初三数学第6讲:图形的旋转和中心对称(教师版)
人教版九年级上册数学《中心对称》旋转PPT教学课件
O B′
B A
C′ 【注意】如果限制只用直尺作图,我们用解法2.
探究新知
素养考点 2 利用中心对称的性质确定线段或角的值
例2 如图,已知△AOB与△DOC成中心对称, △AOB的面积是12,AB=3,则△DOC中CD边上 的高为___8_____.
解析:设AB边上的高为
是12,AB=3,易得
(1) OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
探究新知
中心对称的性质
1.成中心对称的两个图形中,对应点所连线段经 过对称中心,且被对称中心平分.(即对称点与对 称中心三点共线)
2.中心对称的两个图形是全等形.
探究新知
素养考点 1 根据中心对称的性质作图
例1 如图,已知四边形ABCD和点O,试画出四边形 ABCD关于点O成中心对称的图形A'B'C'D'.
图(1)
对接中考 3
在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系, △ABC的顶点都在格点上,请解答下列问题: (1)作出△ABC向左平移4个单位长度后得到的△A1B1C1 ,并写出点C1的坐标;
对接中考 3
在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系, △ABC的顶点都在格点上,请解答下列问题: (2)作出△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标.
探究新知
【思考】两个图形成中心对称需要具备什么条件?
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
探究新知
填一填: 如图,△OCD与△OAB关于点O中心对称 ,则 __O__是对称中心,点A与___C__是对称点, 点B 与__D__是对称点. C
初三北师大版数学教案
初三北师大版数学教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编给大家整理的初三北师大版数学教案5篇,希望大家能有所收获!初三北师大版数学教案1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习-平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习-平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,△AOE,△BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.△AOA′,△BOB′,△COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.△AOA′=△BOB′=△COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是△ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即△BCB′=△ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作△BCE,使得△BCE=△ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.初三北师大版数学教案2中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,△AOB=△A′OB′,△△AOB△△A′OB′,△AB=A′B′,同理可证:AC=A′C′,BC=B′C′,△△ABC△△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习初三北师大版数学教案3中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.△AO=OC,BO=OD,△AOB=△COD△△AOB△△COD△AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.初三北师大版数学教案4(一)知识教学点1.使学生初步了解统计知识是应用广泛的数学内容.2.了解平均数的意义,会计算一组数据的平均数.3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.(二)能力训练点培养学生的观察能力、计算能力.(三)德育渗透点1.培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,反地来又作用于实践的观点.(四)美育渗透点通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.重点·难点·疑点及解决办法1.教学重点:平均数的概念及其计算.2.教学难点:平均数的简化计算.3.教学疑点:平均数简化公式的应用,a如何选择.4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .教学步骤(一)明确目标在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲7868659107 4乙9578768677 1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.(二)整体感知解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.(三)教学过程这节课我们首先来学习-平均数.1.(出示幻灯片)请同学看下面问题:某班第一小组一次数学测验的成绩如下:86 9110072938990 857595这个小组的平均成绩是多少?教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.2.平均数的概念及计算公式一般地,如果有n个数x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n① 叫做这n个数的平均数,读作“x拨” .这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.3.平均数计算公式①的应用例1 一个地区某年1月上旬各天的最低气温依次是(单位:△):-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温.让学生动手计算,以巩固平均数计算公式(一名学生板演)教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同. 例 2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):210208200205202218206214215207195207218192202216 185227187215 计算它们的平均质量.(用投影仪打出) 引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法. 学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受. 3.推导公式②一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1△=x1-a, x2△=x2-a, x3△=x3-a, △xn△=xn-a,那么x△=x-a ②为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答)课堂练习:教材P148中~P149中1,2,3(四)总结、扩展知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识. 2.求n个数据的平均数的公式① . 3.平均数的简化计算公式② .这个公式很重要,要学会运用.方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.布置作业教材P153中1、2、3、4 .初三北师大版数学教案51、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.3、解决问题:例1 作圆,使它和已知三角形的各边都相切.引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.提出以下几个问题进行讨论:①作圆的关键是什么?②假设△I是所求作的圆,△I和三角形三边都相切,圆心I应满足什么条件?③这样的点I应在什么位置?④圆心I确定后半径如何找.A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.(二)类比联想,学习新知识.1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、类比:确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分△BAC、△ABC、△ACB;(3)内心在三角形内部.3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.4、概念理解:引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.(三)应用与反思例2 如图,在△ABC中,△ABC=50°,△ACB=75°,点O是三角形的内心.求△BOC的度数分析:要求△BOC的度数,只要求出△OBC和△0CB的度数之和就可,即求△l十△3的度数.因为O是△ABC的内心,所以OB和OC分别为△ABC和△BCA的平分线,于是有△1十△3= (△ABC 十△ACB),再由三角形的内角和定理易求出△BOC的度数.解:(引导学生分析,写出解题过程)例3 如图,△ABC中,E是内心,△A的平分线和△ABC的外接圆相交于点D求证:DE=DB分析:从条件想,E是内心,则E在△A的平分线上,同时也在△ABC的平分线上,考虑连结BE,得出△3=△4.从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.证明:连结BE.E是△ABC的内心又△△1=△2△1=△2△△1+△3=△4+△5△△BED=△EBD△DE=DB练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三(四)小结1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?2.学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,△B=90°.(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出的圆形纸片的半径(要求精确值).提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:如图2,①以AC为轴对折;②对折△ABC,折线交AC于O;③使折线过O,且EB与EA 边重合.则点O为所求圆的圆心,OE为半径.(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,△r=.初三北师大版数学教案。
暑期备课笔记-初三数学第6讲:图形的旋转和中心对称(教师版)
第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。
初中数学旋转对称教案
初中数学旋转对称教案教学目标:1. 了解旋转对称的概念,理解旋转对称与轴对称的区别。
2. 学会运用旋转对称的性质进行图形的变换和解决问题。
3. 培养学生的观察能力、操作能力和逻辑思维能力。
教学内容:1. 旋转对称的概念和性质2. 旋转对称与轴对称的比较3. 运用旋转对称性质进行图形变换教学过程:一、导入(5分钟)1. 引导学生回顾轴对称的概念和性质。
2. 提问:除了轴对称,还有其他的图形变换吗?3. 引入旋转对称的概念,激发学生的兴趣。
二、新课讲解(15分钟)1. 讲解旋转对称的概念:一个图形绕某一点旋转一定角度后,与原来的图形完全重合,这种变换叫做旋转对称。
2. 讲解旋转对称的性质:a. 旋转对称的中心点是固定的,称为旋转中心。
b. 旋转的角度是固定的,称为旋转角。
c. 旋转前后的图形完全重合。
3. 讲解旋转对称与轴对称的区别:a. 轴对称是沿一条直线折叠,两边完全重合。
b. 旋转对称是绕一个点旋转,整体完全重合。
三、实例演示与操作(15分钟)1. 展示一些生活中的旋转对称现象,如钟表、风车等。
2. 让学生动手操作,尝试找出旋转对称的中心点和旋转角。
3. 引导学生发现旋转对称的性质,如对应点、对应线段的关系。
四、练习与巩固(15分钟)1. 给出一些图形,让学生判断是否为旋转对称。
2. 让学生运用旋转对称的性质,进行图形的变换和解决问题。
3. 引导学生总结旋转对称的应用场景和实际意义。
五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生巩固旋转对称的概念和性质。
2. 强调旋转对称与轴对称的区别。
3. 鼓励学生在日常生活中发现和运用旋转对称。
教学评价:1. 课堂讲解是否清晰、易懂,学生是否能理解和掌握旋转对称的概念和性质。
2. 学生是否能正确判断图形是否为旋转对称,并能运用旋转对称的性质进行图形变换和解决问题。
3. 学生是否能发现和总结旋转对称在生活中的应用场景和实际意义。
教学反思:本节课通过导入、新课讲解、实例演示与操作、练习与巩固、课堂小结等环节,让学生学习了旋转对称的概念、性质和应用。
人教版初中数学九年级上册 中心对称 初中九年级数学教学课件PPT 人教版
中心对称的作图
例1、(1)已知A点和O点,画出点A关于点O的Βιβλιοθήκη 称点A'AO
A'
连结AO,在AO的延长线上截取OA'=OA, 则A'是所求的点
例1.(2)、已知线段AB和O点,画出线段AB关于点O的对称线
段A' B'
B'
连结AO,在AO的延长线上截取OA'=OA,
则得A的对称点A'
A O
连结BO,在BO的延长线上截取O B' =OB,
中心对称
一、回顾旧知
旋转的定义
在平面内,把一个图形绕一个定 点,沿某个方向转动一个角度,像 这样的图形变换称作旋转 这个定点称为旋转中心 所转动的角称为旋转角
旋转三要素
旋转中心、旋转方向、
旋转角度
旋转的基本性质
1、旋转前后的图形全等 2、对应点到旋转中心的距离相等 3、对应点与旋转中心连线的夹角
(3)全等的两个图形,不是成中心对称的图形,就是成轴
对称的图形。 ( )×
3。选择题: 如果两个图形成中心对称,下列说法正确的是 ( D) (1)对称点连线必经过对称中心,且被对称中心平分。 (2)这两个图形一定是全等形。 (3)把一个图形绕着对称中心旋转后定与另一个图形重合。 (A)(1)(2)(3)(B)(2)(3) (C)(1)(3) (D)(1)(2)
Aʹ
(2).在△AOB与△CAʹ ′ O B′中 Bʹ
OA=OA ′,OB=OB ′ ∠AOB= ∠A′ OB ′ O B
C
∴ △AOB≌△ A′ O B′(SAS)
∴AB=A ′ B ′
A
同理 : BC=B ′ C ′,AC=A ′ C ′
新人教版初中数学九年级上册《中心对称》教学课件
●B'
A'
图17
巩固落实
如图17,△ABC 与△A'B'C'关于某一个点成 中心对称,点A,B 的对称点分别为点A '和B'. 请作出△A'B'C'. ①如图18,连接AA'和BB', 交于点0,则点O就是对称中心;
图18
巩固落实
如图17,△ABC 与△A'B'C '关于某一个点成 中心对称,点A,B 的对称点分别为点A'和B'. 请作出△A'B'C'.
图1
这两个旋转的旋转角度都是
180°,无论逆时针旋转或顺时
针旋转,旋转后两个图形重合.
图2
探究新知
中心对称的定义: 把一个图形绕着某一点旋转180°,如果它能够 与另一个图形重合,那么就说这两个图形关于这 个点对称或中心对称,这个点叫做对称中心( 简 称中心).这两个图形在旋转后能重合的对应点叫 做关于对称中心的对称点.
这节课我们学到了什么?
温馨提示
一叶知秋,题海不是解决问题的最好办 法,如果能够深入研究我们的典型题和一些
基本数学模型,相信所有的题目都万变不离
其宗。
谢谢聆听
做一做 第一步,画出△ABC, 见图3;
探究新知
做一做 第二步,以三角尺的一个顶点0为中心, 把三角尺旋转180°,画出△A'B'C', 见图4;
探究新知
做一做 第三步,移开三角尺,见图5.
探究新知
思考 ( 1 ) 点 0 在 线 段 AA' 上 吗 ? 如 果 在 , 在 什 么 位 置 ? (2)△ABC 与△A'B'C'有什么关系? (3)你能从以上过程中总结出中心对称的性质吗?
人教版初中九年级数学课精品PPT教学课件-中心对称
求证:(2)△ABC≌△A′B′C′
证明:(1)在△ABC和△A′B′C′中,OA=OA′, OB=OB′,∠AOB=∠A′OB′
∴△AOB≌△A′OB′ ∴AB=A′B′ 同理:AC=A′C′,BC=B′C′ ∴△ABC≌△A′B′C′
知识要点
1.关于中心对称的两个图形,对称点所 连线段都经过对称中心,而且被对称中心所 平分.
线段绕中点旋转180° 旋转后与原图重合
图旋 形转 绕后 中与 心原 旋图 转重 180 合
知识要点
把一个图形绕着某一个点旋转180°,如 果它能够与另一个图形重合,那么就说这两 个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心.这两个图 形中的对应点叫做关于中心的对称点.
观察
新课导入 A
轴对称
O
B
C
(1)将等边三角形ABC绕中心O逆时针旋转 180°,这两个图形有怎样的位置关系?
C′ A
轴对称
D B′ O
B D′
A′ C
(2)将等腰梯形ABCD绕中心O逆时针旋转 180°,这两个图形有怎样的位置关系?
重合 O
(3)将圆O绕圆心O顺时针旋转180°,这 两个图形有怎样的位置关系?
你能证明吗? (1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△AOB′、 OC=OC′
证明:(1)点A′是点A绕点O旋转180°后得到的, 即线段OA绕点O旋转180°得到线段OA′,所以点O 在线段AA′上,且OA=OA′,即点O是线段AA′的中 点.同理,点O也在线段BB′和CC′上,且OB=OB′, OC=OC′,即点O是BB′和CC′的中点.
2.关于中心对称的两个图形是全等图形.
人教版初三数学:中心对称与中心对称图形--知识讲解
中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
九年级数学图形的旋转和中心对称
合进行图案设计. ② 按要求作出简单平面图形变换后的图形.
三、基本练习 填空题
45
1. 正八边形绕其中心至少要旋转_______度才能
与原来图形重合。
线段、正方形和圆
2. 在线段、锐角、等边三角形、正方形和圆中,
是中心对称图形的有 ___________________________ 。 A 和 60°
一点,△ABD经过旋转后到达△ACE的 位置。
① 旋转中心是哪一点 ② 旋转了多少度?
③ 如果M是AB的中点,那么经过上述旋转后, 点M转到了什么位置?
四、范例精析
2. 下图是某设计师设计的方桌边图案的一部分。
请你运用旋转变换的方法,在坐标纸上将该 图形绕原点顺时针依次旋转 90°, 180°, 270°,并画出它在各象限内的图形。
结束
/ 时彩高手赚钱秘籍
都停止咯手上の动作 壹各别再强行压制 壹各别再胡乱挣扎 壹动别动、老老实实地呆咯壹段安静の时间 半响过后 他终于明白 刚刚那巨大の响动只是碎石滚落の声音 水清还好 好地被他压在身下 并没什么随着碎石壹同坠入悬崖!当他意识到她仍处于安全状态之后 突然有壹种幸福得几乎要喜极而泣の感觉 可是才刚刚要喜极而泣 继而又被壹股巨大の 愤怒强占咯心头!因为他真是要被那各诸人活活地气死咯!她の性子怎么竟会刚烈成那各样子!上壹次宁可手烂掉、坏掉也别肯医治 那壹次竟然要以死明志 他可真是三生有幸 娶咯那么壹各贞洁烈妇 只为咯跟他赌气 连命都可以别要咯!壹想到那里 他简直是被气得七窍生烟 所以连想也没想 手上、身上 恨别能将他全身の力气都使出来 将她の肩膀牢 牢地钉在地上动弹别得 作为壹各自幼既开始习武之人 对付柔若无骨、弱别禁风の水清根本就别需要“杀鸡使出宰牛刀” 可是他现在确实是被她气昏咯头 条件反射般地狠狠地、 死死地将她压在身下 任凭她怎样使劲挣扎 就是纹丝别动地被他固定在雪地上 对待诸人 他壹惯都怀有怜香惜玉之心 可是现在 平生第壹次 他动用咯武力 面对那样壹各桀骜别 驯の诸人 他の所有好言规劝根本没什么收到任何效果 在所有の招数都已经穷尽の时候 他被迫使出咯“杀手锏” 他本心别愿如此 他是被逼无奈 “官逼民反” 此生第壹次他对 付壹各诸人竟然需要实施武力征服 第壹卷 第805章 危情此时被压在他身下の水清是脚冲着悬崖 头朝里侧 而王爷侧是头朝悬崖の方向 身子在里侧の安全地带 所以两各人壹各 在上 壹各在下 壹各头朝东 壹各头朝西 彼此看到の对方脸庞全是反方向 仿佛看到の是对方在水中の倒影 面对他の“武力征服” 身单力薄の水清根本别是他の对手 此刻又被 牢牢地钉死在他の身下 眼见求死别得 求生根本就别是她所愿 却又挣脱别开他の钳制 但是最为重要の气节问题还没什么说清楚!死并别是她の目の “明志”才是她の最终目标 可是现在那各样子 她丝毫别能动弹 更别要说还能用啥啊法子来“明志”?别能“明志” 她又怎么能够任由他壹直误解下去?悲愤至极、急火攻心之下 水清望向他の双眼几乎 要喷出火光来:“请爷记得妾身说の话:妾身别会去走啥啊退路 也别会找啥啊靠山!妾身是有骨气、重名节之人 所以绝别会拖累您 更别会给您丢脸面 只是恳求爷 求爷能够成 全咯妾身!”都那各时候咯 她仍是壹意孤行、执迷别悟 怎么就是壹各顽固别化の刁民恶妇?水清の那番“明志”之语 就像是壹各只有壹毫米长の导火索 顷刻之间就将他那各 火药桶点燃 怒气只在瞬间壹飞冲天:“您到是有没什么脑子!您来到那各世上 嫁进爷の府里来 就是为咯专门来气死爷の吗?!”话音才刚刚落下 还别待水清本能地张嘴反驳 立即就发生咯可怕の壹幕!水清身下の那块岩石原本就别牢固 只是因为被大雪覆盖 掩盖咯它岌岌可危の本来面目 经过两各人长时间の压制与反挣扎 特别是后来王爷生怕水清 再做出啥啊过激之举 而加重咯对她の压制 却没什么料到备受重压の危石终于支撑别住 开始松软、塌陷 几块碎石率先崩裂 哗啦啦地滚下山去 水清の身子几乎全部都在那块危 石之上 随着危石の塌陷 她の身子突然壹下子也跟着往下沉 令她四分之三の身体失去咯有力の支撑 瞬间向山下坠去 那各突如其来の变故令水清猝别及防 本能地“啊”地壹声 叫咯出来 登时引来无数响の回声 秦顺儿和月影两各人原本壹直躲在别远の地方 壹各既别妨碍主子们の谈话 又能够随时听候吩咐の最佳距离 当听到那壹声惊呼 由于别晓得发 生咯啥啊事情 两人撒腿就朝两各主子冲咯过来 而离得更远の其它の所有奴才们 也听到咯水清の那壹声惊呼 也全都呼拉拉地跑咯上来 待众人见到眼前那副景象 全都倒吸咯壹 口冷气 惊讶得脚上仿佛是钉咯钉子壹般 根本迈别开双脚 因为他们根本就没什么想像到 映入他们眼帘の怎么竟会是那么壹各令人震惊の场景!两各主子之间到底发生咯啥啊事 情?难道说 爷那是在亲自实施家法 处罚侧福晋吗?第壹卷 第806章 安全在水清の身子刚刚随危石の塌陷而向下沉去の壹刹那 王爷立即就意识到咯情况の突变 所以伴随着她 那壹声惊呼 眼疾手快 在她の身子就要坠下の壹瞬间 条件反射般地加大咯手上咯力道 瘦弱の水清像是拎小鸡似地被他拎回到咯安全地带 而刚刚还在她身下の那块巨大の危石则 伴随着隆隆の轰鸣声 直坠崖底 面对刚刚发生の惊心动魄の那壹幕 即使水清现在已经身处在壹各绝对安全地带 远离悬崖有咯八丈远 可是他仍然心有余悸、惊魂未定 狂跳の心 令胸膛剧烈地起伏 水清被他拉回到安全地带之后 非但没什么得到他惯常の体贴、安抚 而且在被拉回来の壹刹那 直接就被他狠狠地扔在咯雪地上 几乎摔出壹各优美の抛物线 在那条貌似优美の抛物线中 竟然别含壹丝壹毫の怜香惜玉 仿佛是要将他刚刚那满腔の愤怒全都发泄到她の身上 幸亏地上全是厚厚の积雪 有效地缓冲咯那股巨大の冲击力 否则 就凭他那弯弓射箭の臂力外加万丈怒火 等待水清の只有骨头直接就被摔散咯架 而劫后余生の水清 非但没什么半丝半毫の感恩戴德 反而壹副埋怨他救命之恩の样子 而恰恰就她 の那副样子 更将他心头の怒火越拱越高 越烧越旺 面对那各视死如归の诸人 他真是气得恨别能与她同归于尽の心都有咯!晓得她脾气倔强、性子硬 但是他今天充分领教咯 她 の性子竟然刚烈到如此の程度! 那壹次他是真真地被气着咯!竟然壹而再、再而三地寻死觅活!怎么咯?当他の诸人就那么令她厌恶和嫌弃 以至于连死都在所别惜?望着那各 刚刚被他像扔沙袋似地结结实实地扔到安全地带 此刻壹动别动地躺在冰冷雪地上の水清 若是换作以往或者换作其它の诸人 他壹定会将她赶快抱起来 用他温暖の胸膛替她消寒 取暖 生怕她被冰雪冻伤咯身子 连十指沾染阳春水都令他心疼成那各样子 更别要说在那么严寒の天气中忍冻挨苦咯 可是那壹次 他没什么壹丝壹毫の怜悯同情之心 而是死死地 盯着依然倒地冰冷の雪地上の她 别要说去抱她 就是去扶她壹把 甚至对她说壹句安慰话の心思都没什么 更是恶狠狠地朝她怒骂道:“您要是别怕满门抄斩 您现在就跳下去!爷 决别拦着您!”留下那句狠话 他头也别回 大踏步地下山去咯 秦顺儿见状 赶快忙别迭地跟在他の身后 眼见着王爷怒气冲冲地下咯山 将她家主子壹各人扔在那冰天雪地之中 从 来别曾见过那种场面の月影被吓坏咯 望着他の背影呆立半天才缓过神儿来 继而慌忙冲到咯水清の身边:“仆役 仆役 那到底是怎么壹回事儿啊?刚才别是好好の吗?您又说咯 啥啊将爷给气成那样啊?爷那是怎么您咯?打咯您吗?爷为啥啊别管咱们咯啊?仆役 您到是说句话啊!”月影将心中无数の疑问 壹口气地全都问咯出来 第壹卷 第807章 披风 水清能说啥啊呢?他晓得她最大の软肋 就是她の家人 她の亲人 以前他制服别咯她の时候 就拿月影来要挟她 逼她就范 而现在更是变本加厉到拿年家被满门抄斩来恫吓她 她自 己确实是别怕死 可是她怕爹爹、娘亲、哥哥、侄男侄女们被他下黑手 她在那世上别是孤苦伶仃、无牵无挂之人 她还有那么多の至爱亲人 可是就是因为那些亲人们 她竟要壹辈 子受制于他 连生死都别能由得自己来选择 她过の那叫啥啊日子?她为啥啊要活得那么窝囊 那么憋屈?别人都认为她是风风光光の王爷侧福晋 实际上却是那般地苟且偷生!壹 想到她壹辈子都要受制于他 水清立即被壹股无尽の悲愤情绪所笼罩 嘴唇竟然都被她の银牙咬破 渗出丝丝血迹 月影见到她家仆役那满脸怒火の面容以及被牙齿咬出血痕の朱唇 吓得再也别敢说啥啊 只是赶快手脚麻利又小心翼翼地壹边将她扶起壹边好言相劝道:“仆役 雪地里
人教版九年级数学上册中心对称精品ppt课件及说课优秀ppt课件
合作探究中心对称的性质
如果连接AA′,点O在线段AA′上吗?如果在,在什么位置? △ABC与△A′B′C′有什么关系?
(1)点O是线段AA′的中点
≌ (2)△ABC △A′B′C′
B′
C′
A′
你会证明吗? A
CO
B
人教版九年年级级数数学学上上册册 中心23对.2称.1精中品心p p对t称课教件学及课说件课及优说秀课pp t课件
人教版九年级数学上册 23.2.1 中心对称教学课件及说课
人教版九年级数学上册 23.2.1 中心对称教学课件及说课
五、教法学法分析
1.教法分析:根据课程标准的指导思想,鉴于本节课的特点和学生的心理特征, 我确定采用“探究式”的教学模式。本课采用“观察——操作——分析—— 归纳――应用” 流程,给学生提供自主探索、互相交流的时间和空间。几何 图形的旋转是学生学习的难点,为了培养学生抽象思维能力,我运用了多媒 体技术,把动态的问题直观表现出来,使学生更容易理解和掌握对称中心的 定义和性质。
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′;
第三步,移开三角板.
B′
C′
A′
A
CO
B
人教版九年级数学上册 23.2.1 中心对称教学课件及说课
人教版九年年级级数数学学上上册册 中心23对.2称.1精中品心p p对t称课教件学及课说件课及优说秀课pp t课件
三、教学目标
根据《课程标准》及人教版特点及学生认知规律,制定如下教学目标:
1.知识与技能:(1)理解中心对称的定义;(2)探索并掌握中心对称的性质; (3)能根据中心对称的性质画出一个图形关于某一个点的对称图形或找对称中心。
人教版九年级数学上册 教案 旋转《中心对称图形》
人教版九年级数学上册教案旋转《中心对称图形》一. 教材分析旋转是初中数学中的重要内容,是几何变换的基本形式之一。
《中心对称图形》是人教版九年级数学上册第二章几何变换的一部分,主要让学生了解中心对称图形的概念,理解中心对称与旋转的关系,学会用旋转来解决实际问题。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续的旋转变换和其他几何变换的学习打下基础。
二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但是,学生对中心对称图形的理解可能还停留在表象阶段,对中心对称与旋转的关系认识不足。
因此,在教学过程中,需要引导学生从实际问题中发现旋转的规律,培养学生的观察能力、操作能力和解决问题的能力。
三. 教学目标1.理解中心对称图形的概念,掌握中心对称与旋转的关系。
2.学会用旋转来解决实际问题,提高学生的应用能力。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.中心对称图形的概念及判断。
2.中心对称与旋转的关系。
3.用旋转解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生发现旋转的规律,用案例展示中心对称图形的应用,让学生在小组合作中探讨中心对称与旋转的关系,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的实际问题和案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和作业。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个生活中的实际问题:“如何将一个图形绕某一点旋转?”让学生观察并思考,引出本节课的主题——旋转。
2. 呈现(10分钟)讲解中心对称图形的概念,呈现一些典型的中心对称图形,如圆、正方形等,让学生判断并解释为什么它们是中心对称图形。
同时,引导学生发现中心对称与旋转的关系,如圆的旋转可以看作是中心对称的运用。
3. 操练(10分钟)让学生进行一些实际的操作,如绘制中心对称图形,判断给定的图形是否为中心对称图形等。
人教版九年级上册数学《中心对称》旋转教学说课课件
学习目标
1.正确认识什么是中心对称、对称中心,理解关于中心对称的图形的性质特点.
中
2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.
心
3.经历中心对称的探索过程,通过观察、操作、发现,探究中心对称的有关概
对
称
念和基本性质,培养学生的观察能力和动手操作能力.
4. 通过对中心对称的学习,感受对称、匀称、均衡的美感,体验图形变化的规
探究
旋转三角板,画关于点O对称的两个三角形: 第一步:画出△ABC ; 第二步:以三角板的一个顶点O 为中心,把三角板旋转180° ,画出△A ′B ′C ′; 第三步:移开三角板.
探究
点O 在线段AA’上吗?如果在,在什么位置? 因为点A’是点A绕点O 旋转180°得到的, 所以点O 在线段AA’上,且点O 是线段AA’的中点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
已知三角尺的一个顶点是O.
第一步,画出△ABC.
B
第二步,以三角尺的一个顶点O为中心, A
C
把三角尺旋转180°,画出△A′B′C′.
O C′
A′
第三步,移开三角尺.
B′
可知△ABC与△A′B′C′关于点O对称.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
对称点连线的垂直平分线是对称轴 对称点连线的中点是对称中心
翻转后与另一个图形重合
旋转后与另一个图形重合
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
教科书第66页,练习1、2. 教科书第69页,习题1.
中心对称
轴对称
1.什么是轴对称? 把一个图形沿着某一条直线折叠能与另一个图形完全重合 ,那么就说这两个图形关于这条直线对称或轴对称.
人教版九年级数学上册 《中心对称》旋转PPT课件
第三十页,共三十六页。
第三十一页,共三十六页。
第三十二页,共三十六页。
【答案】
第三十三页,共三十六页。
第三十四页,共三十六页。
第三十五页,共三十六页。
●课后作业测评:
• 上交作业:教科书第67页第1题 .
• 课后作业:“学生用书”的“课后评价案” 部分.
第三十六页,共三十六页。
人教版九年级数学上册 《中心对称》旋转PPT课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
23.2 中心对称
第一页,共三十六页。
●激情导入
第二页,共三十六页。
这节课我们就来学习中心对称.
第三页,共三十六页。
●理清学习目标
• 1.熟练掌握有理数的混合运算,并会用 运算律简化运算;
• 2.能运用有理数的混合运算解决实际问
直线上的? (2)中心对称的性质有哪些?
第十二页,共三十六页。
第十三页,共三十六页。
【小组讨论2】
(1)中心对称的判别方法是什么 ?
第十四页,共三十六页。
第十五页,共三十六页。
【针对训练】
第十六页,共三十六页。
【答案】
第十七页,共三十六页。
探究点三 中心对称性质的应用
活动三:阅读教材64页例1,相互交流思考下面
题.
第四页,共三十六页。
●聚焦主题 合作探究
探究点一 中心对称的概念
活动一:阅读教材第62页内容,相互交流思考下面 的问题 :
(1)在图23.2-1及图23.2-2两图中,图形旋转了多少
度?旋转后有什么变化?
(2)什么叫中心对称?什么叫对称中心?什么 叫关于中心的对称点?
第五页,共三十六页。
人教版九年级数学上册 《中心对称》旋转教育教学课件
对称点连线经过对称中心,且 被对称中心平分
轴对称
有一条对称轴——直线
图形沿对称轴对折后 重合
对称点连线 被对称轴垂直平分
第十一页,共二十六页。
课本例题
(1)已知A点和O点,画出点A关于点O的对称点A '.
A
O
作法: 1.连接AO; 2.在AO的延长线上截取OA’=OA; 3.A’点即为所求.
第二十页,共二十六页。
练习 如图,已知等边三角形ABC 和点O,画△A’B ’C ’,使△A’B ’C ’ 和△ABC 关于点O 成中心对称.
第二十一页,共二十六页。
练习 如图,在平面直角坐标系中,若△ABC与△A’B ’C ’关于 E 点 成中心对称,则对称中心 E 点的坐标是 (___3_,__-_1_)_.
联系:中心对称和一般的旋转都是绕着某一点进行旋转. 区别:中心对称的旋转角度都是180°,一般的旋转的旋转角度不固 定,中心对称是特殊的旋转.
第七页,共二十六页。
探究 旋转三角板,画关于点O对称的两个三角形: 第一步:画出△ABC ; 第二步:以三角板的一个顶点O 为中心,把三角板旋转180°,画出 △A ′B ′C ′;
第五页,共二十六页。
中心对称的定义
像这样把一个图形绕着某一点旋转180度,如果它 能够和另一个图形重合,那么,我们就说这两个图 形关于这个点对称或中心对称.
中心对称是一种特殊的旋转.
这个点叫对称中心.
这两个图形中的对应点,如点A 和点C,点B 和点D,
叫做关于中心的对称点。
第六页,共二十六页。
中心对称和旋转 中心对称与一般的旋转有什么联系和区别?
旋转的画法
5.如何画旋转后的图形?
数学九年级上册教学课件中心对称人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版
把一个图形绕某一点旋转180°,如 果旋转后的图形能够与原来的图形互相 重合,那么这个图形叫做中心对称图形 ,这个点就是它的对称中心.
数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版 数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版
通过今天的学习, 你学到了什么? 体会到什么? 还会注意什么?
数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版
课本P62 第1-5题
数学九年级上册教学课件-23.2.1 中心对称2-人教版
中心对称
将透明纸覆盖在图①上,描出四边形 ABCD,用大头针钉在O处,观察四边形 ABCD绕点O旋转能否与四边形A′B′C′D′ 重合?
一个图形绕着某一个点旋转180° 如果它能够与另一个图形重合,那么 就说这两个图形关于这点对称,也称 这两个图形成中心对称,这个点叫做 对称中心。
数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版
中心对称与中心对称图形 有哪些区别与联系?
数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 中心对称2-人教版
了解了中心对称和中心对称图形的 联系和区别,现在你如何理解以下图案?
数学九年级上册教学课件-23.2.1 中心对称2-人教版
数学九年级上册教学课件-23.2.1 件-23.2.1 中心对称2-人教版
初三数学最新课件-九级数学旋转中心对称 精品
则得A的对称点A’
O
连结BO并延长到B’,使OB’=OB,
A'
则得B的对称点B’
连结A’B’,则线段A’B’是所画线段
B
例3,已知四边形ABCD和O点,画出四边形ABCD
关于O点的对称图形。
B´
A
C´
D
O.
D´
A´
画法:
C B
1.连结AO 并延长到A´,使OA=OA´,得到点A的对称点A´ .
2.同样画B、C、D的对称点B´、C´、D´
❖ 平稳旋转。具有中心对称图形形状的 物体,能够在所在的平面内绕对称中 心平稳旋转。所以在生产中,有关旋 转的零部件常设计成中心对称图形。
上图表示一根弦的分段振动和整体振动。
雅致
中心对称与轴对称的类比
中心对称
轴对称
1 有一个对称中心—点 有一条对称轴—线
2 图形绕中心旋转180° 图形沿轴对折180°
中 心 对 称
游戏
两人玩摆放棋子游戏,每 人轮流把一枚棋子摆放在圆 形盘上,依次下去,最后棋 子摆不下者为输方。问:要 赢此盘棋,应采取 什么绝招?
(1) 这些图形有什么共同的特征?
(2) 将上述图形绕其上的某一点旋转180o, 这些图形与原来的图形完全重合吗?
切换 看动画
一、中心对称的概念
把一个图形绕着某一个点 旋转180°后,如果它能够与另 一个图形完全重合,那么称这两 个图形关于这个点对称,也叫中 心对称。这个点叫做对称中心。 这两个图形中的对应点叫做关于 中心的对称点。
交点对称.
√ 4.关于中心对称的两个图形一定是全等. ×5.中心对称与中心对称图形是同一个
概念.
×6.正三角形是中心对称图形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。
例5、已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE答案:先延长DC到G,使CG=AF,连接BG,易证△ABF≌△CBG,得∠5=∠G,∠1=∠3,进而证明∠EBG=∠G,进而证明BE=CG+CE=AF+CE.证明:延长DC到G,使CG=AF,连接BG∵AB=BC,∠A=∠BCG=90°,∴△ABF≌△CBG,∴∠5=∠G,∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴∠2+∠4=∠3+∠4,即∠FBC=∠EBG,∵AD∥BC,∴∠5=∠FBC=∠EBG,∴∠EBG=∠G,∴BE=CG+CE=AF+CE.解析:通过截长补短,构造全等来证明;例6.已知:如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD 上的点,且BE+FD=EF.求证:.21BADEAF∠=∠答案:把△ADF绕点A顺时针旋转∠DAB的度数得到△ABG,AD旋转到AB,AF旋转到AG,如图,∴AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF,∵∠B+∠D=180°,∴∠B+∠ABG=180°,∴点G、B、C共线,∵BE+FD=EF,∴BE+BG=GE=EF,在△AEG和△AEF中,AG=AFAE=AEEG=EF∴△AEG≌△AEF,∴∠EAG=∠EAF,而∠BAG=∠DAF,∴∠EAB+∠DAF=∠EAF,.21BADEAF∠=∠解析:旋转构造全等,找相等的角代换。
A1、下面各图中,哪些绕一点旋转180°后能与原来的图形重合?( ).A.①、④、⑤B.①、③、⑤C.②、③、⑤D.②、④、⑤答案:A解析:中心对称的定义2、如图,若正方形DCEF旋转后能与正方形ABCD重合,则图形所在平面内可作为旋转中心的点共有( )个.A.1 B.2C.3 D.4答案:C解析:以C为旋转中心,把正方形ABCD顺时针旋转90°,可得到正方形CDEF 以D为旋转中心,把正方形ABCD逆时针旋转90°,可得到正方形CDEF以CD的中点为旋转中心,把正方形ABCD旋转180°,可得到正方形CDEF3、下列图形中,是轴对称图形而不是中心对称图形的是( ).答案:C解析:旋转和中心对称的定义4、如图4可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是( )图4(A)90° (B)60° (C)45° (D)30°答案:C解析:图形可看做是正八边形的中心角;5.下列图形中,既是轴对称图形,又是旋转对称图形的是( ) (A)等腰三角形 (B)平行四边形 (C)等边三角形 (D)等腰梯形 答案:C解析:轴对称定义;绕着旋转中心旋转120°可与原图形重合;6.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ′,则点A ′的坐标是( ) (A))2,32( (B)(4,-2) (C))2,32(-(D))32,2(- 答案:C解析:根据旋转后特殊的直角三角形,30°锐角所对直角边等于斜边的一半; 7.要使正十二边形旋转后与自身重合,至少应将它绕中心逆时针旋转( ) (A)9° (B)18° (C)30° (D)36° 答案:C解析:正十二边形中心角为360°÷12=30°。
8、如图,已知D ,E 分别是正三角形的边BC 和CA 上的点,且AE =CD ,AD 与BE 交于P ,求∠BPD 的度数?答案:60°解析:∵正三角形ABC ∴AB=BC=AC ,∠C=∠BAC=60°,AE =CD ,可得△ACD ≌△ABE , 可得∠CAD=∠ABE ,即∠BPD=∠ABE +∠BAD=60°9、已知,如图7,E、F分别在正方形ABCD边AB和BC上,AB=1,∠EDF=45°,求△BEF 的周长.图7答案:2解析:把△ADE沿点D按逆时针方向旋转90°到△CDG处。
则∠GDF=∠EDF=45°,DE=DG,△EDF≌△GDF,所以EF=GF,△BEF的周长=BE+BF+EF=BE+BF+GF=BE+BF+FC+FG=BE+BF+FC+AE=AB+BC=2B1.如图3,将正方形图案绕中心O旋转180°后,得到的图案是( )图3(A) (B) (C) (D)答案:C解析:根据旋转后的特点;2.下列说法中,正确的个数有( )(1)如果两个图形关于一点中心对称,则对称点的连线必经过对称中心;(2)如果两个图形关于一点中心对称,则对应线段一定平行或在同一直线上;(3)如果一个图形经过平移得到另一个图形,那么它们的对应点的连线一定平行.(A)0个(B)1个(C)2个(D)3个答案:D解析:中心对称的性质应用;3、如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是( ).A.△DEF是△ABC绕点O顺时针旋转90°得到的B.△DEF是△ABC绕点O逆时针旋转90°得到的C.△DEF是△ABC绕点O顺时针旋转60°得到的D.△DEF是△ABC绕点O顺时针旋转120°得到的答案:A解析:根据对应点A和D与旋转中心的连线夹角正好是90°。
4.下列说法错误的是( )(A)全等的两个图形不一定成中心对称(B)中心对称的两个图形一定是全等图形(C)能够完全重合的两个图形中心对称(D)中心对称是指两个全等图形之间的相互位置关系答案:C解析:完全重合不一定中心对称5、如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M按逆时针方向旋转22°,则三角板的斜边与射线OA的夹角为______°.答案:22°解析:∠AMB=45°+22°=67°,∠67°-45°=22°C1.下列正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是( )(A) (B) (C) (D)答案:A解析:B 是轴对称和中心对称,C 是中心对称,D 是轴对称图形; 2.下列语句中,不正确的是( )(A)图形的平移是由移动的方向和移动的距离所决定的(B)图形的旋转是由旋转中心、旋转方向和旋转角度所决定的 (C)中心对称图形是旋转角度为180°的旋转对称图形 (D)旋转对称图形是中心对称图形 答案:D解析:旋转对称图形可以是任意角度的旋转,而中心对称只是180°旋转。
3、如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形A ′B ′C ′D ′,则它们的公共部分的面积等于______.答案:√33解析:设CD 与C ′D ′交于O ,AB=1,所以O B ′=√33,所以公共部分的面积=1X √33X 12X2=√334、如图,已知梯形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC =5,AB =1,把线段CD 绕点D 逆时针旋转90°到DE 位置,连结AE ,则AE 的长为______.答案:2√5解析:过点E作EF垂直于AD,交AD的延长线于点F易得EF=5-3=2DF=AB=1所以AF=4所以AE=2√55.已知:如图,四边形ABCD中,∠D=60°,∠B=30°,AD=CD.求证:BD2=AB2+BC2.∴BD²=AB²+BC²解析:旋转构造全等,得出直角三角形,利用勾股定理,等量代换可得结论。
1.在下列图形中,中心对称图形有( )(A)③(B)①③(C)②③(D)③④答案:B解析:2和4都不是中心对称图形,4是轴对称图形2.下列图形中,既是轴对称图形又是中心对称图形的是( ):答案:A解析:B 是轴对称,C 和D 只是轴对称3.点P (5,-3)关于原点对称的点的坐标是( ) (A)(-5,3) (B)(-5,-3) (C)(3,-5) (D)(-3,5) 答案:A解析:关于原点对称x,y 都变。
4.如图3,△ABC 中,∠B =90°,∠C =30°,AB =1,将△ABC 绕顶点A 旋转180°,点C 落在C ′处,则CC ′的长为( )图3(A)34 (B)4 (C)32(D)52答案:B解析:根据30°锐角所对直角边等于斜边的一半;5.点M(m,n)在第二象限,则点M′(mn-n,n-m)关于原点对称的点在( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限答案:D解析:第二象限,可得m<0,n>0,所以mn-n<0,n-m>0,所以在第二象限,关于原点对称后在第四象限。