《反比例函数》全章教案

合集下载

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。

强调反比例函数中x 和y 成反比例关系,即xy = k。

1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。

探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。

讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。

第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。

引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。

2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。

引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。

第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。

3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。

引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。

第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。

4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。

引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

反比例函数教案及教学反思

反比例函数教案及教学反思

一、教案设计1.1 教学目标:(1) 知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

(2) 过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,提高学生解决问题的能力。

(3) 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学规律的欲望,培养学生的团队合作精神。

1.2 教学内容:(1) 反比例函数的概念:反比例函数是指形如y = k/x (k为常数,k≠0) 的函数。

(2) 反比例函数的性质:反比例函数的图像是一条通过原点的曲线,称为双曲线。

当k>0时,双曲线在第一、三象限;当k<0时,双曲线在第二、四象限。

(3) 反比例函数的应用:解决实际问题,如计算面积、速度、浓度等。

1.3 教学重点与难点:(1) 重点:反比例函数的概念和性质。

(2) 难点:反比例函数的应用。

1.4 教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生解决问题的能力。

1.5 教学过程:(1) 导入:通过生活中的实例,引导学生思考反比例关系,激发学生的学习兴趣。

(2) 讲解:讲解反比例函数的概念,引导学生观察、分析反比例函数的性质。

(3) 实践:让学生通过实际问题,运用反比例函数解决问题,巩固所学知识。

(5) 作业:布置相关练习题,巩固所学知识。

二、教学反思2.1 教学效果:通过本节课的教学,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

2.2 教学亮点:(1) 采用问题驱动法,引导学生主动探究,提高学生解决问题的能力。

(2) 结合生活中的实例,让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣。

2.3 改进措施:(1) 在实践环节,可以增加一些具有挑战性的问题,让学生在解决问题的过程中,进一步提高反比例函数的应用能力。

(2) 在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

反比例函数全章教案

反比例函数全章教案

第一章:反比例函数的概念与性质1.1 反比例函数的定义理解反比例函数的定义:反比例函数是指当一个变量的值增大时,另一个变量的值减小,且它们的乘积保持不变。

例题讲解:求解y = 1/x 的反比例函数。

1.2 反比例函数的性质理解反比例函数的性质:反比例函数的图像是一条通过原点的斜率为正或负的双曲线。

例题讲解:分析反比例函数的图像和性质。

第二章:反比例函数的图像与解析式2.1 反比例函数的图像绘制反比例函数的图像:通过解析式和图像来理解反比例函数的特点。

例题讲解:绘制y = 1/x 的图像。

2.2 反比例函数的解析式反比例函数的解析式:通过给定的两个点来求解反比例函数的解析式。

例题讲解:已知两个点的坐标,求解反比例函数的解析式。

第三章:反比例函数的性质与应用3.1 反比例函数的单调性理解反比例函数的单调性:当x > 0 时,反比例函数是单调递减的;当x < 0 时,反比例函数是单调递增的。

例题讲解:分析反比例函数的单调性。

应用反比例函数解决实际问题:通过反比例函数来计算两个变量之间的比例关系。

例题讲解:已知物体的速度与时间成反比例关系,求物体的最大速度。

第四章:反比例函数的综合应用4.1 反比例函数与一元二次方程反比例函数与一元二次方程的关系:解一元二次方程时,利用反比例函数来简化计算。

例题讲解:解一元二次方程x^2 4x + 1 = 0,利用反比例函数来简化计算。

4.2 反比例函数与不等式反比例函数与不等式的关系:通过反比例函数的性质来解决不等式问题。

例题讲解:解不等式1/x > 2,利用反比例函数的性质来解决。

第五章:反比例函数的扩展与思考5.1 反比例函数的扩展探索反比例函数的扩展:了解反比例函数在其他领域的应用,如物理学、化学等。

例题讲解:反比例函数在物理学中的应用,如电阻与电流的关系。

5.2 反比例函数的思考与讨论思考与讨论:引导学生思考反比例函数在实际生活中的意义和应用,鼓励学生提出问题并解决问题。

反比例函数教案优秀7篇

反比例函数教案优秀7篇

反比例函数教案优秀7篇《反比例函数》教学设计篇一一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

因此反比例函数的概念与意义的教学是基础。

二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。

解决问题:能从实际问题中抽象出反比例函数并确定其表达式。

情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式。

难点:反比例函数表达式的确立。

五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。

请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx (1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。

此时y 就不是反比例函数了。

举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

第26章_反比例函数_全章教案

第26章_反比例函数_全章教案

第26章_反比例函数_全章教案第26章反比例函数全章教案一、教学目标:1.知识目标:了解反比例函数的基本概念和性质,掌握绘制反比例函数的图像,解决与反比例函数相关的实际问题。

2.能力目标:能够正确运用反比例函数的性质解决实际问题,培养学生的逻辑思维和问题解决能力。

3.情感目标:培养学生对数学的兴趣和学习动力,激发学生的思维灵活性和创造性。

二、教学重难点:1.重点:反比例函数的基本概念和性质,绘制反比例函数的图像。

2.难点:如何正确运用反比例函数解决实际问题。

三、教学过程:1.情境导入(5分钟)通过一些实际问题的引导,让学生了解反比例函数的概念和性质。

比如:小明用5个小时跑完全程100公里的路程,那么他每小时的速度是多少?2.概念解释与讲解(10分钟)讲解反比例函数的概念和性质。

反比例函数是指两个变量之间的关系,当其中一个变量的值增加时,另一个变量的值会减小,反之亦然。

反比例函数的一般形式为y=k/x,其中k为常数。

3.图像绘制与讨论(20分钟)让学生用自己的方法绘制反比例函数的图像,并进行讨论。

引导学生观察图像的特点,如何表示反比例函数的性质。

4.性质总结与归纳(10分钟)总结反比例函数的性质,如:在定义域内,函数的值随着自变量的增大而减小,反之亦然;函数的图像是关于y轴和x轴的交点的对称图形等。

5.实际问题解决(20分钟)通过一些实际问题,引导学生运用反比例函数解决实际问题。

比如:小明去超市买苹果,每斤4元,他想知道买10斤需花费多少钱?6.拓展应用(10分钟)让学生以小组形式,找寻更多与反比例函数相关的实际问题,并进行讨论和解决,拓展应用反比例函数的范围。

7.归纳总结(10分钟)四、课堂练习与作业:1.完成课堂练习册上关于反比例函数的练习题。

2.布置反比例函数的作业题,要求学生将其解答过程写清楚。

五、板书设计:第26章反比例函数1.反比例函数的概念和性质y=k/x2.反比例函数的图像特点-定义域内,函数的值随着自变量的增大而减小,反之亦然-函数的图像是关于y轴和x轴的交点的对称图形备注:以上只是教案大纲,根据具体教学情况,具体内容和时间分配可以有所调整。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

《第26章反比例函数》全章教案

《第26章反比例函数》全章教案

【学习过程】一、课前导学:预习课本第1页至第3页,完成下列问题:1.我们形如 的函数叫做一次函数,当 时,又叫做正比例函数.2.探究:反比例函数的意义问题1:(1)京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为: 。

(2)某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为 。

(3)已知北京市的总面积为1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 。

九年级 ()班 课题 26.1 反比例函数 课型 新授教 学目标 知识 技能1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解.[来源:]2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念.过程 方法 1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点. 2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识.情感态度 认识到数学知识是有联系的,逐步感受数学内容的系统性;通过分组讨论,培养合作交流意识和探索精神。

教学重点 理解和领会反比例函数的概念. 教学难点 通领悟反比例函数的概念. 教法学案导学 学法 探究、合作 教学媒体 多 媒 体教 学 过 程 设 计问题2:上述问题中的函数关系式都有什么共同的特征?答: .4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量, y 是函数学.自变量的取值范围是 的一切实数.5.下列哪个等式中的y 是x 的反比例函数?6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4时,y 的值.7.若y 与x 成正比例,z 与y 成反比例,则x 与z 之间成______________关系. 8.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是 二、 合作、交流、展示:1.比例函数的意义:反比例函数的解析式 ,y=xk 反比例函数的变形形式:(1)xy=k (2)1-=kx y 2.例题1.下列等式中,哪些是反比例函数? (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-= (6)31+=xy (7)y =x -4 例题2.当m 取什么值时,函数23)2(m x m y --=是反比例函数?例题3(拓展提升).已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5.(1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值三、巩固与应用:()()()().518;57;76;3652x y x y xy x y ==-=+-=()()()().24;23;4.02;51====xy x y x y x y1已知函数y=(m+2)x|m|-3是反比例函数,则m的值是..2.已知y=y1-y2,y1与x成反比例,y2与x-2成正比例,并且当x=3时,y=5;当x=1时,y=-1.求y与x之间的函数关系式.3.下列各变量之间的关系属于反比例函数关系的有( )。

26.1.1反比例函数教案

26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

-反比例函数全章教案

-反比例函数全章教案

第二十六章 反比例函数第1课时26.1.1反比例函数的意义教学目标知识于技能.使学生理解并掌握反比例函数的概念过程与方法.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式情感与态度价值观.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想教学重、难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。

讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 教学过程一、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?二、例题讲解例1.见教材P3分析:因为y 是x 的反比例函数,所以先设xk y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。

(补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念)。

例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x k y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xx y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m xm y --=是反比例函数? 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数表示两个变量之间的关系。

1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (其中k 为常数,k ≠0)。

解释反比例函数中的k 值对函数图象的影响。

第二章:反比例函数的图象特点2.1 反比例函数图象的形状引导学生观察反比例函数图象,发现其形状为双曲线。

解释双曲线的特点及其与反比例函数的关系。

2.2 反比例函数图象的渐近线引导学生观察反比例函数图象,发现其图象具有两条渐近线。

解释渐近线的概念及其在反比例函数图象中的表现。

第三章:反比例函数的性质3.1 反比例函数的单调性引导学生分析反比例函数在不同区间的单调性。

解释反比例函数单调性的原因及其与比例系数k 的关系。

3.2 反比例函数的奇偶性引导学生观察反比例函数图象,发现其具有奇偶性。

解释反比例函数奇偶性的概念及其与比例系数k 的关系。

第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,引导学生运用反比例函数解决问题。

解释反比例函数在实际问题中的应用场景,如速度与时间的关系。

4.2 反比例函数的综合应用提供综合问题,引导学生综合运用反比例函数解决问题。

强调反比例函数在其他数学领域中的应用,如在几何中的运用。

第五章:反比例函数的图象和性质的巩固练习5.1 反比例函数图象的绘制引导学生独立绘制反比例函数的图象,巩固对反比例函数图象的理解。

提供不同比例系数的函数,让学生绘制并分析其图象特点。

5.2 反比例函数性质的练习题提供练习题,让学生运用反比例函数的性质解决问题。

强调对反比例函数单调性、奇偶性等性质的理解和应用。

第六章:反比例函数的图象变换6.1 反比例函数的平移引导学生理解反比例函数图象的平移规律,即上下移动对应y 轴的平移,左右移动对应x 轴的平移。

反比例函数教案6篇

反比例函数教案6篇

反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。

反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。

重点:用反比例函数知识解决实际问题。

难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。

今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。

例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。

轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。

即每天至少要48吨。

这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。

实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。

26.1.1《反比例函数》教案

26.1.1《反比例函数》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k为常数,k≠0)的函数。它在描述一些与变量成反比关系的实际问题中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在计算物体速度中的应用,以及它如何帮助我们理解速度与时间、路程的关系。
26.1.1《反比例函数》教案
一、教学内容
26.1.1《反比例函数》教案:
1.教材章节:本节内容依据人教版八年级数学下册第26章《函数》第一节“反比例函数”设计。
2.教学内容:
a.反比例函数的定义:形如y=k/x(k为常数,k≠0)的函数称为反比例函数。
b.反比例函数的性质:当x增大时,y减小;当x减小时,y增大;函数图象在第一、三象限。
c.反比例函数的图象:双曲线。
d.反比例函数的应用:解决实际问题,如速度、密度等。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,通过反比例函数的学习,使学生能够理解和构建数学模型,解决生活中与反比例关系相关的现象。
2.提高学生的数形结合思维,通过观察反比例函数的图象和性质,培养学生将数学问题与图形结合起来的能力,增强空间观念和直观想象。
最后,我认为这节课的教学流程和时间安排基本合理,但也有改进的空间。在今后的教学中,我会更加注重课堂节奏的把握,既要保证学生们有足够的时间理解和吸收新知识,也要避免课堂氛围过于紧张,让同学们在轻松愉快的氛围中学习。
其次,通过小组讨论和实验操作,我看到学生们积极参与,乐于探索反比例函数在实际生活中的应用。他们提出的问题和见解有时也让我感到惊喜,这表明学生们有着丰富的想象力和创造力。但同时,我也注意到,在小组讨论中,有些学生较为内向,不太愿意表达自己的观点。在今后的教学中,我需要更加关注这部分学生,鼓励他们大胆发言,增强他们的自信心。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。

二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。

三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。

2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。

3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。

4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。

5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。

四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。

五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。

六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数第一课时 反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。

讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。

补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4分析:根据反比例函数的定义,关键看上面各式能否改写成xk y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是x x y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。

解得m =-2例3.(补充)已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5(1) 求y 与x 的函数关系式(2) 当x =-2时,求函数y 的值分析:此题函数y 是由y 1和y 2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y 1、 y 2与x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。

这里要注意y 1与x 和y 2与x 的函数关系中的比例系数不一定相同,故不能都设为k ,要用不同的字母表示。

略解:设y 1=k 1x (k 1≠0),x k y 22=(k 2≠0),则x k x k y 21+=,代入数值求得k 1=2, k 2=2,则xx y 22+=,当x =-2时,y =-5 六、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是3.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =5.函数21+-=x y 中自变量x 的取值范围是 七、课后练习已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9,求当x =-1时y 的值答案:y =4第二课时 反比例函数的图象和性质(1)一、教学目标1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1.重点:理解并掌握反比例函数的图象和性质2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质3.难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。

反比例函数xk y =(k ≠0)自变量的取值范围是x ≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。

连线时要告诉学生用平滑的曲线连接,不能用折线连接。

教学时,老师要带着学生一起画,注意引导,及时纠错。

在探究反比例函数的性质时,可结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。

这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的;反之,双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。

三、例题的意图分析教材第48页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。

补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。

补充例2是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握反比例函数解析式xk y =(k ≠0)中k 的几何意义。

四、课堂引入提出问题:1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?五、例习题分析例2.见教材P48,用描点法画图,注意强调:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(--=m xm y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件略解:∵32)1(--=m x m y 是反比例函数 ∴m 2-3=-1,且m -1≠0又∵图象在第二、四象限 ∴m -1<0 解得2±=m 且m <1 则2-=m例2.(补充)如图,过反比例函数x y 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xk y =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21 ,故选B六、随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xk y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为七、课后练习1.若函数x m y )12(-=与x m y -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是 3. 已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式答案:3.xy a 25,5--=-= 第三课时 反比例函数的图象和性质(2)一、教学目标1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法二、重点、难点1.重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题2.难点:学会从图象上分析、解决问题3.难点的突破方法:在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。

三、例题的意图分析教材第51页的例3一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。

教材第52页的例4是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数值y 随x 的变化情况,此过程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的理解。

相关文档
最新文档