最新小学五年级奥数举一反三第21周-假设法解题

合集下载

五年级奥数——假设法解题

五年级奥数——假设法解题

第十二讲假设法解题例1、鸡与兔共10只,脚共22只,问:鸡有几只?兔有几只?练习1、鸡与兔共100只,鸡的脚比兔的脚多26只。

问:鸡有几只?兔有几只?练习2、第21周举一反三1第2题。

例2、有面值分别为10元、5元和2元的人民币34张,共值178元,10元的张数和5元的张数同样多。

问:三种面值的人民币各多少张?练习3、有面值分别为拾元、伍元、贰元的人民币27张,共108元。

拾元的张数比伍元的张数少7张。

那么,三种面值的人民币各有多少张?练习4、第21周举一反三2第3题。

例3、要把40个玻璃球放入一个红盒子和一个黑盒子中,每次往红盒子里必须放2个,每次往黑盒子里必须放1个。

一共放了26次,正好将40个玻璃球放完。

此时红盒子、黑盒子中各有多少个玻璃球?练习5、第21周举一反三3第2题。

练习6、学校组织春游,一共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多载520人,问:大、小客车各几辆?练习7、第21周举一反三4第3题。

例4、徒工小王雕刻红木玩具,平均每天雕刻玩具48件。

每雕刻出一件正品,可为国家创造财富12元;但如果雕刻坏了一件就要损失98元。

他平均每天为国家创造财富466元。

小王平均每天雕刻出的正品有多少件?练习8、数学竞赛中抢答题共10道题,规定答对一题得15分,答错一题倒扣10分(不答按答错计算)。

晓敏回答了所有的问题,结果共得100分,问:她答对了几题?答错了有几题?练习9、第21周举一反三5第3题。

作业:1、营业员把一张5元人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来这两种人民币各多少张?2、A、B两地相距8千米,小钱骑自行车从A地去B地,开始以每分钟120米的速度行驶,后改为每分钟160米的速度行驶,共用了1小时到达B地。

小钱是在离A地多少米的地方改变速度的?3、操场上有一群同学。

男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。

举一反三五年级小学奥数1-40完整版

举一反三五年级小学奥数1-40完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);分析与解答:(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

人教版五年级奥数教案:假设法解题

人教版五年级奥数教案:假设法解题

人教版五年级奥数教案:假设法解题
专题知识点详解
假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?
分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

第1 页共1 页。

五年级奥数_假设法解题

五年级奥数_假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14,共100元,问5元和10元的人民币各多少?【思路】:先假设有145元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的数是30÷(10-5)=6()。

也可以假设有1410元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的银币各有多少枚?3、营业员把一5元的人民币和一5角的人民币换成了28票面为一元和一角的人民币。

求换来的这两种人民币各多少?【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆?【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天?2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个?3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?【例题】:甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

[精编]举一反三五年级小学奥数1-40完整版

[精编]举一反三五年级小学奥数1-40完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);分析与解答:(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

小学奥数举一反三五年级1-40完整版

小学奥数举一反三五年级1-40完整版

第一周平均数(一)第2周平均数(二)第3周长方形、正方形的周长第4周长方形、正方形的面积第5周分类数图形第6周尾数和余数第7周一般应用题(一)第8周一般应用题(二)第9周一般应用题(三)第10周数阵第11周周期问题第12周盈亏问题第13周长方体和正方体(一)第十四周长方体和正方体(二)第十五周长方体和正方体(三)第16周倍数问题(一)第17周倍数问题(二)第18周组合图形面积(一)第十九周组合图形的面积第二十周数字趣题第二十一讲假设法解题第二十二周作图法解题第二十三周分解质因数第二十四周分解质因数(二)第25周最大公约数第二十六周最小公倍数(一)第二十七周最小公倍数(二)第28周行程问题(一)第二十九周行程问题(二)第三十周行程问题(三)第三十一周行程问题(四)第三十二周算式谜第33周包含与排除(容斥原理)第34周置换问题第35周估值问题第36周火车行程问题第37周简单列举第三十八周最大最小问题第三十九周推理问题第40周杂题第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

小学数学奥数举一反三五年级完整版

小学数学奥数举一反三五年级完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

五年级奥数举一反三假设法解题

五年级奥数举一反三假设法解题

有关“假设法”“假设法”是解答应用题时常用到的一种方法。

在有些应用题中,要求两个或两个以上的未知量,可以先假设要求的两个或几个的未知量相等,或者先假设要求的的两个未知量是同一个量,然后按照题目里的已知条件进行推算,并对照已知条件把数量上出现的矛盾做适当的调整,最后得到答案,这就是“假设法”“鸡兔同笼”问题研究“假设法”解题的方法,必然提到“鸡兔同笼”问题。

“鸡兔同笼”的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只。

并由此衍生出的一系列问题,形成一类典型的应用题。

解决“鸡兔同笼”问题的方法通常是用假设法。

其基本关系式是:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)例1 在一个笼子中关有若干只鸡和兔,从上面看有50个头,从下面数有158只脚。

问:笼中鸡、兔各有多少只?拓展百个和尚百个耙,大和尚每人4个耙,小和尚4人1个耙。

问:大和尚、小和尚各有多少个?例2 学校买了两种戏票一共30张,付出200元,找回5元。

甲种票每张7元,乙种票每张6元。

学校买甲种票多少张,乙种票多少张?拓展小明去游山,他从东坡上山,每小时行2千米,到达山顶后休息了1小时;然后从西坡下山,每小时行3千米,全程共行了19千米,共用了9小时。

上山的路与下山的路各有多少千米?例3 小明买了5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角和1角5分的邮票张数相等,求三种邮票各多少张拓展有1元、2元、5元的人民币50张面值共计116元,已知1元的人民币比2元的多2张,问:三种人民币各有多少张?小明花4元2角钱买贺年卡和明信片共10张,贺年卡每张3角,明信片每张5角,他买了几张贺年卡,几张明信片?小克林顿做家务每天可得3美元,做得特别好每天可得5美元。

有一个月(30天)他共得100美元,那么这个月他有多少天做得特别好?15元钱买5角和8角的邮票共21张,那么所买的5角邮票与8角邮票相差多少张?实验小学为奖励三好学生,共买钢笔和铅笔27盒,共计300支。

【精品】举一反三五年级小学奥数1-40完整版

【精品】举一反三五年级小学奥数1-40完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);分析与解答:(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

假设法解题(小数数学奥数五年级)

假设法解题(小数数学奥数五年级)

假设法解题知识与方法:假设法是一种常见的解题方法。

用假设法解题就是先假设一种结果,发现与实际情况的有差别,再找到造成差别的原因,从而修正所作假设得到正确的结果。

如果题目中既要求甲,又要求乙,假设全是甲,先求出的乙;假设全是乙,先求出的就是甲。

有些题目我们在做的过程中会发现少条件,我们也可以采用假设的方法进行思考。

例1:有一个饲养小组养了若干只鸡和兔,已知一共有35个头和94只脚,则这个饲养小组养鸡和兔各多少只?练习1:1.鸡、兔共有头100个,脚320只,鸡兔各有多少只?2. 一辆汽车载客60人,分别到达简阳和成都两个车站下车。

到简阳每张票价18元,到成都每张票价25元,共卖车费1339元,问:到哪个车站下车的人,多多少人?例2:松鼠妈妈采松子。

晴天每天采20个,雨天每天采12个,它一连几天一共采了112个松子。

平均每天采14个,这几天中有多少天雨天?练习2:1. 松鼠妈妈采松子,晴天每天可以采18个,雨天每天只能采12个,它一连几天共采了288个松子。

平均每天采12个,这几天中有几天雨天?2. 50名同学去划船,一共乘坐11只,并且每只船都正好坐满,其中每只大船坐6人,每只小船坐4人,问大船和小船各几只?例3:一批面粉,用小车装载要用50辆。

用大车装载只用40辆,每辆大车比小车多装3吨。

问这批面粉有多少吨?练习3:1. 一批大豆,用大货车装要24辆,用小货车装要36辆。

大货车比小货车每辆多装4吨。

问这批大豆有多少吨?2. 有一堆沙子,用大车需要运50次,用小车需要运80次。

每辆大车比小车多运3吨沙子。

这堆沙子有多少吨?例4:搬运1000只玻璃杯,规定安全运到一只可得搬运费3角,但打碎一只,不仅不给搬运费,还要赔5角。

如果运完后共得运费260元。

那么,搬运中打碎了几只玻璃杯?练习4:1.某玻璃厂为茶博城运1000只玻璃茶杯,双方商定每个运费为1元,如果损坏一个,不但不给运费,而且要赔偿3元,结果运送完时,玻璃场共得运费920元,求损坏了几个玻璃茶杯。

5年级-小学奥数举一反三(下册)

5年级-小学奥数举一反三(下册)

小学奥数举一反三练习材料五年级下册二○一四年六月目录第21 讲假设法解题..................................................................................1.....第22 讲作图法解题..................................................................................6.....第23 讲分解质因数...............................................................................1...3...第24 讲分解质因数(二)...................................................................1..8... 第25 讲最大公约数...............................................................................2...2...第26 讲最小公倍数(一)...................................................................2..8... 第27 讲最小公倍数(二)...................................................................3..4... 第28 讲行程问题(一)........................................................................4..0...第29 讲行程问题(二)........................................................................4..7...第30 讲行程问题(三)........................................................................5..3...第31 讲行程问题(四)........................................................................6..0...第32 讲算式谜.......................................................................................6..7....第33 讲包含与排除(容斥原理)........................................................7...3. 第34 讲置换问题...................................................................................8..0....第35 讲估值问题...................................................................................8..6....第36 讲火车行程问题............................................................................9..2...第37 讲简单列举...................................................................................9..8....第38 讲最大最小问题..........................................................................1..0..3第39 讲推理问题.................................................................................1..1..0.第40 讲杂题....................................................................................1..1..7..第21 讲假设法解题【专题简析】假设法是解应用题时常用的一种思维方法。

小学数学奥数举一反三五年级完整版

小学数学奥数举一反三五年级完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

小学奥数举一反三五年级1-40完整版

小学奥数举一反三五年级1-40完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

5年级-小学奥数举一反三(下册)

5年级-小学奥数举一反三(下册)

小学奥数举一反三练习材料下册五年级二○一四年六月目录. (1)法解题假设第21讲. (5)法解题第22讲作图分解质因数. (10)第23讲因数(二) (14)分解质第24讲数. (17)第25讲最大公约最小公倍数(一) (21)第26讲最小公倍数(二) (25)第27讲行程问题(一) (29)第28讲行程问题(二) (34)第29讲题(三) (39)行程问第30讲题(四) (44)第31讲行程问算式谜. (49)第32讲包含与排除(容斥原理) (53)第33讲. (58)问题臵换第34讲. (62)问题第35讲估值行程问题 (66)火车第36讲. (70)列举简单第37讲题 (74)最大最小问第38讲推理问题. (79)第39讲. (84)第40讲杂题第 21讲假设法解题【专题简析 】假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或 者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照 已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题1】 有 5 元和 10 元的人民币共 14张,共 100 元。

问5 元币和 10 元币 各多少张?思路与导航: 假设这14张全是 5 元的,则总钱数只有 5×14=70元,比实际少了 100-70=30元。

为什么会少了 30 元呢?因为这14张人币民币中有的是 10元的。

拿一张5 元的换一张10 元的,就会多出 5 元, 30元里包含有 6 个 5 元,所以,要 换6 次,即有 6张是 10 元的,有 14-6=8张是 5 元的。

练习一1,笼中共有鸡、 兔 100 只,鸡和兔的脚共 248 只。

求笼中鸡、 兔各有多少只? 2,一堆 2 分和 5 分的硬币共 39 枚,共值1.5 元。

问2 分和 5 分的各有多少枚? 3,营业员把一张5 元人币和一张5 角的人民币换成了 28张票面为一元和一角的人民币,求换来这两种人民币各多少张?【例题2】 有一元、二元、五元的人民币50张,总面值116 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(100-5×14)÷(10-5)=6(张)……10元 14-6=8(张)……5元
__________________________________________________
【思路导航】解法二:假设这14张全是10元的,则总钱数是 14×10=140(元),比实际多了140-100=40(元)。为什么会多 了40元呢?因为这14张人民币中有的是5元的。只要把一张5元假设 成10元的,就会多出5元,总共比实际多了40元,40元里面有8个5 元,就有8张5元假设成10元,所以一共有8张5元的,有14-8=6 (张)是10元的。
(365-3050)÷1.5 =400(箱) (24×20-400) )÷(20-15)=16(辆) 24-16=8(辆) 答:大汽车有8辆,小汽车有16辆。 __________________________________________________
__________________________________________________
举一反三3
1.有黑白棋子一堆,其中黑子个数是白子个数的3倍,如果 从这堆棋子中每次同时取出黑子6个、白子3个,那么取了多 少次后,白子余5个,而黑子还剩36个? 2.有一堆黑白棋子,其中黑子个数是白子个数的2倍,如果 从这堆棋子中每次同时取黑子3个、白子4个,那么取了多少 次后,黑子余29个,而白子还剩2个? 3.操场上有一群同学。男生人数是女生人数的4倍,每次同 时有2名男生和1名女生回教室,若干次后,男生剩下8人, 女生剩下1人。操场上原有多少名同学? __________________________________________________
五年级奥数 举一反三
第21周 假设法解题
邯郸市峰峰矿区 杨桂林
__________________________________________________
专题简析
假设法是解应用题时常用的一种思维方法。在一些 应用题中,要求两个或两个以上的未知量,思考时 可以先假设要求的两个或几个未知数相等,或者先 假设两种要求的未知量是同一种量,然后按题中的 已知条件进行推算,并对照已知条件,把数量上出 现的矛盾加以适当的调整,最后找到答案。
各有多少张。
________________________________________________是白子个数的2倍,如果从这堆棋 子中每次同时取出4个黑子和3个白子,那么取了多少次后,白子余 1个,而黑子还剩18个? 【思路导航】假设每次取出2个白子(黑子的一半),那么最后剩 下18个黑子的时候,白子应该剩下18÷2=9(个)。现在只剩下一 个白子,这是因为实际每次取3个,比假设多取了一个。所以,共 取了(9-1)÷(3-2)=8(次) 答:共取了8次。
(14×10-100)÷(10-5)=8(张)……5元 14-8=6(张)……10元 答:5元币有8张,10元币有6张。
__________________________________________________
举一反三1
1.笼中共有鸡和兔100只,鸡和兔的脚共248只。求笼中鸡和 兔各有多少只? 2.一些2元和5元的邮票共39枚,共值150元。问2元和5元的 各有多少枚? 3.营业员把一张5元人币和一张5角的人民币换成了28张票面 为一元和一角的人民币,求换来这两种人民币各多少张?
王牌例题4:
用大、小两种汽车运货。每辆大汽车装20箱,每辆小汽车装15箱。 现有24车货,价值3650元。若每箱便宜1.5元,则这批货价值3050 元。问大、小汽车各有多少辆?
【思路导航】根据“若每箱便宜1.5元,则这批货价值3050元”可 以知道一共便宜365-3050=600元,600元中包含有400个1.5元, 即这批货有400箱。假设24辆都是大汽车,则装货24×20=480(箱), 比实际箱数多4804-400=80(箱)。一辆大汽车换一辆小汽车可少 运20-15=5(箱),80里面有16个5,所以,有16辆小汽车,有24- 16=8(辆)大汽车。
举一反三2
1.有3元、5元和7元的汽车票400张,一共价值1920元。其中7 元的和5元的张数相等,三种面值的汽车票各有多少张?
2.有一元、五元和十元的人民币共14张,总计66元,其中一 元的比十元的多2张。问三种人民币各有多少张?
3.有1角、2角、4角、5角的邮票共26张,总计6.9元。其中1
角和2角的张数相等,4角的和5角的张数相等。求这四种邮票
__________________________________________________
王牌例题2: 有一元、二元、五元的汽车票50张,总面值116元。已知 一元的比二元的多2张,问三种面值的汽车票各有几张?
【思路导航】如果减少2张一元的,那么总张数就是48张, 总面值就是114元,这样一元的和二元的张数就同样多了。 假设这48张全是5元的,则总面值为5×48=240元,比实际 多出了240-114=126元,然后进行调整。用2张5元的换 一张1元和一张2元的就会减少7元,126÷7=18次,即换 18次。所以,原来二元的有18张,一元的有18+2=20张, 五元的有50-18-20=12张。 [5×(50-2) -114]÷(5+5-1-2)=18(张)……2元票 18+2=20(张)……1元票, 50-18-20=12 (张)……5元票 __________________________________________________
__________________________________________________
王牌例题1: 有5元的和10元的人民币共14张,共100元。问5元币和10元币各多 少张?
【思路导航】解法一:假设这14张全是5元的,则总钱数只有 5×14=70元,比实际少了100-70=30元。为什么会少了30元呢? 因为这14张人民币中有的是10元的。拿一张5元的换一张10元的, 就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是 10元的,有14-6=8张是5元的。
相关文档
最新文档