整式的乘除法练习题(两套)
整式的乘除(习题及答案)
整式的乘除(习题及答案)知识像烛光,能照亮一个人,也能照亮无数的人。
——XXX整式的乘除(题)例1:计算(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)。
操作步骤】1)观察结构划部分:(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)2)有序操作依法则:辨识运算类型,依据对应的法则运算。
第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算。
3)每步推进一点点。
过程书写】解:原式=4x^6y^2·(-2y)+(4x^6y^3-2)/(-2x^2)8x^6y^3+4x^6y^3-24x^6y^3-2巩固练1.①-5a^3b^2·(-ab^2)=5a^4b^4;②(-m)^3·(-2m^2n^2)=2m^4n^2;③(-2x^2)^3·(-3x^3y)^2=36x^7y^6;④3b^3·(-2ac)·(-2ab)^2=12a^2b^7c。
2.①3xy^2·(2xz^2+3x^2y)=6x^2y^3z^2+9x^3y^3;②-4xy·(y^3-2)/2=-2xy·(y^3-2);③(ab^2c-3a^2b)·abc/3=ab^3c^2-3a^3b^2c;④(2ab^2)^2·(2a^2-b)=8a^5b^4-8a^3b^2;⑤-a·(3a^3+2a^2-3a-1)=-3a^4-2a^3+3a^2+a。
3.①(x+3y)(x-3y)=x^2-9y^2;②(a-2b)(a+2b+1)=a^2-4b^2-1;③(-2m-3n)(2m-4n)=-4m^2+2mn+12n^2;④(x+2y)^2=x^2+4xy+4y^2;⑤(a-b+c)(a+b+c)=a^2-b^2+c^2.4.若长方形的长为(4a^2-2a+1),宽为(2a+1),则这个长方形的面积为8a^3-4a^2+2a-1.5.若圆形的半径为(2a+1),则这个圆形的面积为4πa^2+4πa+π。
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
七年级数学下册《整式的乘除》单元测试卷(附答案)
七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
整式乘法计算50题(含解析)
整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。
第12章《整式的乘除》单元测试(含答案解析)
<第12章整式的乘除>一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.62.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣13.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.274.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±815.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.196.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =17.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.28.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )29.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm210.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .15.假设x3 =﹣8a9b6 ,那么x .16.计算: (3m﹣n +p ) (3m +n﹣p ) = .17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.20.2a =5 ,2b =3 ,求2a +b +3的值.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.<第12章整式的乘除>参考答案与试题解析一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘 ,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m =3•32m•33m =31 +2m +3m =321 ,∴1 +2m +3m =21 ,解得m =4.应选B.【点评】此题考查了幂的乘方的性质的逆用 ,同底数幂的乘法 ,转化为同底数幂的乘法 ,理清指数的变化是解题的关键.2.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣1【考点】多项式乘多项式.【分析】把式子展开 ,找到所有x2项的所有系数 ,令其为0 ,可求出p、q的关系.【解答】解:∵ (x2 +px +2 ) (x﹣q ) =x3﹣qx2 +px2﹣pqx +2x﹣2q =﹣2q + (2﹣pq )x + (p﹣q )x2 +x3.又∵结果中不含x2的项 ,∴p﹣q =0 ,解得p =q.应选A.【点评】此题主要考查了多项式乘多项式的运算 ,注意当要求多项式中不含有哪一项时 ,应让这一项的系数为0.3.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.27【考点】解二元一次方程组;非负数的性质:绝||对值;非负数的性质:偶次方.【专题】方程思想.【分析】先根据相反数的定义列出等式|x +y +1| + (x﹣y﹣2 )2 =0 ,再由非负数的性质求得x、y的值 ,然后将其代入所求的代数式 (3x﹣y )3并求值.【解答】解:∵|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,∴|x +y +1| + (x﹣y﹣2 )2 =0 ,∴ ,解得 , ,∴ (3x﹣y )3 = (3× + )3 =27.应选D.【点评】此题主要考查了二元一次方程组的解法、非负数的性质﹣﹣绝||对值、非负数的性质﹣﹣偶次方.解题的关键是利用互为相反数的性质列出方程 ,再由非负数是性质列出二元一次方程组.4.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±81【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构判断即可确定出k的值.【解答】解:∵x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,∴﹣k =±6 ,那么k =±6.应选C.【点评】此题考查了完全平方式 ,熟练掌握完全平方公式是解此题的关键.5.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.19【考点】整式的除法.【专题】计算题.【分析】根据商乘以除数等于被除数列出关系式 ,整理后利用多项式相等的条件确定出a ,b ,c的值 ,即可求出a﹣b +c的值.【解答】解:依题意 ,得 (17x2﹣3x +4 )﹣ (ax2 +bx +c ) =5x (2x +1 ) ,∴ (17﹣a )x2 + (﹣3﹣b )x + (4﹣c ) =10x2 +5x ,∴17﹣a =10 ,﹣3﹣b =5 ,4﹣c =0 ,解得:a =7 ,b =﹣8 ,c =4 ,那么a﹣b +c =7 +8 +4 =19.应选D.【点评】此题考查了整式的除法 ,熟练掌握运算法那么是解此题的关键.6.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =1【考点】同底数幂的乘法;合并同类项.【专题】存在型.【分析】分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.【解答】解:A、a与b不是同类项 ,不能合并 ,故本选项错误;B、由同底数幂的乘法法那么可知 ,a2•a3 =a5 ,故本选项正确;C、a2 +2ab﹣b2不符合完全平方公式 ,故本选项错误;D、由合并同类项的法那么可知 ,3a﹣2a =a ,故本选项错误.应选B.【点评】此题考查的是合并同类项、同底数幂的乘法及完全平方公式 ,熟知以上知识是解答此题的关键.7.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.2【考点】因式分解 -运用公式法.【分析】利用完全平方公式分解因式进而求出即可.【解答】解:由题意得 (a2 +b2 )2 =5 +a2b2 ,因为ab =2 ,所以a2 +b2 = =3.应选:B.【点评】此题主要考查了公式法分解因式 ,熟练利用完全平方公式是解题关键.8.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )2【考点】提公因式法与公式法的综合运用.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义 ,利用排除法求解.【解答】解:A、用平方差公式 ,应为x2y2﹣z2 = (xy +z ) (xy﹣z ) ,故本选项错误;B、提公因式法 ,符号不对 ,应为﹣x2y +4xy﹣5y =﹣y (x2﹣4x +5 ) ,故本选项错误;C、用平方差公式 , (x +2 )2﹣9 = (x +2 +3 ) (x +2﹣3 ) = (x +5 ) (x﹣1 ) ,正确;D、完全平方公式 ,不用提取负号 ,应为9﹣12a +4a2 = (3﹣2a )2 ,故本选项错误.应选C.【点评】此题考查了提公因式法 ,公式法分解因式 ,熟练掌握公式的结构特征是解题的关键.9.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm2【考点】完全平方公式.【专题】计算题.【分析】根据题意列出算式 ,计算即可得到结果.【解答】解:根据题意得: (1 +2 )2﹣12 =9﹣1 =8 ,即新正方形的面积增加了8cm2 ,应选C.【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.10.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2【考点】平方差公式的几何背景.【分析】第|一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积 ,等于a2﹣b2;第二个图形阴影局部是一个长是 (a +b ) ,宽是 (a﹣b )的长方形 ,面积是 (a +b ) (a﹣b );这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积 =a2﹣b2 ,图乙中阴影局部的面积 = (a +b ) (a﹣b ) , 而两个图形中阴影局部的面积相等 ,∴阴影局部的面积 =a2﹣b2 = (a +b ) (a﹣b ).应选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差 ,这个公式就叫做平方差公式.二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构 ,按照要求x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,可知m =1.k =﹣4 ,那么m +k =﹣3.【解答】解:∵x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,∴m =1 ,k =﹣4 ,∴m +k =﹣3.故答案为:﹣3.【点评】此题主要考查完全平方公式的变形 ,熟记公式结构是解题的关键.完全平方公式: (a±b )2 =a2±2ab +b2.12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.【考点】整式的除法.【专题】新定义.【分析】先设出2021※2021 =m ,再根据新运算进行计算 ,求出m的值即可.【解答】解:设2021※2021 =m ,由得 , (1 +2021 )※1 =2 +2021 ,2021※ (2021﹣2021 ) =m +2×2021 ,那么2 +2021 =m +2×2021 ,解得,m =2021※2021 = (2 +2021 )﹣2021×2 =﹣2021.故答案为:﹣2021.【点评】此题主要考查了有理数的混合运算 ,在解题时要注意按照两者的转换公式进行计算即可.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2 = (x +y ) (x﹣y ) ,然后用整体代入法进行求解.【解答】解:∵x +y =﹣4 ,x﹣y =8 ,∴x2﹣y2 = (x +y ) (x﹣y ) = (﹣4 )×8 =﹣32.故答案为:﹣32.【点评】此题考查了平方差公式 ,由题设中代数式x +y ,x﹣y的值 ,将代数式适当变形 ,然后利用 "整体代入法〞求代数式的值.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .【考点】完全平方公式.【专题】计算题.【分析】等式左边利用完全平方公式展开 ,利用多项式相等的条件确定出m的值即可.【解答】解:∵ (x﹣m )2 =x2 +x +a =x2﹣2mx +m2 ,∴﹣2m =1 ,a =m2 ,那么m =﹣ ,a =.故答案为:﹣【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.15.假设x3 =﹣8a9b6 ,那么x .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法那么进行解答即可.【解答】解:∵x3 =﹣8a9b6 ,∴x3 = (﹣2a3b2 )3 ,∴x =﹣2a3b2.故答案为: =﹣2a3b2.【点评】此题考查的是幂的乘方与积的乘方法那么 ,先根据题意得出x3 = (﹣2a3b2 )3是解答此题的关键.16.计算: (3m﹣n +p ) (3m +n﹣p ) = .【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式利用平方差公式化简 ,再利用完全平方公式计算即可得到结果.【解答】解:原式 =9m2﹣ (n﹣p )2 =9m2﹣n2 +2np﹣p2.故答案为:9m2﹣n2 +2np﹣p2【点评】此题考查了平方差公式 ,以及完全平方公式 ,熟练掌握公式是解此题的关键.17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .【考点】因式分解 -分组分解法.【专题】压轴题;阅读型.【分析】首||先进行合理分组 ,然后运用提公因式法和公式法进行因式分解.【解答】解:原式 = (a2 +2ab +b2 ) + (ac +bc )= (a +b )2 +c (a +b )= (a +b ) (a +b +c ).故答案为 (a +b ) (a +b +c ).【点评】此题考查了因式分解法 ,要能够熟练运用分组分解法、提公因式法和完全平方公式.18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )【考点】规律型:数字的变化类.【分析】观察以下各式:1×2×3×4 +1 =52 = (12 +3×1 +1 )2;2×3×4×5 +1 =112 = (22 +3×2 +1 )2;3×4×5×6 +1 =192 = (32 +3×3 +1 )2 ,4×5×6×7 +1 =292 = (42 +3×4 +1 )2 ,得出规律:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2 , (n≥1 ).【解答】解:∵1×2×3×4 +1 =[ (1×4 ) +1]2 =52 ,2×3×4×5 +1 =[ (2×5 ) +1]2 =112 ,3×4×5×6 +1 =[ (3×6 ) +1]2 =192 ,4×5×6×7 +1 =[ (4×7 ) +1]2 =292 ,∴n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.故答案为:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.【点评】此题考查了数字的变化规律 ,解答此题的关键是发现规律为n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3n +1 )2 (n≥1 ) ,一定要通过观察 ,分析、归纳并发现其中的规律.三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.【考点】整式的混合运算 -化简求值.【分析】 (1 )将 (x﹣y )2通过配方法转化成 (x +y )2 ,x2y +xy2因式分解即可;(2 )利用配方法转化成 = (x +y )2﹣3xy即可;(3 )根据整式的乘法把式子展开即可;(4 )先把m2 +m﹣1 =0 ,变形为m2 =1﹣m.把m3 +2m2 +2021变形为m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021即可;【解答】解: (1 ) (x﹣y )2 =x2﹣2xy +y2 =x2 +2xy +y2﹣4xy = (x +y )2﹣4xy42﹣4×3 =4 , x2y +xy2 =xy (x +y ) =3×4 =12 ,(2 )x2﹣xy +y2 = (x +y )2﹣3xy = ( + +﹣ )2﹣3 ( + ) (﹣ ) = (2 )2﹣3×2 =28﹣6 =22(3 ) (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1 =2x2﹣3x +1﹣ (x2 +2x +1 ) +1 =x2﹣5x +1 =3 +1 =44 )由m2 +m﹣1 =0 ,得m2 =1﹣m.把m3 +2m2 +2021 =m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021 =m﹣1﹣m +2 +2021【点评】此题考查了学生的应用能力 ,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20.2a =5 ,2b =3 ,求2a +b +3的值.【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法那么求出即可.【解答】解:2a +b +3 =2a•2b•23 =5×3×8 =120.【点评】此题主要考查了同底数幂的乘法运算 ,熟练掌握运算法那么是解题关键.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.【考点】因式分解的应用.【分析】先把原式变形为1 +32﹣22 +52﹣42 +… +1012﹣1002,再因式分解得1 + (3 +2 ) + (5 +4 ) +… + (101 +100 ) ,然后进行计算即可.【解答】解:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012=1 +32﹣22 +52﹣42 +… +1012﹣1002=1 + (3 +2 ) (3﹣2 ) + (5 +4 ) (5﹣4 ) +… + (101 +100 ) (101﹣100 )=1 + (3 +2 ) + (5 +4 ) +… + (101 +100 )==5151.【点评】此题考查了因式分解的应用 ,用到的知识点是平方差公式 ,关键是对要求的式子进行变形 ,注意总结规律 ,得出结果.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.【考点】整式的混合运算 -化简求值.【专题】计算题.【分析】按单项式乘以单项式法那么和平方差公式化简 ,然后把给定的值代入求值.【解答】解:原式 =x2﹣2x﹣x2 +1 =﹣2x +1 ,当x =10时 ,原式 =﹣2×10 +1 =﹣19.【点评】考查的是整式的混合运算 ,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.【考点】因式分解的应用.【分析】将原式因式分解 ,结果能被12整除即可.【解答】解:因为 (n +5 )2﹣ (n﹣1 )2 =n2 +10n +25﹣ (n2﹣2n +1 ) =12 (n +2 ) ,所以 (n +5 )2﹣ (n﹣1 )2能被12整除.【点评】考查了因式分解的应用 ,解决此题的关键是用因式分解法把所给式子整理为含有12的因数相乘的形式.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.【考点】规律型:数字的变化类.【专题】证明题;探究型.【分析】 (1 )等号左边第|一个因数为整数 ,与第二个因数的分子相同 ,第二个因数的分母比分子多1;等号右边为等号左边的第|一个数式﹣第二个因数 ,即n× =n﹣;(2 )把左边进行整式乘法 ,右边进行通分.【解答】解: (1 )猜想:n× =n﹣;(2 )证:右边 = = =左边 ,即n× =n﹣.【点评】主要考查:等式找规律 ,难点是怎样证明 ,不是验证.此题隐含着逆向思维及数学归纳法的思想.。
整式的乘除测试题(3套)及答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
初中数学整式的乘除练习题及参考答案
初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。
]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。
整式的乘除计算题100题
整式的乘除计算题100题整式的乘除计算一直以来都是学习数学的重要组成部分,学习计算整式乘除是学习中学生必须完成的一项重要任务。
在学习整式乘除计算时,首先要学习整式乘除的基本概念,其次是学习解决实际问题的方法。
在学习计算整式乘除的过程中,为了更好地学习,有必要对各种类型的乘除题进行练习。
下面是100道整式乘除题,解题思路将在文章最后提供。
1. (2x + 3) (5x - 4)2. (4x^2 + 2x + 3) (4x + 7)3. (7x - 5) (3x + 1)4. (x^2 - 4x + 3) (2x - 1)5. (3x^2 + 2x - 5) (2x - 3)6. (4x^2 + x - 2) (9x - 4)7. (x^2 + 4x + 5) (3x - 4)8. (3x^2 + x - 2) (2x + 7)9. (3x^2 - 4x + 7) (2x - 5)10. (5x^2 + x - 6) (2x - 3)11. (2x + 3) (x - 4)12. (5x^2 + 2x + 3) (5x + 7)13. (2x + 3) (2x - 7)14. (3x^2 + 4x - 5) (3x + 1)15. (4x^2 - x + 2) (4x - 3)17. (2x^2 + 2x + 1) (4x - 6)18. (3x^2 + 5x + 4) (2x + 7)19. (4x^2 - 5x - 4) (4x - 1)20. (9x^2 + x - 3) (2x - 7)21. (2x + 3) (2x + 9)22. (5x^2 - 2x + 4) (5x + 8)23. (3x - 4) (3x + 5)24. (x^2 - 3x + 4) (2x - 5)25. (6x^2 + 2x - 7) (2x - 3)26. (2x^2 - 5x + 6) (9x - 4)27. (5x^2 + x - 8) (3x - 7)28. (4x^2 + 4x - 2) (2x + 9)29. (2x^2 - 7x - 3) (2x + 5)30. (8x^2 - x - 8) (2x - 3)31. (4x + 2) (4x - 3)32. (6x^2 + 4x + 9) (6x + 7)33. (3x - 7) (3x + 8)34. (x^2 - 4x + 5) (2x - 6)35. (3x^2 - 5x + 3) (2x - 9)36. (5x^2 - x - 4) (9x - 2)37. (5x^2 + 3x - 1) (3x - 8)39. (2x^2 - 6x - 4) (4x - 5)40. (7x^2 - x - 7) (2x - 3)41. (3x + 7) (3x - 6)42. (4x^2 + 6x + 2) (4x + 9)43. (2x - 5) (2x + 8)44. (x^2 - 3x + 5) (2x - 7)45. (7x^2 + 4x - 8) (2x - 3)46. (5x^2 + 6x - 9) (2x + 5)47. (3x^2 - 6x + 4) (9x - 8)48. (7x^2 + 5x - 2) (3x + 7)49. (4x^2 - 7x - 3) (4x - 5)50. (8x^2 - x - 9) (2x - 6)51. (2x + 6) (2x - 8)52. (3x^2 + 5x + 7) (3x + 2)53. (4x - 7) (4x + 5)54. (x^2 - 4x + 6) (2x - 9)55. (6x^2 - x + 3) (2x - 5)56. (5x^2 - 8x - 4) (9x - 2)57. (3x^2 - x - 6) (3x - 7)58. (2x^2 + 6x - 3) (2x + 8)59. (5x^2 - 7x + 9) (4x - 6)61. (4x + 8) (4x - 9)62. (9x^2 + 6x + 2) (9x + 5)63. (x - 5) (x + 7)64. (2x^2 - 5x + 8) (2x - 6)65. (4x^2 + x - 1) (2x - 9)66. (7x^2 + 8x - 4) (9x - 3)67. (6x^2 - 3x - 5) (3x + 8)68. (2x^2 + 7x - 6) (2x + 9)69. (3x^2 - 8x + 3) (4x - 5)70. (8x^2 - x - 7) (2x - 4)71. (3x + 5) (3x - 9)72. (5x^2 + 8x + 2) (5x + 7)73. (4x - 2) (4x + 6)74. (x^2 - 6x + 8) (2x - 5)75. (9x^2 + 4x - 7) (2x - 3)76. (6x^2 + 8x - 3) (2x + 5)77. (3x^2 - 7x + 2) (9x - 8)78. (4x^2 - x - 9) (3x + 7)79. (2x^2 - 9x + 5) (4x - 6)80. (7x^2 - 3x - 4) (2x - 8)81. (5x + 9) (5x - 8)83. (6x - 3) (6x + 5)84. (x^2 - 9x + 7) (2x - 8)85. (8x^2 + 3x - 6) (2x - 5)86. (4x^2 + 7x - 4) (9x - 2)87. (7x^2 + x - 9) (3x - 6)88. (5x^2 + 6x - 2) (2x + 4)89. (2x^2 - 8x + 9) (4x - 7)90. (6x^2 - 3x - 7) (2x - 9)91. (3x + 6) (3x - 8)92. (4x^2 + 7x + 1) (4x + 5)93. (2x - 3) (2x + 7)94. (x^2 - 5x + 6) (2x - 9)95. (9x^2 + x - 8) (2x - 4)96. (4x^2 + 8x - 1) (2x + 5)97. (7x^2 - 4x + 2) (9x - 8)98. (3x^2 - x - 5) (3x + 6)99. (2x^2 + 9x - 4) (4x - 7)100. (8x^2 - 2x - 6) (2x - 3)以上是100道整式乘除题,解题思路如下:1.式乘除时,要把两个整式拆解成各自的分母和分子,然后把分子分别相乘,把分母分别相乘,把答案整理成计算机可以识别的形式,即整式表示。
整式的乘除整章练习题(完整)
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )
7年级下册第11章整式的乘除测考试试题(含解析)
7年级下册第11章整式的乘除测考试试题(含解析)7年级下册整式的乘除测试题一、选择题(本大题共20小题,共80.0分)1.计算a⋅a⋅a x=a12,则x等于()A. 10B. 4C. 8D. 92.下列运算错误的是()A. B. (x2y4)3=x6y12C. (−x)2·(x3y)2=x8y2D.3.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy4.下列运算正确的是()A. (a2)3=a5B. a4⋅a2=a8C. a6÷a3=a2D. (ab)3=a3b35.下列运算正确的是()A. a2⋅a3=a6B. (−a2)3=−a5C. a10÷a9=a(a≠0)D. (−bc)4÷(−bc)2=−b2c26.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 127.下列各式能用同底数幂乘法法则进行计算的是()A. (x+y)2⋅(x−y)2B. (−x−y)⋅(x+y)2C. (x+y)2+(x+y)3D. −(x−y)2⋅(−x−y)38.(−a5)2+(−a2)5的结果是()A. 0B. −2a7C. 2a10D. −2a109.下列各式中:(1)−(−a3)4=a12;(2)(−a n)2=(−a2)n;(3)(−a−b)3=(a−b)3;(4)(a−b)4=(−a+b)4正确的个数是()A. 1个B. 2个C. 3个D. 4个10.−(−2x3y2)2⋅(−1)2013⋅(−32x2y3)2结果等于()A. 3x10y10B. −3x10y10C. 9x10y10D. −9x10y1011.已知5x=3,5y=2,则52x-3y=()A. 34B. 1 C. 23D. 9812.下面是一名学生所做的4道练习题:①(−3)0=1;②a3+a3=a6;③4m−4=14m4;④(xy2)3=x3y6,他做对的个数是()A. 0B. 1C. 2D. 313.下列计算正确的有()①a3⋅a2+(a2)3=2a5;②a n÷a n=0;③(a m)n=a m+n;④(−a2x)5=−a10x5.A. 0个B. 1个C. 2个D. 3个14.下列运算正确的是()A. (x+2y)2=x2+4y2B. (−2a3)2=4a6C. −6a2b5+ab2=−6ab3D. 2a2⋅3a3=6a615.下列等式:①3a3·(2a2)2=12a12;②(2×103)×(12×103)=106;③−3xy·(−2xyz)2=12x3y3z2;④4x3·5x4=9x12,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个16.计算(−12x)⋅(−2x2)⋅(−4x4)的结果是().A. −4x6B. −4x7C. 4x6D. 4x717.已知多项式(x2−mx+1)(x−2)的积中不含x2项,则m的值是()A. −2B. −1C. 1D. 218.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,719.下列计算错误的是()7年级下册第11章整式的乘除测考试试题(含解析)A. a 8÷a 4=a 4B. (−a)5÷(−a)4=−aC. (−a)5÷(−a 4)=aD. (b −a)3÷(a −b)2=a −b20. 如果a =−0.32,b =−3−2,c =(−13)−2,d =(−15)0,那么a 、b 、c 、d 的大小关系为( )A. a <b <c <dB. a <d <c <bC. b <a <d <cD. c <a <d <b二、填空题(本大题共5小题,共20.0分) 21. 计算:(−x 2y)2÷13x 2y =______. 22. 计算:4100⋅(−12)197=______.23. 已知单项式3x 2y 3与−5x 2y 2的积为mx 4y n ,那么m −n =______. 24. 计算:(π−3.14)0−(12)−2+(−2)2=______.25. 若(x −3)(x +a )=x 2+2x −15,则a 的值为________. 三、计算题(本大题共6小题,共30.0分) 26. 计算:(1)(−2ab)(3a 2−2ab −4b 2); (2)(2x −1)(x −4)−(x +3)(x +2). 27. 计算:(1)|−18|+(−1)2019×(3.14−π)0−4+(−2)−328. 3(x +5)(x −3)−5(x −2)(x +3)29. 计算:(x −2)(x 2+2x +4)−2(x +1)230.解方程:(−x+3)(−3−x)−(x−2)2=5x四、解答题(本大题共2小题,共20.0分)31.小敏和小贝两人共同计算一道数学题:(2m+a)(3m+b),由于小敏抄错了第一个多项式中a的符号,得到的结果为6m2+11m−10;由于小贝抄漏了第二个多项式中m的系数,得到的结果为2m2−9m+10.(1)请求出式子中a、b的值;(2)请你计算出这道数学题的正确结果.32.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地皮,规划部门计划将阴影部分进行绿化,在地皮的中间修建一座边长是(a−b)米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;7年级下册第11章整式的乘除测考试试题(含解析)(2)当a=3,b=2时,求绿化面积.答案和解析1.【答案】A【解析】【分析】本题考查同底数幂的乘法,同底数幂的乘法法则是:底数不变,指数相加,解答此题可先将等式的左边用同底数幂的运算法则计算出结果,然后两边比较即可得到x的值.【解答】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选A.2.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.【解答】解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.3.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题.【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .4.【答案】D【解析】【分析】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a ≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【解答】解:A.∵(a 2)3=a 6,∴选项A 不符合题意; B .∵a 4⋅a 2=a 6,∴选项B 不符合题意; C .∵a 6÷a 3=a 3,∴选项C 不符合题意; D .∵(ab)3=a 3b 3,∴选项D 符合题意. 故选D .5.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、幂的乘方与积的乘方进行计算即可. 【解答】解:A.a 2⋅a 3=a 5,故A 错误; B .(−a 2)3=−a 6,故B 错误; C .a 10÷a 9=a(a ≠0),故C 正确; D .(−bc)4÷(−bc)2=b 2c 2,故D 错误; 故选C .6.【答案】C【解析】解:(−2)2015⋅(12)2016 =[(−2)2015⋅(12)2015]×12 =−12. 故选:C .直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.7年级下册第11章整式的乘除测考试试题(含解析)7.【答案】B【解析】解:A、底数(x+y)与(x−y)不相同,不能用同底数幂乘法法则进行计算,故本选项错误;B、底数(−x−y)与(x+y)互为相反数,能用同底数幂乘法法则进行计算,故本选项正确;C、两个幂底数相同,但不是相乘,不能用同底数幂乘法法则进行计算,故本选项错误;D、底数(x−y)与(−x−y)不相同,也不互为相反数,不能用同底数幂乘法法则进行计算,故本选项错误.故选B.根据同底数幂的乘法的运算要求,底数相同或互为相反数的幂相乘对各选项分析判断即可得解.本题考查了同底数幂的乘法的条件,能用同底数幂乘法法则进行计算的条件是:底数相同或互为相反数的幂相乘.8.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘.直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可.【解答】解:(−a5)2+(−a2)5=a10−a10=0.故选A.9.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.10.【答案】Cx2y3)2【解析】解:−(−2x3y2)2⋅(−1)2013⋅(−32=−4x6y4⋅(−1)⋅(9x4y6),4=9x10y10.故选;C.利用幂的乘方与积的乘方化简进而利用单项式乘法法则得出即可.此题主要考查了幂的乘方与积的乘方,单项式乘以单项式,正确运用幂的乘方与积的乘方和单项式乘法法则是解题关键.11.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.【答案】C【解析】解:①根据零指数幂的性质,得(−3)0=1,故正确;②根据同底数的幂运算法则,得a3+a3=2a3,故错误;③根据负指数幂的运算法则,得4m−4=4m4,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选C.分别根据零指数幂,合并同类项的法则,负指数幂的运算法则,幂的乘方法则进行分析计算.本题主要考查了零指数幂,负指数幂的运算,合并同类项法则和幂的乘方法则.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.合并同类项的时候,只需把它们的系数相加减.13.【答案】B【解析】【分析】此题考查合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.根据同底数幂的除法和幂的乘方和积的乘方计算判断即可.【解答】解:a3⋅a2+(a2)3=a5+a6;则①错误;a n÷a n=1,则②错误;(a m)n=a mn;则③错误;(−a2x)5=−a10x5,则④正确;故选B.7年级下册第11章整式的乘除测考试试题(含解析)14.【答案】B【解析】解:A、(x+2y)2=x2+4xy+4y2,故此选项错误;B、(−2a3)2=4a6,正确;C、−6a2b5+ab2,无法计算,故此选项错误,D、2a2⋅3a3=6a5,故此选项错误;故选:B.直接利用完全平方公式和单项式乘以单项式的性质、积的乘方运算法则,分别化简得出答案.此题主要考查了完全平方公式和单项式乘以单项式的性质、积的乘方运算,正确掌握运算法则是解题关键.15.【答案】B【解析】【分析】此题考查单项式乘以单项式,解决的关键是熟练掌握单项式成单项式的法则.【解答】解:①3a3·(2a2)2=12a7,原式错误;×103)=106,正确;②(2×103)×(12③−3xy·(−2xyz)2=−12x3y3z2,原式错误;④4x3·5x4=20x7,原式错误;正确的只有一个,故选B.16.【答案】B【解析】【分析】此题考查的是整式乘法;按照单项式乘以单项式的法则进行运算.【解答】x)⋅(−2x2)⋅(−4x4)=−4x7,解:(−12故选B.17.【答案】A【解析】解:(x2−mx+1)(x−2)=x3−(m+2)x2+(2m+1)x−2,由结果中不含x2项,得到−(m+2)=0,解得:m=−2,故选A.原式利用多项式乘以多项式法则计算,根据结果不含x2项,求出m的值即可.此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.18.【答案】A【解析】解:长为(a +3b),宽为(2a +b)的长方形的面积为: (a +3b)(2a +b)=2a 2+7ab +3b 2,∵A 类卡片的面积为a 2,B 类卡片的面积为b 2,C 类卡片的面积为ab , ∴需要A 类卡片2张,B 类卡片3张,C 类卡片7张. 故选:A .根据长方形的面积=长×宽,求出长为(a +3b),宽为(2a +b)的大长方形的面积是多少,判断出需要A 类、B 类、C 类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.19.【答案】D【解析】解:A 、a 8÷a 4=a 4,计算正确; B 、(−a)5÷(−a)4=−a ,计算正确; C 、(−a)5÷(−a 4)=a ,计算正确;D 、(b −a)3÷(a −b)2=b −a ,原题计算错误; 故选:D .根据同底数幂的除法法则:底数不变,指数相减进行计算即可. 此题主要考查了同底数幂的除法,关键是掌握计算法则.20.【答案】C【解析】解:因为a =−0.32=−0.09, b =−3−2=−132=−19, c =(−13)−2=1(−13)2=9,d =(−15)0=1, 所以c >d >a >b . 故选:C .根据负整数指数幂、有理数的乘方、零指数幂的定义将a 、b 、c 、d 的值计算出来即可比较出其值的大小. 本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.21.【答案】3x 2y【解析】【分析】本题考查整式的运算有关知识,根据整式的运算法则即可求出答案. 【解答】解:原式=3x 2y ,7年级下册第11章整式的乘除测考试试题(含解析)11 / 13第11页,共13页故答案为3x 2y.22.【答案】−8【解析】解:4100⋅(−12)197=(22)100⋅(−12)197 =2200⋅(−12)197 =23⋅[2197⋅(−12)197] =8×(−1)=−8,故答案为:−8.根据同底数幂的乘法和积的乘方可以解答本题.本题考查幂的乘方与积的乘方,解答本题的关键是明确它们各自的计算方法. 23.【答案】−20【解析】解:3x 2y 3×(−5x 2y 2)=−15x 4y 5,∴mx 4y n =−15x 4y 5,∴m =−15,n =5∴m −n =−15−5=−20故答案为:−20将两单项式相乘后利用待定系数即可取出m 与n 的值.本题考查单项式乘以单项式,解题的关键是熟练运用整式的乘法法则,本题属于基础题型.24.【答案】1【解析】解:原式=1−4+4=1故答案为:1直接利用零指数幂和负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.25.【答案】5【解析】【分析】本题考查的是多项式乘以多项式有关知识,利用多项式乘以多项式的法则进行展开,然后再进行计算即可解答.【解答】解:(x −3)(x +a)=x 2+2x −15,x 2+(a −3)x −3a =x 2+2x −15 ,则−3a =−15a =5.故答案为5.26.【答案】解:(1)原式=−6a3b+4a2b2+8ab3;(2)原式=2x2−8x−x+4−(x2+2x+3x+6)=2x2−9x+4−x2−5x−6=x2−14x−2.【解析】本题考查了单项式乘以多项式,考查了多项式乘法运算.(1)利用单项式乘以多项式法则计算;(2)利用多项式乘以多项式法则,然后合并同类项计算,注意去括号时符号的变化.27.【答案】解:(1)|−18|+(−1)2019×(3.14−π)0−4+(−2)−3=18+(−1)×1−4+(−1 8 )=18−1−4−1 8=1278;(2)−2x(x−5)−(x+2)(x−3)=−2x2+10x−(x2−3x+2x−6)=−2x2+10x−x2+3x−2x+6=−3x2+11x+6.【解析】(1)先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)依据单项式与多项式相乘的运算法则,多项式与多项式相乘的法则进行计算,即可得到计算结果.本题主要考查了实数的运用以及整式的乘法,多项式与多项式相乘仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.28.【答案】解:原式=3(x2+2x−15)−5(x2+x−6)=3x2+6x−45−5x2−5x+30=−2x2+x−15.【解析】本题考查多项式乘以多项式.根据多项式乘法法则展开,然后合并同类项即可.29.【答案】解:(x−2)(x2+2x+4)−2(x+1)2=x3+2x2+4x−2x2−4x−8−2x2−4x−2=x3−2x2−4x−10.【解析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.本题主要考查了多项式乘多项式,多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.30.【答案】解:3x+x2−9−3x−(x2−4x+4)=5x,3x+x2−9−3x−x2+4x−4−5x=0,第12页,共13页7年级下册第11章整式的乘除测考试试题(含解析)13 / 13第13页,共13页 −x =13,x =−13.【解析】先根据多项式乘多项式法则与完全平方公式计算,再去括号、移项、合并同类项、系数化为1可得.本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式的运算法则与解一元一次方程的步骤,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.31.【答案】解:(1)∵甲得到的算式:(2m +a)(3m +b)=6m 2+(2b −3a)m −ab =6m 2+11m −10,对应的系数相等,2b −3a =11,ab =10,乙得到的算式:(2m +a)(m +b)=2m 2+(2b +a)m +ab =2xm 2−9m +10, 对应的系数相等,2b +a =−9,ab =10,∴{2b −3a =112b +a =−9∴{a =−5b =−2; (2)正确的式子:(2m −5)(3m −2)=6m 2−19m +10.【解析】本题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算.(1)先按甲、乙错误的计算方法得出的系数的数值求出a ,b 的值;(2)把a ,b 的值代入原式求出整式乘法的正确结果.32.【答案】解:(1)根据题意得:长方形地块的面积=(3a +b)(2a +b)=6a 2+5ab +b 2, 正方形雕像的面积为:(a −b)2=a 2−2ab +b 2,则绿化面积s =(6a 2+5ab +b 2)−(a 2−2ab +b 2)=5a 2+7ab ,即用含a ,b 的代数式表示绿化面积S =5a 2+7ab ,(2)把a =3,b =2代入S =5a 2+7ab ,s =5×32+7×3×2=87,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.(1)根据绿化面积=长方形地块的面积−正方形雕像的面积,列式计算即可,(2)把a =3,b =2带入(1)所求结果,计算后可得到答案.。
整式的乘除(习题及答案)
整式的乘除(习题)例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =-- 巩固练习1.①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-;④323(2)(2)b ac ab ⋅-⋅-.2.①2223(23)xy xz x y ⋅+=_____________________;②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________;③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________;④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3.①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---;④2(2)x y +;⑤()()a b c a b c -+++.4.若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5.若圆形的半径为(21)a +,则这个圆形的面积为()A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6.①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7.①32(32)(3)x yz x y xy -÷-=____________;②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-.8.计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.思考小结1.老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可.()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】巩固练习1.①445a b ②522m n ③12272x y -④3524a b c -2.①222336+9x y z x y ②428xy xy-+③232321334a b c a b c -④442584a b a b -⑤432323a a a a--++3.①229x y -②2242a b a b-+-③224212m mn n -++④2244x xy y ++⑤2222a b c ac-++4.D5.C6.①223x z ②12③48x y④34x y -⑤22mn 7.①223x z x -+②2246b ab a -+-③222n m --④3222132m n m n m -+-8.①322a c ②7③23a ab+ 思考小结()()a b p q ap aq bp bq ++=+++22()(2)32a b a b a ab b ++=++。
整式的乘除练习题
整式的乘除练习题整式的乘除练习题整式是数学中的一个重要概念,它由数字和字母的乘积或除法组成。
掌握整式的乘除运算是数学学习的基础,也是解决实际问题的关键。
本文将通过一些练习题来帮助读者巩固整式的乘除运算。
1. 乘法练习题1)计算:(2x + 3)(4x - 5)解析:使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。
(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 152)计算:(3a - 2b)(5a + 4b)解析:同样使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。
(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b + (-2b) * 5a + (-2b) * 4b= 15a^2 + 12ab - 10ab - 8b^2= 15a^2 + 2ab - 8b^22. 除法练习题1)计算:(6x^2 - 9x) ÷ 3x解析:使用除法的原则,将被除数的每一项除以除数。
(6x^2 - 9x) ÷ 3x = 6x^2 ÷ 3x - 9x ÷ 3x= 2x - 32)计算:(10a^2 - 15a) ÷ 5a解析:同样使用除法的原则,将被除数的每一项除以除数。
(10a^2 - 15a) ÷ 5a = 10a^2 ÷ 5a - 15a ÷ 5a= 2a - 33. 综合练习题1)计算:(2x + 3)(4x - 5) ÷ (2x + 3)解析:先将乘法计算出结果,再进行除法运算。
(2x + 3)(4x - 5) ÷ (2x + 3) = (8x^2 + 2x - 15) ÷ (2x + 3)使用长除法进行计算,首先将 8x^2 除以 2x,得到 4x。
整式的乘除计算练习题及答案
整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一练<一>、知识回顾:1、同底数幂相乘,底数_______,指数_______,用公式表示:_______。
2、幂的乘方,底数_______,指数_______,用公式表示:_______。
3、积的乘方等于把______________分别乘方,再把所得的幂_______。
用公式表示:_______。
4、同底数幂相除,底数_______,指数_______,用公式表示:_______。
a 0 = _______ (a≠0) a -p = _______ (a≠0, p 是正整数)5、单项式与单项式相乘,把它们的______________分别相乘,对于只在--------------含有的字母则-------------- -- ---,作为积的因式。
6、单项式与多项式相乘,就是把单项式去乘多项式的_______,再把所得的积_______。
7、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的_______,再把所得的积_______。
8、两数和与这两数差的积,等于它们的平方差,叫做___________。
用公式表示:_______。
9、首平方,末平方,首末两倍中间放,叫做_____________。
用公式表示:_________________________。
10、整式的除法:(1)单项式相除:把______________分别相除后,作为商的因式;对于只在_______里含有的字母,则连同它的指数一起作为商的一个因式。
(2)多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商_______。
<二>、基础训练:一.选择题:(每小题2分,共20分)1. 下列式子中,计算正确的是( )(A ) 844333=+;(B ) 444933=⨯;(C ) 444633=⨯;(D ) 844333=⨯;2. 以下运算不正确的是( )A 、x · x 4-x 2 · x 3=0;B 、x · x 3+x · x · x 2=2x 4C 、-x(-x)3 ·(-x)5=-x 9;D 、-58×(-5)4=5123. (-21x 2y)3的计算结果是( )A 、-21x 6y 3B 、-61x 6y 3C 、-81x 6y 3D 、81x 6y 3 4. 以下计算正确的是( )A. 3a 2·4ab =7a 3bB. (2ab 3)·(-4ab)=-2a 2b 4C. (xy)3(-x 2y)=-x 3y 3D. -3a 2b(-3ab)=9a 3b 25. (x+4y)(x-5y)的结果是( )A.x 2-9xy-20y 2B.x 2+xy-20y 2C.x 2-xy-20y 2D.x 2-20y 26. 1-(x -y )2化简后结果是( )(A) 1-x 2+y 2; (B)1-x 2-y 2; (C) 1-x 2-2x y +y 2; (D)1-x 2+2x y -y 2;7. 23()(3)4a bc ab -÷-等于( ) A. 294ac B. 14ac C. 94ab D. 214a c 8. (8x 6y 2+12x 4y -4x 2)÷(-4x 2)的结果是( )A. -2x 3y 2-3x 2yB. -2x 3y 2-3x 2y +1C. -2x 4y 2-3x 2y +1D. 2x 3y 3+3x 2y -19. (0.75a 2b 3-53ab 2+21ab )÷(-0.5ab )等于________。
A. -1.5ab 2+1.2b -1B. -0.375ab 2+0.3b -0.25C. -1.5ab 2+1.2bD. 23ab 2-1.2b +1 10. ①43(3)(3)3x x x -÷-=-②623623a a a ÷= ③863322()a b a b a b ÷= ④24228(2)2n n x y xy x +÷-=;其中错误的运算个数有( )A. 1个B. 2个C. 3个D. 4个二.填空:(每小题2分,共30分)1. ()3322b a -= ;2.32])[(m -= ; 3.22+-⋅n n x x = ; 4. 10010025.04⨯-= ;5.(x-y)2·(y-x)3·(x-y)= ;6. 41_________21422++=⎪⎭⎫ ⎝⎛-x x ; 7. ___________2__________________)1.0(2++=+x x ;8. )2)(2(b a b a -+= ;9. 已知:a+b=9,a 2+b 2=21,求ab= ;10. (-x-y)(x-y)= ; 11. (-21a )6÷(-21a )3= ;12. (25a 3x 3y )2÷__________= 5a 2x 2y 2 13. 5324(123)()________.x y z x y xy -÷-=14. (x-y)7÷(y-x)5= ; 15. -(-0.1)0= ;三.解答题:(每小题3分,共21分)1. -a 3·a 4·a +(a 2)4+(-a 4)22. (-3x 2y)3·(-2xy 3z)23. (5a 2b -3ab -1)(-3a 2)4.3a 2-2a(5a -4b)-b(3a -b) 5、6x 2-(x -1)(x +2)-2(x -1)(x +3) 6. 82443215(3)(4)x y z x yz x y ÷-÷-7. (0.16mn 4-0.6m 2n 3+1.4mn 3)÷(-52mn 3)四.计算题:(每小题3分,共18分)1. )32)(32(b a b a --+-2. (a+4b-3c )(a-4b-3c )3. 79.8×80.24. ))()((22y x y x y x -+- 5. ()223y x - 6. (3x+y-2)2第二练一、填空题:1. (6ab 3-2a 2b+5ab 2c 3)(-4a 2b)= 。
2. (5x 3-6x 4+8x 2y 3)÷12x 2= 。
3. [(-21x 2y 4z)÷7x 2y]3= 。
4. (-m-13n)2= 。
5. (x-3y)4÷(3y-x)3(x+3y)= 。
6. ( 15x-3)(3-15x)= 。
7. (3x+2y-z)(-3x+2y-z)=[( )+( )][( )-( )] =( )2-( )2。
8. (2x 2-y 3)( )=8x 6-y 9。
9. (a+b)[( )+5ab]=a 3+b 3。
10. (1)2m ·42m ·83m = ; (2)15m ÷( )=-5m 。
二、选择题:11. 计算(-5a 2b 3x)3结果是( )(A)-15a 6b 9x 3; (B)-125a 6b 9x 3;(C)-15a 8b 27x 3; (D)-125a 8b 27x 3。
12. 计算(-x)5(-x 2)5结果是( ) (A)x 10; (B)-x 10; (C)x 15; (D)-x 15。
13. 下列各式计算正确的是( )(A)a 5+a 5=a 10; (B)(a 3)2=a 9;(C)3a 3·5a 5=15a 8; (D)a 6÷a 3=a 2。
14. 下列各式计算正确的是( )(A)7x 2y 3·xy 2÷17xy 2=x 2y 3; (B)(x 2y 2)3÷(x 3y 3)2=1;(C)a 6b 6÷a 4b 3·a 2b 3=1 (D)8a 3b 4÷2a 2·12b 2=8ab 6。
15. 下列各式计算正确的是( )(A)(4x-3)(-4x-3)=9-16x 2(B)(2x-3)2=4x 2-9(C)(x-3)(x 2+6x+9)=x 3-27 (D)(3x+5y)2=9x 2+15xy+25y 2。
16. 下列等式中能够成立的是( )(A)(3a+2b)2=9a 2+6ab+4b 2(B)(x-7)(7-x)=x 2-49(C)(a-0.1)(a 2+0.1a+0.01)=a 3-0.001(D)(x-y)5÷(y-x)2=(y-x)3。
17. 计算(2a-b)2-(2a+b)(2a-b)结果是( )(A)0; (B)-4ab ;(C)-2b 2; (D)-4ab+2b 2。
18. 三个连续偶数,中间一个设为m ,它们的积是( )(A)8m 2-8m ; (B)m 3-4m ;(C)8m 3-2m ; (D)4m 3-m 。
19.下列式子错误的是 ( )(A)161)2(22=-- (B)161)2(22-=-- (C)641)2(32-=-- (D)641)2(32=--三、计算题:(1) 5(-x 3)4·(-3x 4)3÷(-18x 5) (2) [5ab 3-2b 2(3a 2+2ab)]÷(-12ab 2)(3) (a-2)·(-3an)2-(9a n+1+5a)·a n (4) [6(2x-y)3-4y(y-2x)2]÷2(y-2x)2四.利用乘法公式计算:(1) [(a-b)2+ab]·(a+b) (2)(x-3y)(x+3y)(x 4+9x 2y 2+81y 4)3) (x+12)2(x 2-12x+14)2 (4)(x-4y+2z)(x+4y-2z)五.简便计算:(1) (-5.5)1997×(211)1997 (2)31151644⨯(3) 1998×1996-19972 (4)121()()2176n n n+⨯⨯六.解下列方程:(1) (x-7)(x+9)+2x(x-5)=(3x-4)(x-1) 2、(x-3)(x+3)-(3x+1)2=8x(5-x)七.简答题:1. 已知甲数是x,乙数比甲数的3倍少2,丙数比甲数的3倍多2,求甲、乙、丙三数的积。
如果x=-2时,那么三数的积是多少?2.先化简再求值:(x-y)2+(3x-2y)(2x+y)-x(6x-y),其中x=12,y=1。
八.先化简,再求值:8x2-(x+2)(2-x)-2(x-5)2,其中x=-3。