人教版七级上册 数学 课件 有理数的乘法
合集下载
有理数的乘法 课件(共21张PPT)人教版初中数学七年级上册
![有理数的乘法 课件(共21张PPT)人教版初中数学七年级上册](https://img.taocdn.com/s3/m/216641ca6aec0975f46527d3240c844769eaa0d5.png)
探究3
(3)如果蜗牛在直线l上以每分钟2 cm的速度向
右爬行,3分钟前它在什么位置?
2
-6
-4
-2
0
2l
位置结果:3分钟前在l上点O 左 边 6 cm处
算式表示:(+2)×(-3)=(-6).
探究4
(4)如果蜗牛在直线l上以每分钟2 cm的速度向 左爬行,3分钟前它在什么位置?
2
-2
0
2
4
6l
位置结果:3钟分前在l上点O右 边 6 cm处
• (3)几个数相乘时,如果有一个因数是0,则积为 0。
• (4)乘积是1的两个有理数互为倒数。
作业
• 课本51页习题2.10第一题
正
7.8×(-8.1)×0×(-19.6)
零
几个有理数相乘,因数都不为 0 时,积的符号怎 样确定? 有一因数为 0 时,积是多少?
归纳总结
1.几个不等于零的数相乘,积的符号由负因数的个数 决定: a.当负因数有_奇__数__个时,积为负; 奇负偶正 b.当负因数有_偶__数__个时,积为正. 2.几个数相乘,如果其中有因数为0,__积__等__于__0_
练一练
1的倒数为 1
-1的倒数为 -1
0.2的倒数为 5
-0.2的倒数为 -5
2 的倒数为 3
3
2
2 的倒数为 3
3 2
0有没有倒数 零没有倒数
1
思考:a的倒数是 对吗?
a
(a≠0时,a的倒数是1 ) a
例3 已知a与b互为相反数,c与d互为倒数,m的 绝对值为6,求 a b -cd+|m|的值.
2.2.1 有理数的乘法
学习目标
1.掌握有理数的乘法法则并能进行熟练地运算. (重点)
人教版七年级数学上册《有理数的乘除法》课件(共21张PPT)
![人教版七年级数学上册《有理数的乘除法》课件(共21张PPT)](https://img.taocdn.com/s3/m/06f426d55ebfc77da26925c52cc58bd63186937c.png)
②(-6) ×(-9)54= ④(-6) ×1-6= ⑥6 ×(-1-)6 = ⑧0×(-6)0=
课堂练习(正误辨析)
你能看出下面计算有误么?
计算: ( 1)(2) 4
--
解:原式=
(1 4
2)
= 1
2
这个解答正确么? 你认为应该怎么 做?答案是多少 呢?
课堂练习(选择题)
1)如果a×b=0,则这两个数
表示是两种符号
的数相乘的话,请判断下面几种图形相乘
所得到的图形结果。
+× + ×+ - ×+ - ×-
==+ ==+
例题学习
计算:
①(-3)×(-9); ②(- )×1
1
;
③7×(-1);
2
3
④ (-0.8)×1.
例题学习
计算:
①(-3)×(-9); ②(- )×1
1
;
③7×(-1);
(2) (-2) ×(+3)
东
-2
-6 -4 -2 0 -6
亦即
(-2)×(+3)=-6
即说明小虫在原来位置的西6米处
(3) (+2)×(-3)
2
东
-6 -4 -2 0 2 -6
亦即: (+2)×(3)=-6
结果:向西运动6米
(4)(-2)×(-3)
-2
东
-2 0
246 6
亦即(-2)×(- 3)=+6
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
感受法则、理解法则:
有理数乘法法则也秉承了有理数加减的探究思路,即将问题予 以归类处理,分类计算,这样有助于我们问题的解决。
1.4第1课时有理数的乘法(1)课件上学期人教版七年级数学上册
![1.4第1课时有理数的乘法(1)课件上学期人教版七年级数学上册](https://img.taocdn.com/s3/m/96c350c80408763231126edb6f1aff00bed5702b.png)
4×(-5)=________;
4×(-5)=________;
负数乘负数,积是________.
也就是:有理数相乘,可先确定积的符号,再确定积的绝对值.
(2)如果火车的速度v=-65 km/h,火车行驶的时间t=3.
正数乘负数,积是________;
(-4)×5=________;
负数乘正数,积是________;
第1课时 有理数的乘法(1) 3.计算:4×5=______;
4×(-5)=__-__2_0___; 类似地,(-2)×3=(-2)+(-2)+(-2)=_______;
乘积是_____的两个数互为倒数. 负数乘正数,积是________;
4×(-5)=________;
(-4)×5=__-__2_0___; 2.一个数乘整数是求几个相同加数和的运算,比如2×3=2+2+2=6.
(-4)×(-5)=___2_0__.
知识点 1 有理数的乘法 例 1 计算: (1)(-6)×(+5); (2)-21×-43; (3)134×-72;(4)-713×0.
(1)-30. 3
(2) 8. (3)-21. (4) 0.
4.计算: (1)(+3)×(-5); (2)(-0.125)×(-8); (3)-416×-15; (4)0×(-13.52).
4×(-5)=________;
1.小学我们学过了数的乘法的意义,你能说出来吗? 2.一个数乘整数是求几个相同加数和的运算,比如2×3=2+2+2=6.
1.已知有理数a,b在数轴上对应点的位置如图所示,则ab的结果是
()
积的绝对值等于各乘数__________的积.
乘积是_____的两个数互为倒数.
5.火车从车站A出发在东西方向的直行道上运行,规定自车站A向 东为正,向西为负.
人教版七年级数学上册课件第3课时 有理数的乘法运算律
![人教版七年级数学上册课件第3课时 有理数的乘法运算律](https://img.taocdn.com/s3/m/055bd674e53a580217fcfe39.png)
预习反 馈
2.计算:(-3) 5 ( 9) ( 1 ) (8) (1)
65
4
解:-9
3.计算:
(1)(- 3) (8 4 14);
4
3 15
(2)19 18 (15). 19
解:(1)-4 3 ,(2)-299 4 .
10
19
名校讲 坛
例1 在算式每一步后面填上这一步应用的运算律: [(8×4)×125-5]×25 =[(4×8)×125-5]×25(乘法交换律) =[4×(8×125)-5]×25(乘法结合律) =4 000×25-5×25(乘法分配律) =99 875.
D(. 16 2 2) 3 7 16
(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).
解:(1) 10.(2) 19 .(3)250. 21
课堂小 结
1.有理数乘法交换律. 2.有理数乘法结合律. 3.有理数乘法分配律.
A.(3+0.96)×(-99) B.(4-0.04)×(-99)
C.3.96×(-100+1)
D.3.96×(-90-9)
3.对于算式2 018×(-8)+(-2 018)×(-18),逆用分配律写成积的形式是( C )
A.2 018×(-8-18)
B.-2 018×(-8-18)
C.2 018×(-8+18)
D.-2 018×(-8+18)
巩固训 练
4.计算13 5 3 ,最简便的方法是( D ) 7 16
A(. 13+ 5) 3 B(. 14- 2) 3
7 16
7 16
C(. 10+3 5) 3 7 16
5.计算:
(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;
人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
![人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)](https://img.taocdn.com/s3/m/c5b464532b160b4e777fcf0f.png)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3
人教版数学七年级 有理数的乘除法课件 张ppt
![人教版数学七年级 有理数的乘除法课件 张ppt](https://img.taocdn.com/s3/m/a6bef8395acfa1c7ab00cc32.png)
知识点及时练
用两种方法计算
(
1 4
+
1 6
-
1 2
)×12
解法1:
原式= (
3 12
+
2 12
-
6 12
)×12
=-
1 12
×12
=- 1
解法2:
原式=
1 4
×12
+
1 6
×12-
1 2
×12
= 3 + 2- 6
=- 1
知识点及时练
下列各式中用了哪条运算律?如何用字母表示?
(1)(-4)×8 = 8 ×(-4)
第一组:
(1) 2×3= 6
3×2= 6
2×3 = 3×2
(2) (3×4)×0.25= 3
3×(4×0.25)= 3
(3×4)×0.25 = 3×(4×0.25)
(3) 2×(3+4)= 14 2×3+2×4= 14 2×(3+4) = 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
教材知识点梳理
有理数的除法法则
法则1:除以一个不等于0的数,等 于乘这个数的倒数. 法则2:两数相除,同号得正,异号 得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.
知识点及时练
1 计算: (1) (- 36) ÷9 ;
(2)
25÷( )5.
12
知识点及时练
1 计算:
(1)(-3) × 9
(2)(- 1)×(-2) 2
解:
(1)(-3) × 9 = -(3 × 9 ) = -27
(2)(-
12)×(-2)= +(
1×
2
2
)=
人教版七年级上数学上册 有理数的乘法 课件
![人教版七年级上数学上册 有理数的乘法 课件](https://img.taocdn.com/s3/m/99005ea855270722192ef7c0.png)
探究发现
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)
负
( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)
负
( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0
有理数的乘法人教版七年级数学上册PPT精品课件
![有理数的乘法人教版七年级数学上册PPT精品课件](https://img.taocdn.com/s3/m/6b830afc915f804d2a16c113.png)
解:由题意得,a+b=0,cd=1,|m|=6, m=±6. 所以原式=m×0-1+6=5. 故m(a+b)-cd+|m| 的值为5.
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
人教版初中七年级上册数学课件 《有理数的乘除法》课件(第一课时有理数乘法)
![人教版初中七年级上册数学课件 《有理数的乘除法》课件(第一课时有理数乘法)](https://img.taocdn.com/s3/m/fddae45700f69e3143323968011ca300a7c3f652.png)
课堂测试
例1.计算 1)3×(-7) 2)(-8)×(-2)
绝对值相乘
1)3×(-7)= - (3 × 7) =21
绝对值相乘
2)(-8) × (-2)=+(8 × 2)=16
异号相乘结果符号为负
同号相乘结果符号为正
思考
(1)
1
2
1
_____
2
(2)( 1) (2) _1____ 2
(3)( 4) ( 7) _1____ 74
观察左侧的乘法算式,你能发现什么规律?
规律:随着后一个乘数依次递减1, 积逐渐递减3.
引入负数后规律成立吗? 成立
1)(-1)+(-1)+(-1)=3×(-1)=-3 2)(-2)+(-2)+(-2)=3×(-2)=-6 3)(-3)+(-3)+(-3)=3×(-3)=-9 …
思考
交换顺序 第四天 第三天 第二天 第一天 起始位置
➢ 1.正数乘正数,积为正数。 ➢ 2.正数乘负数,积为负数。 ➢ 3.负数乘正数,积为负数。 ➢ 4.积的绝对值等于各乘数绝对值的积。
思考
第四天 第三天 第二天 第一天 起始位置
乙
(-3)×4=-12 (-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0
观察左侧的乘法算式,你 能发现什么规律?
甲
4×3=12 3×3=9 2×3=6 1×3=3 0×3=0
观察左侧的乘法算式,你 能发现什么规律?
规律:随着前一个乘数依 次递减1,积逐渐递减3.
引入负数后规律成立吗? 成立
1)(-1)+(-1)+(-1)=(-1)×3=-3 2)(-2)+(-2)+(-2)=(-2)×3=-6 3)(-3)+(-3)+(-3)=(-3)×3=-9 …
人教版数学七年级上册1.有理数的乘方课件
![人教版数学七年级上册1.有理数的乘方课件](https://img.taocdn.com/s3/m/cf30be406ad97f192279168884868762caaebbc4.png)
结论二:
1、1的任何次幂都为1
1n=1 (-1)n=?
2、-1的幂很有规律, -1的奇次幂是-1 , -1的偶次幂是1
1)在 11中10 ,11是 数底,10是
指数,读作 11的1;0次方
2 7
2
2)
3的底数是
,指3 数是
作
2 3
的;7次方
,读7
3)在 2中16,-2是 数底,16是 数指,读
32 32 ;
你有什么发现?
(1)负数的乘方,在书写时一定要把整个负数(连同 符号),用小括号括起来,这样便于辨认底数;
(2)分数的乘方,在书写时一定要把整个分数用小 括号括起来。
探究3
不计算下列各式,你能确定其结果的符号吗?从计 算结果中,你能得到什么规律?
⑴(-2)51; ⑵(-2)50; ⑶250; ⑷251; ⑸(-1)2012;⑹(-1)2013;⑺02012;⑻12013.
2.填空: 310的意义是 10个3,相3乘10 =
.59049
3.判断正误:(对的画“√”,错的画“×”) (1)32 =3×2=6. ( ×) 32=3×3=9.
(2)(-2)3=(-3)2. ( ×) (-2)3=-8,(-3)2=9.
(3)-32=(-3)2. ( )× -32=-9,(-3)2=9.
作
-2的;16次方
4)在 a中17,底数是 ;指a 数是 ;读17
作 a 的1;7次方
1.回答下列问题:
(1)23中底数是 2,指数是 3,幂是 . 8
(2)
34中2 底数是
,指数是
,2幂是
(3)(-5)4中底数是 -,5 指数是 ,幂4 是
.
. 625
人教版初中数学七年级上册《有理数的乘法》课件
![人教版初中数学七年级上册《有理数的乘法》课件](https://img.taocdn.com/s3/m/3deaa884a417866fb94a8ebc.png)
第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
我们已经熟悉正数及0的乘法运算,引入负 数以后,怎样进行有理数的乘法运算呢?
问题:怎样计算? (1)(-4)×(-5) (2) (-5)×(+6)
如图,一只蜗牛沿直线 爬行,它 现在的位置在直线上的点O处.
O
1、如果一只蜗牛向右爬行2cm记为+2cm,那 么向左爬行2cm应该记为 -2cm。 2、如果3分钟以后记为+3分钟,那么3分钟 以前应该记为 -3分钟。
口答:
(1)6×(-9) ; (3)(-6)×9;
(2)(-6)×(-9) ; (4)(-6)×1;
(5)(-6)×(-1); (6)6×(-1);
(7)(-6)×0 ; (8)0×(-6) ; (9)(-6)×0×25
(10)(-0.5)×(-8);
三、巩固法则,提高技能
练习一 填写下表: 开始抢答
二、新课探究
情景1:森林里住着一只蜗牛,每天都要离开家去寻找食
物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分 钟后蜗牛在什么位置?
3分钟后蜗牛应在0点的右边6cm处。 可以表示为:(+2)×(+3)=+6
探索规则:方向规定:向左为负,向右为正 时间规定:现在前为负,现在后为正
情景2:如果蜗牛一直以每分钟2cm的速度向
A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
1、有理数乘法法则 归纳总结
• 两数相乘,同号得正,异号得负,并 把绝对值相乘。 任何数同0相乘,都得0。
2、有理数的求解步骤:有理数相乘,先确定积的符 号,再确定积的绝对值。
3、乘积是1的两个数互为倒数。
1.4 有理数的乘除法
1.4.1 有理数的乘法
我们已经熟悉正数及0的乘法运算,引入负 数以后,怎样进行有理数的乘法运算呢?
问题:怎样计算? (1)(-4)×(-5) (2) (-5)×(+6)
如图,一只蜗牛沿直线 爬行,它 现在的位置在直线上的点O处.
O
1、如果一只蜗牛向右爬行2cm记为+2cm,那 么向左爬行2cm应该记为 -2cm。 2、如果3分钟以后记为+3分钟,那么3分钟 以前应该记为 -3分钟。
口答:
(1)6×(-9) ; (3)(-6)×9;
(2)(-6)×(-9) ; (4)(-6)×1;
(5)(-6)×(-1); (6)6×(-1);
(7)(-6)×0 ; (8)0×(-6) ; (9)(-6)×0×25
(10)(-0.5)×(-8);
三、巩固法则,提高技能
练习一 填写下表: 开始抢答
二、新课探究
情景1:森林里住着一只蜗牛,每天都要离开家去寻找食
物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分 钟后蜗牛在什么位置?
3分钟后蜗牛应在0点的右边6cm处。 可以表示为:(+2)×(+3)=+6
探索规则:方向规定:向左为负,向右为正 时间规定:现在前为负,现在后为正
情景2:如果蜗牛一直以每分钟2cm的速度向
A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
1、有理数乘法法则 归纳总结
• 两数相乘,同号得正,异号得负,并 把绝对值相乘。 任何数同0相乘,都得0。
2、有理数的求解步骤:有理数相乘,先确定积的符 号,再确定积的绝对值。
3、乘积是1的两个数互为倒数。
人教版七年级上册数学1.有理数的乘方课件
![人教版七年级上册数学1.有理数的乘方课件](https://img.taocdn.com/s3/m/7ea455cfdbef5ef7ba0d4a7302768e9951e76ee2.png)
第2次撕: 4 =2×2 记作22
读作“2的四次方”
第3次撕: 8 =4×2 =2×2×2 记作23
第4次撕: 16 =8×2 =2×2×2×2 记作24
同样的,像:
(-3)× (-3)×(-3) ×(-3) ×(-3)
5个-3
记作(-3)5 读作-3的五次方
(-
1 2
)
× (-
1 2
)
×
(-
1 2
a的n次方;当 an 看作一个结果时,也可以读作 a
的 n次幂.
底数
an
指数
幂
an的意义: an= a·a·…·a n个a
举例说明
在94中,底数是( 9),指数是(4). 读作: 9的4次方 或 9的4次幂 。 意义: 4个9相乘 ,即: 94=9×9×9×9 。
特别地,一个数可以看作这个数本身的一 次方。例如,5就是51 。指数1通常省略不 写。
=0
(3) 04
(2)原式 =0×0×0
=0 (3)原式 =0×0×0×0
=0
0的任何正整数次幂都是0.
归纳:
根据有理数的乘法法则不难得出: 负数的奇次幂是负数, 负数的偶次幂是正数; 正数的任何次幂都是正数, 0的任何正整数次幂都是0.
口答,直接说出下列各式中,幂的符号。
(1)(-3)3 负 (2)(-3)4 正 (3)105 正 (4)(-10)4 正 (5)(-5)2 正
2 2、3×
2× 3
2× 3
2 ( 2 )4 3=____3___
(-1)4 与-14 一样吗?
三、把下列乘方写成乘法的情势:
1. 0.=93 0.9;0.9 0.9
2. 9=4
人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件
![人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件](https://img.taocdn.com/s3/m/2aea47210c22590103029dc8.png)
新知演练
新知应用
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均 盈利2万元,7~10月平均盈利1.7万元,11~12月平均 亏损2.3万元,这个公司去年总盈亏情况如何?
新知应用
解:记盈利额为正数,亏损额为负数,公司去年
全年总的盈亏(单位:万元)为 除3万以元一,个这不个等公于司0去的年数总,盈等亏于情乘况以如这何个?数的___.
例D.3 -请4×你(2仔÷细8)阅和读-下4×列2÷材8料:计算 综解上:所 (述1),(1原0式-的4)×值3为-3(-或6-)=12.4; 解当:a>原0式,=b-<80+时(-,3原)×式(1=6(+-21)-)+(1-+(4-. 1)=3;
(-1.5)×3+2×3+1.7×4+(-2.3)×2 问(题2)1:4-小(-学6的)÷四3则×1混0=合2运4;算的顺序是怎样的?
答:这个公司去年全年盈利3.7万元.
新知演练
【变式】一架直升飞机从高度为450m的位置开始,先以20m/s 的速度上升60s,后以12m/s的速度下降120s,这时直 升机所在的高度是多少? 解:450+20×60-12×120 =450+1200-1440 =210 答:这时直升机所在的高度是210m.
问题2:我们目前都学习了有理数的哪些运算? 有理数的加法、减法、乘法、除法.
新知讲解
问题1:下列式子含有哪几种运算?先算什么,后算什么? 第二级运算 乘除运算
3 50 2 5 1 ?
加减运算 第一级运算
新知讲解
问题2:观察式子-3×(2+1)÷(5-12),应该按照什么 顺序来计算?
有理数的加减乘除混合运算的顺序: 先算乘除,再算加减,同级运算从左往右依
人教版(2024)数学七年级上册 2.2.1.2有理数的乘法运算律 课件(共18张PPT)
![人教版(2024)数学七年级上册 2.2.1.2有理数的乘法运算律 课件(共18张PPT)](https://img.taocdn.com/s3/m/890cec4fa31614791711cc7931b765ce05087ac1.png)
5 8 12 12 15 2 3
2. 27
(2)(1) ( 5) 8 3 ( 2) 0 (1) 0. 4 15 2 3
课堂练习
1. 计算
8 9
3 4
1 2
的值为(
D
)
A. 1
B. 1 2
C. 1 3
D. 1 3
课堂练习
2.下列变形不正确的是( C )
A.5×(-6)=(-6)×5
(2)5×[(-6)x(-8)]=5×48=240. 问题2:通过上述计算中,你能得出什么结论?
在有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个 数相乘,积不变. 用字母表示为:(ab)c=a(bc).
探究点3 乘法分配律
问题1:计算:(1)5×[3+(-7)];(2)5x3+5x(-7).
(2)( 7)15 (11);
8
7
(4)( 6) ( 2) ( 6) ( 17). 535 3
解:(1)(-85)×(-25)×(-4) =-(85×25×4) =-(85×100) =-8500.
(2)( 7)15 (1 1) 7 15 8 15.
8
78 7
(3)( 9 1 ) 30 9 30 1 30 27 2 25.
第二章 有理数的运算
2.2.1 有理数的乘法 第2课时 有理数的乘法运算律
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.掌握有理数乘法的运算律,并利用运算律简化乘法运算.(重点) 2.掌握多个有理数相乘时的符号判断法则.(重点) 3.掌握乘法的分配律,并能灵活的运用.(难点)
10 15
10
15
(4)( 6) ( 2) ( 6) ( 17) ( 6) ( 2 17) ( 6) 5 6.
2. 27
(2)(1) ( 5) 8 3 ( 2) 0 (1) 0. 4 15 2 3
课堂练习
1. 计算
8 9
3 4
1 2
的值为(
D
)
A. 1
B. 1 2
C. 1 3
D. 1 3
课堂练习
2.下列变形不正确的是( C )
A.5×(-6)=(-6)×5
(2)5×[(-6)x(-8)]=5×48=240. 问题2:通过上述计算中,你能得出什么结论?
在有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个 数相乘,积不变. 用字母表示为:(ab)c=a(bc).
探究点3 乘法分配律
问题1:计算:(1)5×[3+(-7)];(2)5x3+5x(-7).
(2)( 7)15 (11);
8
7
(4)( 6) ( 2) ( 6) ( 17). 535 3
解:(1)(-85)×(-25)×(-4) =-(85×25×4) =-(85×100) =-8500.
(2)( 7)15 (1 1) 7 15 8 15.
8
78 7
(3)( 9 1 ) 30 9 30 1 30 27 2 25.
第二章 有理数的运算
2.2.1 有理数的乘法 第2课时 有理数的乘法运算律
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.掌握有理数乘法的运算律,并利用运算律简化乘法运算.(重点) 2.掌握多个有理数相乘时的符号判断法则.(重点) 3.掌握乘法的分配律,并能灵活的运用.(难点)
10 15
10
15
(4)( 6) ( 2) ( 6) ( 17) ( 6) ( 2 17) ( 6) 5 6.
人教版七年级数学上册1.有理数的乘方(第一课时)课件
![人教版七年级数学上册1.有理数的乘方(第一课时)课件](https://img.taocdn.com/s3/m/81339d41fe00bed5b9f3f90f76c66137ef064f15.png)
n个
n个相同因数的积的运算
剖析概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
底数
an
指数 幂
乘方定义理解时需要关注: 1.指数n取正整数. 2.底数a可以代表所有数,可以是正数,负数,零.
3.一个数可以看作这个数本身的一次方,
例如5就是5,1 指数1通常省略不写.
剖Hale Waihona Puke 概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
引例
记作: 读作“:-2的四次方”
记作:
读作“:
的五次方”
引例
n个
记作:3n 读作“:3的n次方”
aaa a
n个
记作:a n 读作:“ a的n次方”
引例
3333
n个
aaa a
有理数的乘方(一)
复习回顾
做一做: −30
9 4
0
乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
引例
3
3
边长为3的正方形面积
5 55
棱长为5的正方体体积
引例
记作:
读作: 3的平方
记作:
读作: 5的立方 (或5的三次方)
3次 4次
纸的 层数
2
4 8 16
层数可 表示为 2
22
23
24
... 27次
... 134217728
...
227
134217728×0.1mm=13421.7728m≈13 422m 2005年测量高度为8844.43米
8 3
想一想
与 一样吗?为什么?
-81
例题 m个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值
相乘.任何数与0相乘,都得0. 2.如何进行两个有理数的运算:
先确定积的符号,再把绝对值相乘,当有一个 因数为0时,积为0.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
综合如下: (1) 2×3=6. (2)(-2)×3= -6. (3) 2×(-3)= -6. (4)(-2)×(-3)=6. (5) 被乘数或乘数为0时,结果是0.
总结法有则理: 数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
2
-2
0
2
4
6
l
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
观察(1)到(4)式,根据你对有理数乘法的思考 ,填空: 正数乘正数积为__正_数; 负数乘正数积为__负_数; 正数乘负数积为__负_数; 负数乘负数积为__正_数; 乘积的绝对值等于各乘数绝对值的_积__.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
5.计算: (1)(-13)×(-6) (2)- 1 ×0.15
3
(3)(+2)×(-1 ) 答案: (1)78 (2)-0.05 (3)-2
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
1.4 有理数的乘除法
1.4.1 有理数的乘法 第1课时
计算: 5×3
2 3
×
7 4
0 ×1
4
解:5×3 = 15 277
解: 3 × =4 6 1
解:0 × =4 0
我们已经熟悉正数及0的乘法运算,引入负数以后 ,怎样进行有理数的乘法运算呢?
(4)(8)?
(5)6?
1.使学生掌握有理数乘法法则,并初步了解有理 数乘法法则的合理性. 2.学生能够熟练地进行有理数乘法运算.
(异号两数相乘) (得负)
7×4=28
(把绝对值相乘)
所以(-7)×4=-28
注意:有理数相乘,先确定积的符号,再确定积的值.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
【例题】
例1 (1)(-3)×9. (2)( 1 )× (-2). 2
1.计算3×(-2) 的结果是(
A.5
B.-5
C.6
2.如果 )
( 2 ) 1 ,则“
3
A. 3
2
B. 2
3
C. 2
3
【解析】选D. 3 ( 2)=1.
23
D) D.-6
”内应填的实数是(
D. 3
2
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
如图,一只蜗牛沿直线l 爬行,它现在的位置在l上的点O.
O
l
规定:向左为负,向右为正.
(1)如果蜗牛一直以每分钟2cm的速度向右爬行, 3分钟后它在什么位置? 结果:3分钟后在l上点O右边6 cm处,表示: (1)(+2)×(+3)= +6
2
0
2
4
l
6
(2)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟后它在什么位置? 结果:3分钟后在l上点O左边6 cm处,表示: (2)(-2)×(+3)= -6
3. 1 的倒数是( )
3
A.-3
B. 1
C. 1
D.3
3
【解析】选A.乘积为1的两个数互为倒数.
4.如果ab<0,那么下列判断正确的
是( )
A.a<0,b<0
B.a>0,b>0
C.a≥0,b≤0
D.a<0,b>0或a>0,b<0
【解析】选D.同号得正,异号得负.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
【跟踪训练】
计算(口答):
(1)6×(-9)=-54.
(2)(-4)×6=-24.
(3)(-6)×(-1)= 6.
(4)(-6) ×0=0.
(5) 2 ×(- 9 )= 3 .
3
4
2
(6)(- 1 ) × 1 = 1 .
3
4
12
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
2
-6
-4
-2
0
l
(3)如果蜗牛一直以每分钟2cm的速度向右爬 行,3分钟前它在什么位置? 结果:3分钟前在l上点O左边6 cm处,表示:
(3)(+2)×(-3)= -6
-6
-4
2
-2
0
l
2
(4)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟前它在什么位置?
结果:3分钟前在l上点O右边6 cm处,表示: (4) (-2)×(-3)= +6
例2 用正负数表示气温的变化量,上升为正,下 降为负.登山队攀登一座山峰,每登高1km气温的 变化量为-6℃,攀登3 km后,气温有什么变化 ? 解:(-6)×3= -18(℃). 答:气温下降18℃.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
例如:(-5) ×(-3) (同号两数相乘)
(-5)×(-3)= +( ) (得正)
5×3=15
(把绝对值相乘)
所以(-5)×(-3)=15
又如:(-7)×4 (-7)×4= -( )
(3)7×(-1). (4)(-0.8)×1. 解:(1) (-3) ×9 = -27.
(2)( 1 )×(-2)= 1.
2
(3) 7 × (-1) = - 7. (4)(-0.8)×1= - 0.8. 注意:乘积是1的两个数互为倒数.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
相乘.任何数与0相乘,都得0. 2.如何进行两个有理数的运算:
先确定积的符号,再把绝对值相乘,当有一个 因数为0时,积为0.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
综合如下: (1) 2×3=6. (2)(-2)×3= -6. (3) 2×(-3)= -6. (4)(-2)×(-3)=6. (5) 被乘数或乘数为0时,结果是0.
总结法有则理: 数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
2
-2
0
2
4
6
l
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
观察(1)到(4)式,根据你对有理数乘法的思考 ,填空: 正数乘正数积为__正_数; 负数乘正数积为__负_数; 正数乘负数积为__负_数; 负数乘负数积为__正_数; 乘积的绝对值等于各乘数绝对值的_积__.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
5.计算: (1)(-13)×(-6) (2)- 1 ×0.15
3
(3)(+2)×(-1 ) 答案: (1)78 (2)-0.05 (3)-2
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
1.4 有理数的乘除法
1.4.1 有理数的乘法 第1课时
计算: 5×3
2 3
×
7 4
0 ×1
4
解:5×3 = 15 277
解: 3 × =4 6 1
解:0 × =4 0
我们已经熟悉正数及0的乘法运算,引入负数以后 ,怎样进行有理数的乘法运算呢?
(4)(8)?
(5)6?
1.使学生掌握有理数乘法法则,并初步了解有理 数乘法法则的合理性. 2.学生能够熟练地进行有理数乘法运算.
(异号两数相乘) (得负)
7×4=28
(把绝对值相乘)
所以(-7)×4=-28
注意:有理数相乘,先确定积的符号,再确定积的值.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
【例题】
例1 (1)(-3)×9. (2)( 1 )× (-2). 2
1.计算3×(-2) 的结果是(
A.5
B.-5
C.6
2.如果 )
( 2 ) 1 ,则“
3
A. 3
2
B. 2
3
C. 2
3
【解析】选D. 3 ( 2)=1.
23
D) D.-6
”内应填的实数是(
D. 3
2
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
如图,一只蜗牛沿直线l 爬行,它现在的位置在l上的点O.
O
l
规定:向左为负,向右为正.
(1)如果蜗牛一直以每分钟2cm的速度向右爬行, 3分钟后它在什么位置? 结果:3分钟后在l上点O右边6 cm处,表示: (1)(+2)×(+3)= +6
2
0
2
4
l
6
(2)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟后它在什么位置? 结果:3分钟后在l上点O左边6 cm处,表示: (2)(-2)×(+3)= -6
3. 1 的倒数是( )
3
A.-3
B. 1
C. 1
D.3
3
【解析】选A.乘积为1的两个数互为倒数.
4.如果ab<0,那么下列判断正确的
是( )
A.a<0,b<0
B.a>0,b>0
C.a≥0,b≤0
D.a<0,b>0或a>0,b<0
【解析】选D.同号得正,异号得负.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
【跟踪训练】
计算(口答):
(1)6×(-9)=-54.
(2)(-4)×6=-24.
(3)(-6)×(-1)= 6.
(4)(-6) ×0=0.
(5) 2 ×(- 9 )= 3 .
3
4
2
(6)(- 1 ) × 1 = 1 .
3
4
12
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
2
-6
-4
-2
0
l
(3)如果蜗牛一直以每分钟2cm的速度向右爬 行,3分钟前它在什么位置? 结果:3分钟前在l上点O左边6 cm处,表示:
(3)(+2)×(-3)= -6
-6
-4
2
-2
0
l
2
(4)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟前它在什么位置?
结果:3分钟前在l上点O右边6 cm处,表示: (4) (-2)×(-3)= +6
例2 用正负数表示气温的变化量,上升为正,下 降为负.登山队攀登一座山峰,每登高1km气温的 变化量为-6℃,攀登3 km后,气温有什么变化 ? 解:(-6)×3= -18(℃). 答:气温下降18℃.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
例如:(-5) ×(-3) (同号两数相乘)
(-5)×(-3)= +( ) (得正)
5×3=15
(把绝对值相乘)
所以(-5)×(-3)=15
又如:(-7)×4 (-7)×4= -( )
(3)7×(-1). (4)(-0.8)×1. 解:(1) (-3) ×9 = -27.
(2)( 1 )×(-2)= 1.
2
(3) 7 × (-1) = - 7. (4)(-0.8)×1= - 0.8. 注意:乘积是1的两个数互为倒数.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法