完全平方公式与平方差公式(第1课时-完全平方公式)教案
完全平方公式与平方差公式(公开课)
8.3完全平方公式与平方差公式(公开课)完全平方公式(第1课时)教学目标1、知识目标:理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。
2、能力目标:渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
教学重点与难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平一、复习回顾1、单项式的乘法法则2、多项式的乘法法则二、新课讲授1、推导两数和的完全平方公式计算(a+b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b22、理解公式特征①算式:两数和的平方②结果:两个数的平方和加上这两个数积的2倍3、语言叙述(a+b)2=a2+2ab+b2用语言如何叙述4、公式(a-b)2=a2-2ab+b2教学①利用多项式乘法(a-b)2=(a-b)(a-b)②利用换元思想(a-b)2=[a+(-b)]2③利用图形5、公式中的字母含义的理解。
(学生回答)(x+2y)2是哪两个数的和的平方?(x+2y)2=( )2+2( )( )+( )2(2x-5y)2是哪两个数的差的平方?(2x+5y)2=( )2+2( )( )+( )2变式(2x-5y)2可以看成是哪两个数的和的平方?三、应用新知,体验成功1、例1教学:用完全平方公式计算(1)(a+3)2(2)(y- 1)2 (3)(-2x+t)2(4)(-3x-4y)2学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方提出以下问题:(1)可否看成两数和的平方,运用两数和的平方公式来计算?(2)可否看成两数差的平方,运用两数差的平方公式来计算?(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y四、练习:运用完全平方公式计算:(学生板演)○1(a+5)2②(3+x)2③(y-2)2④(7-y)2⑤(2x+3y)2⑥(-2x-3y)2五、小结提高,知识升华1、两个公式 (a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b22、两种推导方法:多项式乘法导出;图形面积导出3、公式的灵活运用六、作业布置课本P71-P72习题8.31,11。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案第一章:完全平方公式介绍1.1 理解完全平方公式的概念解释完全平方公式的定义和意义强调完全平方公式的构成和特点1.2 探索完全平方公式的推导过程通过具体例子,引导学生探索完全平方公式的推导过程强调完全平方公式的推导方法和思路1.3 完全平方公式的应用提供一些应用题,让学生运用完全平方公式进行解答第二章:平方差公式的介绍2.1 理解平方差公式的概念解释平方差公式的定义和意义强调平方差公式的构成和特点2.2 探索平方差公式的推导过程通过具体例子,引导学生探索平方差公式的推导过程强调平方差公式的推导方法和思路2.3 平方差公式的应用提供一些应用题,让学生运用平方差公式进行解答第三章:完全平方公式与平方差公式的异同3.1 比较完全平方公式和平方差公式的形式引导学生观察和比较两个公式的形式和结构强调两个公式的相似之处和不同之处3.2 探索完全平方公式和平方差公式的转化关系通过具体例子,引导学生探索两个公式的转化关系强调两个公式的转化方法和思路3.3 完全平方公式和平方差公式的综合应用提供一些综合应用题,让学生运用完全平方公式和平方差公式进行解答第四章:完全平方公式和平方差公式的巩固练习4.1 提供一些练习题,让学生巩固完全平方公式和平方差公式的理解和应用设计一些填空题、选择题和解答题,考察学生对两个公式的理解和掌握程度提供一些综合练习题,让学生运用两个公式解决实际问题4.2 学生自主练习和合作交流鼓励学生自主练习,巩固对两个公式的理解和应用能力组织学生进行合作交流,分享解题思路和方法第五章:完全平方公式和平方差公式的拓展应用5.1 探索完全平方公式和平方差公式的拓展性质引导学生探索两个公式的拓展性质和规律强调两个公式的拓展方法和思路5.2 提供一些拓展应用题,让学生运用完全平方公式和平方差公式进行解答设计一些具有挑战性的题目,让学生运用两个公式解决实际问题鼓励学生自主探索,发现两个公式的更多应用和拓展性质第六章:完全平方公式与平方差公式的实际应用6.1 引入实际应用场景通过生活实例引入完全平方公式和平方差公式的实际应用场景强调数学与实际生活的联系6.2 运用公式解决实际问题提供一些实际问题,让学生运用完全平方公式和平方差公式进行解决第七章:完全平方公式与平方差公式的几何意义7.1 引入几何概念解释完全平方公式和平方差公式的几何意义强调几何概念与代数公式的联系7.2 运用几何图形解释公式通过几何图形,引导学生理解完全平方公式和平方差公式的几何意义强调几何图形在理解公式中的应用方法和技巧7.3 运用公式解决几何问题提供一些几何问题,让学生运用完全平方公式和平方差公式进行解决第八章:完全平方公式与平方差公式的变形应用8.1 介绍公式的变形方法解释完全平方公式和平方差公式的变形方法强调变形方法在解决不同问题时的应用8.2 运用变形公式解决问题提供一些问题,让学生运用变形后的完全平方公式和平方差公式进行解决鼓励学生自主练习,巩固对公式变形方法和应用的理解第九章:完全平方公式与平方差公式的综合练习9.1 提供综合练习题设计一些综合练习题,涵盖完全平方公式和平方差公式的各种应用场景强调综合练习题在巩固知识和提高解题能力的重要性9.2 学生自主练习和合作交流鼓励学生自主练习,提高解题能力组织学生进行合作交流,分享解题经验和解决问题的方法第十章:完全平方公式与平方差公式的拓展研究10.1 探索公式的拓展性质引导学生探索完全平方公式和平方差公式的拓展性质和规律强调拓展研究在提高数学素养和解决问题能力的重要性10.2 开展拓展研究项目组织学生开展完全平方公式和平方差公式的拓展研究项目强调团队合作和研究成果的分享强调拓展研究对于培养学生的创新能力和发展数学思维的重要性重点和难点解析一、完全平方公式介绍难点解析:理解完全平方公式中各项的来源和含义,以及如何识别完全平方公式的特征。
初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计
(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。
8、3完全平方公式与平方差公式第一课时
朱桥中心初中七年级数学下册教学设计课题:完全平方公式授课人:王海涛班级:七(2)班教学目标:知识技能1.理解完全平方公式的意义,准确掌握两个公式的结构特征.2.熟练运用公式进行计算.3.通过推导公式训练学生发现问题、探索规律的能力.4.培养学生用数形结合的方法解决问题的数学思想.过程与方法:通过推导公式训练学生发现问题、探索规律的能力.熟练运用公式进行计算.情感态度1.通过小组合作研究,培养学生合作交流意识和探索精神.2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:(1) 体会完全平方公式的发现和推导过程;(2)掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.教学难点:准确判别要计算的代数式是哪两个数的和(或差)的平方,综合运用完全平方公式进行计算.教学过程:一、导入新课:提出问题,学生自学1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;(2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______;二.探索新知:1.问题:一块边长为a米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。
(如图)a b(1)四块面积分别为:、、、 ;b(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S= ;a a ②部分看:四块面积的和,S= 。
a b总结:通过以上探索你发现了什么?〖点拨方法〗数形结合,正方形的面积可以分开算,也可以合起来算. 〖设计说明〗从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力.2.问题:如果将该正方形田地的边长缩减b 米,则其边长又为多少?面积呢?要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出现在的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景。
《完全平方公式(第一课时)》的教学设计
《完全平方公式(第一课时)》的教学设计一、教材分析本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用,其地位和作用主要体现在以下几个方面:1、整式是初中代数的一块重要内容,整式的运算又是整式中的一大主干。
一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,公式的推导是使用推理方法实行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
2、乘法公式是后继学习的必备基础,不但能提升学生运算速度、准确率,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐严密的逻辑推理水平的功能。
3、公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好的模式。
二、教法与学习目标分析针对初一学生的年龄特征,本节课采用自主探索,启发引导,合作交流展开教学,引导学生主动地实行观察、猜测、验证和交流。
教学过程边启发,边探索,边归纳,突出以学生为主体的探索性学习活动。
“完全平方公式”的教学目的应是“熟练掌握”。
一方面要准确理解公式,让学生自己得出公式,是准确理解公式的措施之一;同时还要扫除准确理解的障碍,即消除一些容易混淆之处。
另一方面,通过把公式使用到各种情况中去来达到熟练使用。
对于易混淆之处,应提升新旧知识的可分辨性。
通过变式对一些以前学过的,对现在公式容易产生混淆的内容(如积的乘方公式、平方差公式)实行分辨,从比较中加深对正面法则的理解。
三、教学目标1、识记目标:理解完全平方公式的意义,准确掌握公式的结构特征;2、水平目标:经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新水平,发展逻辑推理水平和有条理的表达水平,培养学生用数形结合的方法解决问题的数学思想;3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
渗透数学公式的结构美、和谐美。
四、教学重点、难点本节重点是体会公式的发现和推导过程,掌握公式的结构特征和字母表示的广泛含义,准确使用公式实行计算。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计
(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
8.3完全平方公式与平方差公式(第1课时)
课题:8.3完全平方公式与平方差公式(第1课时)班级 姓名 家长签名【学习目标】1、经历探索完全平方式公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导乘法公式:(a 〒b )2=a 2〒2ab+b 23、了解公式的几何背景,会用公式计算。
【自主学习】(预习课本第68--69页)一、知识回顾:请同学们应用已有的知识完成下面的几道题:(1)2)32(-x =91249664)32)(32(22+-=+--=--x x x x x x x(2)2)32(+x = ;(3)2)(b a += ;(4)2)(b a -= ;二、探究新知:活动1:观察上面4道题中等式左边的形式和最终计算出的结果,发现其中的规律:1、左边都是 形式,右边都是 次 项式,2、左边第一项和右边第一项有什么关系?3、左边第二项与右边最后一项是什么关系?4、右边中间一项与左边两项的关系是什么?归纳:完全平方公式:(a+b )2= (a-b )2= 语言叙述: 活动2:其实我们还可以从几何的角度去解析完全平方公式,你能通过下面的拼图游戏说明完全平方公式吗?问题1你能根据图1谈一谈 (a + b )2=a 2 + 2ab+b 2吗?我们可以用两种不同的方法计算总面积。
方法一:方法二:问题2你能根据图2,谈一谈(a -b )2=a 2-2ab+b 2吗?我们试着用两种方法计算(Ⅲ)的面积。
方法一:方法二:活动3:利用完全平方公式计算:如:2222)(2)2(2)x y x x y y +=+⋅+(= 2244x xy y ++(a +b )2 = a 2 + 2 a b+ b 2①2(5)a + ②2(32)a b - ③2)213(y x +④2)32(+x ⑤2)32(--x ⑥2)32(-x⑦2)32(+-x ⑧2 999由④~⑦你发现了吗?如果两个数是相同的符号,则结果中的每一项的符号 的,如果两个数具有不同的符号,•则。
完全平方公式与平方差公式的教案
完全平方公式与平方差公式的教案完全平方公式与平方差公式的教案「篇一」平方差公式的优秀教案篇一:平方差公式的教案编者按:由中国教育部国际交流司与师范司,以及东芝公司共同举办的首届“东芝杯·中国师范大学师范专业理科大学生教学技能创新实践大赛”20xx年11月30日在北京落下帷幕。
在参加数学模拟授课、教案评比、即席演讲三项决赛的12所师范大学中,华南师范大学的林佳佳夺得冠军(三项均列第一),北京师范大学的郗鹏获亚军,南京师范大学的朱嘉隽获季军。
三名获奖选手每人除了获奖励高级笔记本电脑一台之外,并获得免费赴日进行短期访学。
本刊刊登获得第一名的教案,以飨读者。
【课题】 15.2.1 平方差公式【教材】人教版八年级数学上册第151页至153页. 【课时安排】 1个课时. 【教学对象】八年级(上)学生.【授课教师】华南师范大学林佳佳. 【教学目标】 ? 知识与技能(1)理解平方差公式的本质,即结构的不变性,字母的可变性;(2)达到正用公式的水平,形成正向产生式:“﹙□+△﹚﹙□–△﹚”→“□2 –△2”。
过程与方法(1)使学生经历公式的.独立建构过程,构建以数的眼光看式子的数学素养;(2)培养学生抽象概括的能力;(3)培养学生的问题解决能力,为学生提供运用平方差公式来研究等周问题的探究空间。
? 情感态度价值观纠正片面观点: ?数学只是一些枯燥的公式、规定,没有什么实际意义!学了数学没有用?体会数学源于实际,高于实际,运用于实际的科学价值与文化价值。
【教学重点】 1.平方差公式的本质的理解与运用;2.数学是什么。
【教学难点】平方差公式的本质,即结构的不变性,字母的可变性。
【教学方法】讲练结合、讨论交流。
【教学手段】计算机、PPT、flash。
【教学过程设计】二、教学过程设计第 2 页第 3 页第 4 页篇二:平方差公式优秀教案教学目标:一、知识与技能1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
苏科版数学七年级下册春8.3《完全平方公式与平方差公式》教案1
初中数学试卷《完全平方公式与平方差公式》教学目标:1、学会推导完全平方公式和平方差公式.2、了解公式的几何背景,会用公式进行简单计算.教学重点:对公式的理解.教学难点:1、对完全平方公式和平方差公式的运用;2、对公式中字母所表示的广泛含义的理解和正确运用.教学过程:完全平方公式(一)导入新课:请同学们回忆多项式乘法法则并用多项式的乘法法则计算:(a+b)2=(a-b)2=说明:乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(二)新课讲解:总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.思考:你能用语言表述这两个公式吗?语言叙述:完全平方公式的语言叙述:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.平方差公式语言叙述:两个数的和与这两个数差的积,等于这两个数的平方差.几何意义:应用举例:例:利用乘法公式计算:(1)(2x+y)2(2)(3a-2b) 2※字母a、b可以是数字,也可以是整式.(三)课堂练习:计算:(1)(3x+1)2 (2)(a-3b)2(3)(2x+y/2)2(4)(-2x+3y)2平方差公式(一)探究平方差公式计算下列多项式的积.(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=(4)(x+5y)(x-5y)=观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?分别用文字语言和符号语言叙述这个公式.用字母表示:(二)平方差公式的应用例:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2 -22(a+b)(a–b)=a2 -b2同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.例:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.(4)运算的最后结果应该是最简.巩固练习下列计算对不对?如不对,应当怎样改正?(1)(x+2)(x-2)=x2 -2(2)(-3a-2)(3a-2)=9a2 -4。
第1课时 完全平方公式教学设计
14.2.2完全平方公式第1课时完全平方公式完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,本节课通过学生合作学习,利用多项式相乘法则进行推导,并利用计算图形面积进行验证,进而理解和运用完全平方公式,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用.此外本节课在教学过程中力图向学生渗透数形结合思想以及换元思想,为今后数学方法的学习奠定了基础.【悬念激趣】请同学们探究下列问题:一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,来三个孩子,老人就给每个孩子三块塘……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果总数与前两天他们得到的糖果总数哪个多?多多少?为什么?[生](1)第一天老人一共给了这些孩子a2块糖.(2)第二天老人一共给了这些孩子b2块糖.(3)第三天老人一共给了这些孩子(a+b)2块糖.(4)孩子们第三天得到的糖块总数与前两天他们得到的糖块总数比较,应用减法.即(a+b)2-(a2+b2).[师]我们上一节学了平方差公式,即(a+b)(a-b)=a2-b2,现在遇到了两个数的和的平方,该怎样处理呢?【说明与建议】说明:采用“情境——探究”教学方法,让学生在所创设的情境中领会完全平方公式的内涵.建议:教师可进一步设计如下问题:能不能将(a+b)2转化为我们学过的知识去解决呢?像研究平方差公式一样,我们来研究一下(a+b)2的运算结果有什么规律吧!研究出这个公式后教师要及时将问题的结果展示给学生,可以让学生进一步理解完全平方公式的结构特征.(现在,大家可以轻松解决老人用糖招待孩子的问题了!(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.)命题角度1直接运用完全平方公式计算1.计算:(1)(2x+3)2;(2)(x+2)2-(x-1)(x-2).解:(1)原式=4x2+12x+9.(2) 原式=x2+4x+4-(x2-2x-x+2)=x2+4x+4-x2+2x+x-2=7x+2.命题角度2利用完全平方公式进行数字计算2.计算:1032.解:原式=(100+3)2=1002+2×100×3+32=10 000+600+9=10 609.命题角度3完全平方公式的变形3.已知(a+b)2=11,ab=1.(1)求a2+b2的值;(2)求a-b的值.解:(1)a2+b2=(a+b)2-2ab=11-2=9;(2)∵(a-b)2=a2+b2-2ab=9-2=7,∵a-b=±7.命题角度4利用乘法公式研究图形特征4.你能根据如图图形的面积关系得到的数学公式是(C)A .a(a -b)=a 2-abB .(a +b)2=a 2+2ab +b 2C .(a -b)2=a 2-2ab +b 2D .a(a +b)=a 2+ab【探究新知】1.对于【课堂引入】的问题,教师组织学生通过观察上面的运算结果中的每一项,猜测它们的共同特点.学生活动:分成小组,讨论、观察、探讨,发现规律如下:(1)右边第一项是左边括号中第一项的平方,右边最后一项是左边括号中第二项的平方,中间一项是左边括号中第一项和第二项乘积的2倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,右边中间一项的符号就为“-”号,其余都为“+”号.教师提问:那我们就利用简单的(a+b)2与(a-b)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算.我们可以看出,上面几个运算都是形如(a±b)2的多项式相乘,由于(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2.(a-b)2=(a-b)(a-b)==a2-ab-ab+b2=a2-2ab+b2.所以,对于具有此相同的多项式相乘,我们可以直接写出运算结果,即(a+b)2=a2+2ab+b2.(a-b)2=a2-2ab+b2.语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.2.几何推导验证:问题1:一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案一、教学目标:1. 让学生掌握完全平方公式和平方差公式的概念及运用。
2. 培养学生运用公式解决实际问题的能力。
3. 引导学生发现数学规律,提高学生的数学思维能力。
二、教学内容:1. 完全平方公式:(a±b)²= a²±2ab+b²2. 平方差公式:(a±b)(a∓b) = a²±b²三、教学重点与难点:1. 教学重点:完全平方公式和平方差公式的记忆与运用。
2. 教学难点:完全平方公式和平方差公式的推导过程。
四、教学方法:1. 采用讲解法,引导学生理解完全平方公式和平方差公式的含义。
2. 运用例题,让学生通过实践掌握公式的运用。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学步骤:1. 导入新课:通过复习平方根的概念,引导学生进入平方公式的学习。
2. 讲解完全平方公式:讲解完全平方公式的推导过程,让学生理解公式的含义。
3. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解公式的含义。
4. 例题讲解:运用例题,让学生掌握公式的运用。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与拓展:总结完全平方公式和平方差公式的运用,引导学生发现数学规律,提高学生的数学思维能力。
7. 课后作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂练习环节,观察学生对完全平方公式和平方差公式的掌握情况。
2. 通过课后作业的完成情况,评估学生对课堂所学知识的巩固程度。
3. 组织小型测验,检验学生对完全平方公式和平方差公式的运用能力。
七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。
2. 对学生在学习中遇到的问题,进行个别辅导,帮助他们解决问题。
3. 鼓励学生在课堂上积极提问,解答他们的疑问。
八、教学调整:1. 根据学生的学习情况,调整教学进度和教学方法。
《完全平方公式与平方差公式》 讲义
《完全平方公式与平方差公式》讲义一、完全平方公式完全平方公式是数学中一个非常重要的公式,它有两个形式:(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²我们来详细解读一下这两个公式。
先看(a + b)²= a²+ 2ab + b²。
想象有一个边长为(a + b)的正方形,它的面积就是(a + b)²。
我们可以把这个正方形分成四块,分别是边长为 a 的正方形、边长为 b 的正方形,以及两个长为 a 宽为 b 的长方形。
那么这个大正方形的面积就等于这四块面积之和,即 a²+2ab + b²。
再看(a b)²= a² 2ab + b²。
同样,我们可以把(a b)²看成是一个边长为(a b)的正方形的面积。
通过类似的分割方法,也能得出其面积为 a² 2ab + b²。
完全平方公式在计算和化简式子时非常有用。
例如,计算(3 + 4)²。
我们可以直接使用完全平方公式:(3 + 4)²= 3²+ 2×3×4 + 4²= 9 + 24 + 16 = 49。
又比如,化简(x + 2y)²。
根据公式可得:(x + 2y)²= x²+2×x×2y +(2y)²= x²+ 4xy + 4y²。
在解决实际问题中,完全平方公式也经常出现。
假设一个正方形的边长增加了 5 厘米,原来的边长为 x 厘米,那么面积增加了多少?原来正方形的面积是 x²平方厘米,边长增加后的正方形边长为(x+ 5)厘米,面积为(x + 5)²平方厘米。
面积增加的值就是(x + 5)² x²,利用完全平方公式展开可得:(x + 5)² x²=(x²+ 10x + 25) x²= 10x + 25 (平方厘米)二、平方差公式平方差公式为:(a + b)(a b)= a² b²这个公式的意思是,两个数的和与这两个数的差相乘,等于这两个数的平方差。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案第一章:完全平方公式简介1.1 学习目标了解完全平方公式的概念和意义。
学会使用完全平方公式进行计算。
1.2 教学内容完全平方公式的定义:对于任意实数a和b,有(a+b)^2 = a^2 + 2ab + b^2。
完全平方公式的推导过程。
完全平方公式的应用示例。
1.3 教学活动通过实例引入完全平方公式的概念。
引导学生通过观察和思考推导完全平方公式。
让学生通过练习题应用完全平方公式进行计算。
第二章:完全平方公式的应用2.1 学习目标学会使用完全平方公式解决实际问题。
能够运用完全平方公式进行二次方程的求解。
2.2 教学内容完全平方公式在实际问题中的应用示例。
利用完全平方公式求解二次方程的方法。
2.3 教学活动通过实际问题引入完全平方公式的应用。
引导学生运用完全平方公式解决实际问题。
让学生通过练习题求解二次方程。
第三章:平方差公式的介绍3.1 学习目标了解平方差公式的概念和意义。
学会使用平方差公式进行计算。
3.2 教学内容平方差公式的定义:对于任意实数a和b,有(a-b)(a+b) = a^2 b^2。
平方差公式的推导过程。
平方差公式的应用示例。
3.3 教学活动通过实例引入平方差公式的概念。
引导学生通过观察和思考推导平方差公式。
让学生通过练习题应用平方差公式进行计算。
第四章:平方差公式的应用4.1 学习目标学会使用平方差公式解决实际问题。
能够运用平方差公式进行二次方程的求解。
4.2 教学内容平方差公式在实际问题中的应用示例。
利用平方差公式求解二次方程的方法。
4.3 教学活动通过实际问题引入平方差公式的应用。
引导学生运用平方差公式解决实际问题。
让学生通过练习题求解二次方程。
第五章:完全平方公式与平方差公式的综合应用5.1 学习目标学会综合运用完全平方公式和平方差公式解决实际问题。
能够灵活运用两个公式进行计算和求解问题。
5.2 教学内容完全平方公式和平方差公式的综合应用示例。
实际问题中综合运用两个公式的方法。
八年级上数学人教版《 平方差公式、完全平方公式》教案
《平方差公式、完全平方公式》教案一、教学目标1.掌握平方差公式和完全平方公式的结构特征,能够运用这两个公式进行简单的运算。
2.理解公式中的字母含义,掌握公式的逆向运用。
3.培养学生观察、归纳、推理的思维能力,并体会公式在解决实际问题中的运用。
二、教学内容及重难点1.教学内容(1)平方差公式:两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。
(2)完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
2.教学重点(1)掌握平方差公式和完全平方公式的结构特征。
(2)能够运用公式进行简单的运算。
3.教学难点(1)理解公式中的字母含义,掌握公式的逆向运用。
(2)运用公式解决实际问题。
三、教学方法及手段1.复习导入:复习整式的加减法运算规则,引出本节课的课题——平方差公式和完全平方公式。
2.探究新知:通过举例和图示,引导学生观察、分析、归纳平方差公式和完全平方公式的结构特征,并尝试用自己的语言描述这两个公式的意义。
3.讲解示范:通过例题解析,引导学生掌握公式的运用方法,并强调公式的逆向运用,加深学生对公式的理解。
4.练习巩固:设计多个练习题,让学生自主完成并检查他们的掌握情况,及时反馈并纠正错误。
5.小结提升:总结本节课学习的内容,强调公式的运用方法和注意事项,并引导学生体验公式在解决实际问题中的运用。
四、教学评价及反馈1.评价方式:采用口头提问、板演、小组讨论等多种形式进行评价,关注学生的参与度和表现。
2.反馈方式:及时给予学生正面的反馈和建设性的意见,帮助他们认识自己的不足并努力改进。
同时也要鼓励他们发挥自己的优点和特长。
人教版八年级上册数学14.2:平方差公式与完全平方公式教案
一、教学内容
人教版八年级上册数学14.2:平方差公式与完全平方公式
1.平方差公式:
- (a+b)(a-b)=a²-b²
- (a+b)²=(a-b)²+4ab
- (a-b)²=(a+b)²-4ab
2.完全平方公式:
- (a+b)²=a²+2ab+b²
- (a-b)²=a²-2ab+b²
- (a±b)²=a²±2ab+b²
3.应用平方差公式与完全平方公式进行因式分解:
- a²-b²=(a+b)(a-b)
- a⁴-b⁴=(a²+b²)(a²-b²)
பைடு நூலகம்- a⁶-b⁶=(a³+b³)(a³-b³)
4.典型例题:
-利用平方差公式与完全平方公式解决实际问题
-利用平方差公式与完全平方公式进行因式分解
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方差公式与完全平方公式的基本概念。平方差公式是指(a+b)(a-b)=a²-b²这一规律,它在简化计算和因式分解中起着重要作用。完全平方公式则是指(a±b)²=a²±2ab+b²,它帮助我们快速计算某些特定形式的乘方。
2.案例分析:接下来,我们来看一个具体的案例。计算(3x+4)²,通过完全平方公式的应用,我们可以得到3x²+2*3x*4+4²,从而简化计算过程。
今天的学习,我们了解了平方差公式与完全平方公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这两个公式的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
8.3 完全平方公式与平方差公式
(第1课时) 完全平方公式
一、教学背景
(一)教材分析
乘法公式是在学习了单项式乘法、多项式乘法之后学习的,是特殊形式多项式乘法结果的一中归纳和总结,并且将这种结果应用于形式相同的多项式乘法,达到简化计算的目的.乘法公式是初中运用推理方法进行代数式恒等变形的开端,也是学习因式分解和分式运算的重要基础.
(二)学情分析
学生在8.2节学习了多项式的乘法,为推导和掌握完全平方公式奠定了基础.
学生在经历多项式的乘法基础上,初步为学习完全平方公式提供了思维方式.七年级下学生的认知发展已具备了转化、数形结合的能力,富有积极思考、主动探索、合作交流情感基础,为推导完全平方公式提供了保证.
二、教学目标:
1 经历探索完全平方公式的过程,进一步发展符合感和推理能力.
2 会推导完全平方公式,并能运用公式进行简单的计算.
3 进一步体会转化、数形结合等思想。
三、重点、难点:
重点:体会 的发现和推导过程,并能用之计算. 难点:掌握公式字母表达式的意义及对完全平方公式的运用.
四、教学方法分析及学习方法指导
教学方法:
在教学中要引导学生发现公式,并探究公式的推导过程,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,引导学生借助面积图形对完全平方公式做直观说明,加深学生对公式理解。
所以教学中要运用联系、对比、特点方式加以引导学生学习.
学法指导:
学习中,让学生主动发现公式,并探究公式的推导过程,应着重让学生认识、掌握公式的结构特征和字母表示数的广泛意义,在公式的运用上,把公式中的字母同具体题目中的数或式子,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
()2
222a b a ab b ±=±+
五、教学过程:
(一)情景导入:
去年,一位农民将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大,今年,他想把原来的试验田,边长增加b 米,形成四块试验田,种植不同的新品种.
请用不同的形式表示实验田的总面积, 并进行比较. b
直接方法:()2a b + 间接方法:22a ab ab b +++
探索你发现什么:()2a b +=222a ab b ++ a a b
设计意图:联系实际生活,渗透数形结合思想,让学生形象直观感受两数和的完全平方公式的构成.
(二)知识回顾:
多项式与多项式相乘的乘法法则是什么?
(三)探究新知:
,? ()()a b a b +22计算: -
设计意图:复习时明确多项式与多项式相乘的乘法法则很有必要,这是新旧知识的链接.使学生了解“两数和”与“两数差”的完全平方公式从本质上看是统一的,经历从一般到特殊的认识过程.
归纳:完全平方公式的文字叙述:
()2a b +=222a ab b ++ ()2222a b a ab b -=-+
完全平方公式的数学表达式:
两个数的和(或差)的平方,等于这两个数的平方和,加(或减)这两个数乘积的2倍.
公式特征:
1 积为二次三项式;
2 积中两项为两数的平方和;
3 另一项是两数积的2倍,且与乘式中间的符号相同.
4 公式中的字母a ,b 可以表示数,单项式和多项式.
思考:
1 小颖写出了如下的算式: ()[()]a b a b -=+-22
她是怎么想的? 你能继续做下去吗?
()[()]a b a b -=+-22
=()()2222a a b b +-+-
=222a ab b -+
2 你能根据图1和图2中的面积说明完全平方公式吗?
和的完全平方公式:()222a b a ab ab b +=+++的几何意义
差的完全平方公式:()2
22a b a ab ab b -=--+的几何意义
设计意图:渗透数形结合思想,让学生形象直观的感受两数和、差的完全平方公式的构成.
(四)合作学习:
例1 利用乘法公式计算:
()()+-2212x y 23a 2b () () ()(
)() ()+=++22212x y 2x 22x y y 解: b b b b b
(a + b) 2=2a + 2 a b +2b
224x 4xy y =++
()()()()()222
(2)3232322a b a a b b -=-+ b b b b b
(a + b)2= 2a -2 a b + 2b
图 1 图2
22
9 12 4a ab b =-+
设计意图:通过合作学习,进一步理解掌握完全平方公式,并让学生认清解题应规范,使学生注重良好学习习惯的培养.
(五)自主学习:
1下面计算是否正确?如有错误请改正.
()-=-+22132x 912x 2x () ()+=++2222a b a ab b ()
? () -=--223a 1a 2a 1() 2 利用乘法公式计算:
21()(3)x +1 () ) (3a b 22- () 2
()y x +232 () 3( -)x y +242 3 如图,是一张正方形的纸片,如果把它沿着各边都剪去3cm 宽的一条,那么所得小正方形的面积比原正方形的面积减少84cm2,求原正方形的边长.
设计意图:通过小结,让学生体验成功的喜悦和探索的乐趣,增强自信心. (六)课堂小结:
这节课你有哪些收获?我们一 起来分享一下吧!
设计意图:通过小结,让学生谈收获及注意的问题,让学生认识自我,增强自信心.
(七)课后作业:
必做:课本71页习题8.3:第1、7、8题
选做:1 222200820092009-⨯⨯+2008
2 若229x kx ++是完全平方式,则k=____
板书设计:
预设反思:
本节课从“一个边长为am的正方形菜地的边长扩大边长bm,求变化后正方形菜地的面积”引入新课,课件合理使用突破了难点,又使学生的心理产生了求知欲和学习兴趣.
随着新课的进行、问题的提出,学生在教师的引导下充分经历观察、比较、交流、反思、发现问题过程,积极参与教学中;通过从一般到特殊、数形结合等思维活动、不断激起学生的“兴奋点”,让学生体会到探索的艰辛,也体会到成功喜悦,发挥教师是学生学习的“促进者”的作用。
但要给学生掌握完全平方公式提供时间和空间。