
1. 电机最大速度选择 步进电机最大速度一般在600~1200 rpm。
交流伺服电机额定速度一般在3000 rpm,最大转速为5000rpm。
机械传动系统要根据此参数设计。
2. 电机定位精度的选择
机械传动比确定后,可根据控制系统的定位精度选择步进电机 的步距角及驱动器的细分等级。一般选电机的一个步距角对应 于系统定位精度的1/2 或更小。 注意:当细分等级大于1/4后,步距角的精度不能保证。 伺服电机编码器的分辨率选择:分辨率要比定位精度高一个数量 级。
3. 电机力矩选择
二、步进驱动器简介
步进驱动器:是一种能使步进电机运转的功率放大器,能把控制器
发来的脉冲信号转化为步进电机的角位移,电机的转速与脉冲频率
成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确 定位。
电机控制原理图
1. 恒流驱动
恒流控制的基本思想是通过控制主 电路中MOSFET的导通时间,即调节 MOSFET触发信号的脉冲宽度,来达 到控制输出驱动电压进而控制电机 绕组电流的目的。
运转。其步距状态的移动会产生1 步距响应。
1 步距响应图
电机驱动电压越高,电机电流越大,负载越轻,电机体积越小, 则共振区向上偏移,反之亦然。步进电机低速转动时振动和噪声 大是其固有的缺点,克服两相混合式步进电机在低速运转时的振 动和噪声方法:
a. b. c. d. e. f. g. 通过改变减速比等机械传动避开共振区; 采用带有细分功能的驱动器; 换成步距角更小的步进电机; 选用电感较大的电机 换成交流伺服电机,几乎可以完全克服震动和噪声,但成本高; 采用小电流、低电压来驱动。 在电机轴上加磁性阻尼器;

步进电机结构原理及选型步骤方法

步进电机结构原理及选型步骤方法

步进电机结构原理及选型步骤方法以下是我们在非标设备设计中对《步进电机选型计算》过程中整理需要用到的一些计算公式和资料,具体需要了解其计算方法和各种参数的选型计算方法的视频教程,请加群进入直播课程和老师进行交流。

详情参见。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。

虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

步进电机也是一种位置控制电机,用于控制运动机构的精确定位,基本适用于各种常规精度的场合。

一、步进电机主要分类步进电机从其结构形式上可分为反应式步进电机(Variable Reluctance,VR)、永磁式步进电机Permanent Magnet,PM)、混合式步进电机(Hybrid Stepping,HS)、单相步进电机、平面步进电机等多种类型,在我国所采用的步进电机中以反应式步进电机为主。

步进电机的运行性能与控制方式有密切的关系,步进电机控制系统从其控制方式来看,可以分为以下三类:开环控制系统、闭环控制系统、半闭环控制系统。

半闭环控制系统在实际应用中一般归类于开环或闭环系统中。

反应式:定子上有绕组、转子由软磁材料组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机工作原理、驱动控制系统与选型一、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。

这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。

如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。

而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。

往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。

甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。

只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。

力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。

(二)感应子式步进电机1、特点:感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。

感应子式步进电机某种程度上可以看作是低速同步电机。

一个四相电机可以作四相运行,也可以作二相运行。

(必须采用双极电压驱动),而反应式电机则不能如此。

例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=。

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。

2、分类感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。

以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数,常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A。

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。

θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。

四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。

此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。

用百分比表示:误差/步距角*100%。

不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。

2、失步:电机运转时运转的步数,不等于理论上的步数。

称之为失步。

3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

如下图所示:其它特性还有惯频特性、起动频率特性。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

如下图所示:其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8、电机正反转控制:当电机绕组通电时序为AB-BC-CD-DA或()时为正转,通电时序为DA-CA-BC-AB或()时为反转。

二、驱动控制系统组成使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:1、脉冲信号的产生脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大.2、信号分配我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8度;二相八拍为,步距角为0.9度。

四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为0.9度)。

3、功率放大功率放大是驱动系统最为重要的部分。

步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。

平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。

因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。

为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。

我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下:说明:CP 接CPU脉冲信号(负信号,低电平有效)OPTO 接CPU+5VFREE 脱机,与CPU地线相接,驱动电源不工作DIR 方向控制,与CPU地线相接,电机反转VCC 直流电源正端GND 直流电源负端A 接电机引出线红线接电机引出线绿线B 接电机引出线黄线接电机引出线蓝线步进电机一经定型,其性能取决于电机的驱动电源。

步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。

电压对力矩影响如下:4、细分驱动器在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。

三、步进电机的应用(一)步进电机的选择步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。

一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。

电机的步距角应等于或小于此角度。

目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。

2、静力矩的选择步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。

静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。

单一的惯性负载和单一的摩擦负载是不存在的。

直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。

一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)3、电流的选择静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)综上所述选择电机一般应遵循以下步骤:4、力矩与功率换算步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:P= Ω·M Ω=2π·n/60 P=2πnM/60其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米P=2πfM/400(半步工作)其中f为每秒脉冲数(简称PPS)(二)、应用中的注意点1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。

相关文档
最新文档