大数据的定义和特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据的定义和特征
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
我们从权威的定义可以看到,大数据的特征有四点,分别为:
数据体量巨大。从TB级别,跃升到PB级别;
数据类型繁多。提到的网络日志、视频、图片、地理位置信息等等;
价值密度低,商业价值高。
以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
处理速度快。1秒定律。
车联网的大数据在预测方面可以发挥到极致。如,预测交通堵塞的地段,实时交通信息,主动安全,公交的排班。驾驶者驾驶行为分析。
大数据的核心在于预测,这在车联网行业非常有用,例如,对于交通流量的预测,就非常需要大数据。
对于交通流量,目前我们的仿真系统更加重视交通流量大,拥堵的原因,而大数据时代,不再在乎因果关系,而重视相关性,也就是不去分析产生拥堵的原因,但确实某个时段某个路段会发生拥堵。也可以根据车联网的大数据对车友的兴趣进行分析。
大数据在商用车领域已经有相当多的应用,如公交领域的运营排班管理、出租车领域的浮动车数据,物流行业的大物流。
如何解决公交企业面临的三大问题:运力配备最少、车辆运行距离最短、驾驶员作业时间最少?如何分析各时间段、各站点的客流分布情况呢?如何实现运营的安全智能化、运营排班的智能化?在公交行业,以上问题普遍存在,通过车联网的大数据,可以解决公交行业所面临的这些问题。根据各个时间段,各站点的客流量大小,线路配备的运营车辆数、线路配备驾驶人员、线路长度、车辆运行速
度等大数据,可确定一条线路各个时间段的配车数及发车间隔,从而解决运力配备最少、车辆运行距离最短、驾驶员作业时间最少三大问题。
根据客流量、节假日、气候、节气、自然灾害、道路、车况事故、历史同期数据、售票方式、居民小区建设等条件建立计划模型,从而用最快的速度对这些影响运营计划的因素做出反映。比如增加线路,增加车辆,增加司机,有效地制定公交运营计划。同时可对于运营排班精准管理,可通过大数据可以自动排班,对行车作业计划进行优化,并快速地对运行线路进行调整和优化。
自从菜鸟网络公司出现以后,大物流的概念终于被业界提及。
什么叫大物流呢?是指企业的自有物流系统(由车队、仓库、人员等组成),和第三方物流企业的配送信息与资源进行共享,从而能充分地利用各方面资源,减少物流总支出、降低运营成本。
目前物流行业随着业务的扩大,车辆数日益增多,而且
型号众多。很多企业还是采用手工方式进行车辆管理,工作量大,对车辆运营数据统计分析比较困难,统计结果相当滞后,不利于公司的决策管理;同时在车辆行驶过程中没有进行全程的监控,对司乘人员的违法违规行为无法进行及时预警,也无法对司乘人员的求助及时进行反应。
如何改善物流企业在管理上较为落后的现状,达到货主“高服务质量、严格的准时率、极小的货损率、较低的物流成本”的要求?
如何解决物流行业运行信息反馈滞后、运营高成本、货运车辆的高空驶率、司机作弊给货物和车辆的安全带来的极大隐患?
如何快速、高效的为用户提供可靠的物流服务?
如何最大程度的利用运力资源提高整体业务运营效率?
这些是目前物流行业迫在眉睫的问题。
对以上问题,车联网技术正好可以解决车主迫在眉睫的问题,通过透明化的运输过程管理,合理调度车辆,根据车辆行驶的大数据,对车辆行驶的线路畅通情况进行预测,规