第十三章-压杆的稳定性计算(材料力学课件)

合集下载

《材料力学压杆稳定》课件

《材料力学压杆稳定》课件

05
压杆稳定性设计原则与实例
压杆稳定性设计原则
压杆稳定性是指压杆在受到外力作用 时,能够保持其原有平衡状态的能力 。
压杆稳定性设计原则是确保压杆在使 用过程中能够承受外力作用,避免发 生失稳和破坏的关键。
设计压杆时,应遵循以下原则:选择 合适的材料、确定合理的截面尺寸、 优化压杆长度和形状、避免过大的偏 心载荷等。
本课程介绍了多种稳定性分析方法,包括欧拉公式法、经验公式法、能量法等。通过这些 方法的学习和应用,我们能够根据不同情况选择合适的分析方法,对杆件进行准确的稳定 性评估。
实际应用与案例分析
本课程结合实际工程案例,对压杆稳定问题进行了深入的探讨和分析。通过这些案例的学 习,我们了解了压杆稳定问题在实际工程中的重要性和应用价值,提高了解决实际问题的 能力。
不同截面形状的压杆,其临界载荷和失稳形态 存在差异。
支撑条件
支撑刚度、支撑方式等对压杆的稳定性有重要 影响。

提高压杆稳定性的措施
选择合适的材料
选择具有高弹性模量和合适泊松 比的材料,以提高压杆的稳定性

优化截面形状与尺寸
通过改变截面形状或增加壁厚等 方法,提高压杆的稳定性。
改善支撑条件
采用具有足够刚度的支撑,并合 理布置支撑位置,以提高压杆的
的比率。
03
压杆稳定性的定义与分类
压杆稳定性的定义
压杆稳定性是指压杆在受到轴向 压力时,保持其平衡状态而不发
生弯曲或屈曲变形的能力。
压杆稳定性问题主要关注的是压 杆在轴向压力作用下,是否能够 保持直线形状而不发生弯曲变形

压杆的稳定性取决于其自身的力 学特性和外部作用力的大小和分
布。
压杆稳定性的分类

材料力学课件13压杆稳定

材料力学课件13压杆稳定

临界力—压杆在临界平衡状态时所受的轴向压力, 称作临界压力或临界荷载。
返回 下一张 上一张 小结
第二节
细长压杆的临界力
一、两端铰支细长压杆的临界力 取X截面研究弹性范围内的挠曲线方程:
d y dx
2 2

M (x) EI

Plj EI
y; 令
Plj EI
k , 则有
2
d y dx
2
2
k y 0;
2 4
I z I min
126 . 6 ;
(126 . 6 120 ) 0 . 423 ;
由 0 .5,
求柔度

l
i

0 . 5 10000 39 . 5
查 值,用插值公式求得:
0 . 466
0 . 401 0 . 466 130 120
2
其通解为 y c1 sin kx c 2 cos kx ;
由边界条件
x 0, y 0; x l , y 0;
得 c 2 0 ; c1 sin kl 0 ;
因为 c 1 0 , 所以 sin kl 0 ; 得 kl n ( n 0、 2、 n ); 1、 则 Plj n EI
返回 下一张 上一张 小结
返回 下一张 上一张 小结
• 例10-1 一根两端铰支的20a号工字钢压杆,
长L=3m,钢的弹性模量E=200GPa,试确定 其临界压力。 •解:查表得20a号工字钢:
•临界压力按公式
Plj
Iz=2370cm4,Iy=158cm4,
EI
2
p lj
l
6

材料力学课件 压杆稳定

材料力学课件 压杆稳定

(a)
Fy l x w A sin kx B cos kx Fcr Fy w Ak cos kx Bk sin kx Fcr
(a) (b)
式中共有四个未知量:A,B,k,Fy。 由边界条件x=0,w =0 得 A=Fy (kFcr)。 由边界条件x=0,w=0 得 B=-Fy l /Fcr。
M x Fcr w Fy l x EIw [Fcr w Fy l x ]
令 k2=Fcr /EI,将上式改写为
Fy l x w k w EI
2
Fy l x w k w k Fcr
2 2
Fy l x w A sin kx B cos kx Fcr
长度系数μ
Fcr
2 EI
l2
=1
0.7
=0.5
=2
=1
0.5l
表中列出了几种典型的理想杆端约束条件下,等 截面细长中心受压直杆的欧拉公式。从表中可见,杆 端约束越强,压杆的临界力也就越高。 表中将求临界力的欧拉公式写成了同一的形式: π 2 EI Fcr l 2 长度因数,它与杆端约束情况有关; l ——压杆的相当长度,它表示某种杆端约束情况 下几何长度为l的压杆,其临界力相当于长度为 l 的两 端铰支压杆的临界力。

90

将式(2)除以式(1),便得 l1 2 tan ( ) ctn 2 l2

arctan(ctan )
2
§9.4
欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围
z 轴销 x y
对应于杆在xy平面内失稳,杆端约束接近于两端固 2 π EI z 定, Fcr 2 0.5l

材料力学压杆的稳定性教学课件

材料力学压杆的稳定性教学课件
脆性材料
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。

材料力学之压杆稳定课件

材料力学之压杆稳定课件
变形量等,绘制 压力与变形关系曲线。
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核

材料力学 第十三章压杆稳定

材料力学 第十三章压杆稳定
最小刚度平面,即I 最小的纵向平面。 F
(4)若压杆在两个形心主惯性平面内的杆端约束不相
同时,该杆的临界力应按两个方向的(I/ μl)min值计算。 y z x
轴销
(5)假设压杆是均质的直杆,且只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的;实际压杆 的临界力均小于理论值。
9l 5l
2l
稳定性
丧失原有平衡形式的现象称为失稳 失稳也是一种失效形式 理想中心受压细长压杆的临界力
§13-2
一﹑Euler公式
细长压杆的临界力
x Fcr
1.两端铰支的临界压力
M(x)=Fcrw (a)
l
E I w″= -M(x)(b) 得 E I w″= - Fcrw
w
x O y
令 k2=Fcr / EI
M(x) Fcr=F
2 0.8 160 p 0.04 i 4
l
l
2 EI 2 210 109 0.044 / 64 Fcr 102kN 2 2 (2 0.8) l
Fcr F Fst 34kN nst
例4:厂房钢柱长7m,由两根16b号Q235槽钢组成。截
稳定的。
F ≥ Fcr
F ≥ Fcr
F≥Fcr
(2)当F≥Fcr时,
在干扰力除去后,杆
干扰力
件不能恢复到原直线 位置,在曲线状态下 保持平衡。 原有的直线平衡状态是
(a)
(b)
(c)
不稳定的。
这种丧失原有平衡形式的现象称为丧失稳定性,简称失稳.
Fcr——压杆保持稳定平衡所能承受的极限压力, 即临界压力(临界荷载)。 压杆在外力作用下保持原有平衡形式的能力

第十三章压杆的稳定性

第十三章压杆的稳定性

(a)
(b)
7
§ 13-2
细长压杆的临界力
w A sin kx B cos kx (c)
将边界条件x=0,w=0代入式(c)得 B=0。于是根据(c)式并利用边界条件 x=l,w=0得到
A sin kl 0
由于B=0,故上式中的A不可能等于零,则
sin kl 0
w
解得:kl 0,π, 2π,
φ28 800 C
P=30kN
1
μ1l1 0.5 900 75 i1 6 s 1 P
解: 1.根据已知条件求 s ,P cr1 304 1.12 75 220MPa
a - s 304 - 240 s 57.1 b 1.12
3
§ 13-1
压杆稳定性的概念
2. 理想中心杆件 1. 压杆轴线是理想直线即无初弯曲, 2. 压力作用线与轴线完全重合, 3. 材料是绝对均匀的。
二、失稳(屈曲)
压杆丧失其直线平衡而过渡到曲线平衡,
称为丧失稳定性,简称失稳或屈曲。
4
§ 13-1
压杆稳定性的概念
F<Fcr
F=Fcr
F>Fcr
Fcr:临界压力
F 30 103 2 48.72MPa A2 p 282 4
24
§ 13-4
压杆的稳定性计算
作业:P1076; P10916 思考:P11017; P11018
25
§ 13-4
压杆的稳定性计算
答疑通知
地点:工科二号楼A424(力学系)
时间:17周的周二下午两点;
26
§ 13-4
P=30kN
n2

第十三章-压杆稳定知识讲解

第十三章-压杆稳定知识讲解
第十三章压杆稳定
1基本概念及知识要点
1.1基本概念
理想受压直杆、理想受压直杆稳定性、屈曲、临界压力。
1.2临界压力
细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。
1.3稳定计算
为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算:
稳定计算要求掌握安全系数法。
解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。临界压力根据柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。
3典型问题解析
3.1临界压力
例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm2,截面尺寸分别为(1)、b=40mm、(2)、a=56.5mm、(3)、d=63.8mm、(4)、D=89.3mm,d=62.5mm。若已知材料的E=200GPa,σs=235MPa,σcr=304-1.12λ,λp=100,λs=61.4,试计算各杆的临界荷载。
解题指导:
1.计算压杆的临界压力时,需要综合考虑压杆的材料、约束、长度、惯性半径,即需要首先计算压杆的柔度,根据柔度值,代入相应的公式计算压杆的临界压力。当
λ>λP时压杆为大柔度杆,用欧拉公式计算其临界应力;
λs<λ<λP时压杆为中柔度杆,用经验公式计算其临界应力;
λ<λs时压杆为短粗杆,压杆将首先发生强度破坏。
压杆的柔度
iy=iz=i
由于
所以,λ>λP压杆为大柔度杆
用欧拉公式计算临界压力
例题13.4所示工字钢直杆在温度t1=20℃时安装,此时杆不受力,已知杆长l=6m,材料的λP=132,E= 200GPa,线膨胀系数α=12.5×10-6/℃。试问当温度升高到多少度时杆将失稳。

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

第十三章-压杆稳定

第十三章-压杆稳定
2.请读者思考:如果两根槽钢只在两端连接,这时上述稳定计算和强度计算会不会发生变化?
例题13.8图13-8所示正方形桁架结构,由五根圆截面钢杆组成,连接处均为铰链,各杆直径均为d=40 mm,a=1 m。材料的λp=110,λs=60,E=200 GPa,经验公式为 ,nst=1.8。试求结构的许可载荷。
第十三章压杆稳定
1基本概念及知识要点
1.1基本概念
理想受压直杆、理想受压直杆稳定性、屈曲、临界压力。
1.2临界压力
细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。
1.3稳定计算
为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算:
压杆的柔度
iy=iz=i
由于
所以,λ>λP压杆为大柔度杆
用欧拉公式计算临界压力
例题13.4所示工字钢直杆在温度t1=20℃时安装,此时杆不受力,已知杆长l=6m,材料的λP=132,E= 200GPa,线膨胀系数α=12.5×10-6/℃。试问当温度升高到多少度时杆将失稳。
[解]
随着温度的升高,直杆在杆端受到压力FA=FB,当两端压力达到压杆的临界压力即:FA=FB=Fcr时,压杆将失稳。
由压杆稳定条件
则许用外载荷
FP≤139.2kN
3.计算由AC杆稳定条件确定的许用外载荷
AB杆的柔度
用欧拉公式计算压杆的临界应力:
由压杆稳定条件
则许用外载荷
FP≤240.6kN
4.确定整个结构的许用载荷
由稳定计算结果可知,结构的许用载荷为
[FP]=139.2kN
解题指导:
对于这类题目,所确定的载荷要确保整个结构所有受压杆件匀不失稳。

第十三章-压杆稳定(材料力学课件)

第十三章-压杆稳定(材料力学课件)

(A) P1=P2 (C) P1>P2
(B) P1<P2 (D) 不能断定P1和P2的关系
CL13TU10
解 : 图 ( a ) 中 , A D 杆 受 压
2EI
1 2EI
NAD 2P1
2
2a
P1 22
a2
图 ( b ) 中 , A B 杆 受 压
2EI
NABP2 a 2
2EI
P2 a2
例:长方形截面细长压杆,b/h=1/2;如果 将 b改为 h 后仍为细长杆,临界力Pcr是原来的 多少倍?
CL13TU2,3
Pcr 称为临界压力
CL13TU4
§13-2 细长压杆的临界压力 欧拉公式
一、两端铰支细长压杆的临界压力
CL13TU5
M (x)P v
M (x)P v E Iv M (x ) P v即 v Pv0
EI 令k2 P , 则vk2v0
EI 特 征 方 程 为 r2 k2 0
CL13TU11
解:
2E Ib
Pcr b ( l ) 2 Pcr a 2 E I a
( l)2
h4
Ib Ia
12 hb 3
12
h b
3
8
例:圆截面的细长压杆,材料、杆长和杆端 约束保持不变,若将压杆的直径缩小一半,则 其临界力为原压杆的_____;若将压杆的 横截面改变为面积相同的正方形截面,则其临 界力为原压杆的_____。
正方形
等边角钢
槽钢
CL13TU12
例:五根直径都为 d的细长圆杆铰接构成 平面正方形杆系ABCD,如各杆材料相同,弹 性模量为E。求图 (a)、(b)所示两种载荷作用下 杆系所能承受的最大载荷。

材料力学第十三章

材料力学第十三章

A 2L
CL
P=4KN
B
y1
L=1m y2
D
8、各构件均为圆截面,直径d=20毫米,材料弹性模
量E=200GPa,L=1米,第一特征柔度λp= 100,第 二特征柔度λs=57,经验公式σcr=304-1.12λ,稳定安 全系数nw=3,许用应力 [σ]=140MPa,求此结构的许 可载荷[P]。
C
P
L
B
A
D
L
L
L EL
9、横梁为刚性杆,1、2杆件的材料相同均为A3钢,比例极 限σP=200MPa,屈服极限为σs=240Mpa,强度极限为σb= 400MPa。 1杆的直径为d1=10毫米,杆长L1=1米。2杆 的直径为d2=20毫米,杆长为L2=1米。1杆与横梁的夹角 为30度,2杆与横梁的夹角为60度。两杆的强度与稳定安全 系数均为2.0。求结构的许可载荷[P]=?
材料和直径均相同问题压杆的临界应力总图弹性失稳弹塑性稳定问题强度失效细长杆细长杆中长杆中长杆粗短粗短杆杆临界应力总图150030sin30cos1计算工作压力mm161081610732crcr26118ab杆满足稳定性要求3选用公式计算临界应力4计算安全系数5结论kn11822两根直径均为两根直径均为dd的压杆杆材料都是材料都是qq235235钢钢但二者长度和约束条件但二者长度和约束条件各不相同各不相同
A
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?

材料力学-压杆稳定授课课件

材料力学-压杆稳定授课课件

y d coskx c sin kx P
M0
M0
边界条件为:
P
P
x0,yy0;xL,yy0
L
cM ,d0,kL2n 并 kLn
P
kL2n
为求最小临界力,“k”应取除零以外的最小值,即取:
kL 2
所以,临界力为:
= 0.5
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
b
解:①绕 y 轴,两端铰支:
2 细长压杆的临界力
一、两端铰支细长压杆临界力
假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。
P xL
P P
xM
y
① 弯矩: M (x,y)Py
② 挠曲线近似微分方程:
y M P y EI EI
y P yyk 2 y0 EI
其中:k 2 P EI
③ 微分方程的解: ④ 确定积分常数:
材料力学-压杆稳定授课课件
目录
1 压杆稳定的概念 2 细长压杆的临界力 3 压杆的临界应力及临界应力总图 4 压杆的稳定计算 5 提高压杆稳定性的措施
构件的承载能力:
1 压杆稳定性的概念
①强度 ②刚度 ③稳定性
工程中有些构件具有足 够的强度、刚度,却不一定 能安全可靠地工作。
P
一、稳定平衡与不稳定平衡 :
B
B
B
D
C
C
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
Pcr
Pcr
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l

材料力学-压杆的稳定性ppt课件

材料力学-压杆的稳定性ppt课件
受伤 。
压杆的稳定性
12
三 平衡的稳定性 随遇平衡 不稳定平衡
压杆的稳定性
稳定平衡
13
压杆平衡的稳定性
F<FF<cr Fcr
F>Fcr F>Fcr
F=FF=crFcr
稳定平衡状态
不稳定平衡状态
随遇平衡状态 (临界状态)
14
四 临界压力Pcr的概念
压杆的稳定性
• 临界状态是压杆从稳定平衡向不稳定平衡转化的 极限状态。
D1
d1
i1
I A
D12 d12 3.05m m 4
l


l
i1
115

1
D
cr1

2E 2
157MPa
ቤተ መጻሕፍቲ ባይዱ
39
1)空心压杆的临界应力
cr1

2E 2
157MPa
FP
2)实心压杆的临界应力
D1
d1
D 2 ( D12 d12 )
4
4
D
D12
式时,压杆长度 l 与截面边长 a 的最小比值,并求出这时的 临界应力。
FP
l
a
41
欧拉公式的使用范围 临界应力总图
例题:如图所示的结构中,各杆的重量不计,杆AB 可视为
刚性杆。已知 a 100cm,b 50cm。杆CD 长 L 2m,横
截面为边长 h 5cm 的正方形,材料的弹性模量 E 200GPa,

M
(x)


P cr
y
dx2 EI
EI

k2

P cr
EI

材料力学--压杆稳定问题 ppt课件

材料力学--压杆稳定问题  ppt课件


F

Fcr nst

151.47 3
50.5KN
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7KN
材料力学
PPT课件
42
例8-4 图示托架结构,梁AB与圆杆BC 材料相同。梁AB为16号工字 钢,立柱为圆钢管,其外径D=80 mm,内径d=76mm,l=6m,a=3 m, 受均布载荷q=4 KN/m 作用;已知钢管的稳定安全系数nw=3,试对立
n Fcr Fp
269 150
1.793 nst 1.8
所以压杆的稳定性是不安全的.
材料力学
PPT课件
38
例8-3 简易起重架由两圆钢杆组成,杆AB:d1 30mm,杆
AC:d2 20mm,两杆材料均为Q235钢, E 200GPa, s 240MPa p 100,0 60 ,规定的强度安全系数ns 2,稳定安全系 数 nst 3,试确定起重机架的最大起重量 Fmax 。
柱进行稳定校核。
l
q
B
A
F
a
C
材料力学
PPT课件
43
压杆稳定问题/提高压杆稳定性的措施
五、提高压杆稳定性的措施
材料力学
PPT课件
44
压杆稳定问题/提高压杆稳定性的措施
1、合理选择材料
细长杆: cr与E成正比。
普通钢与高强度钢的E大致相同,但比铜、铝合金的 高,所以要多用钢压杆。
中长杆: cr随 s 的提高而提高。
压杆稳定问题/细长压杆的临界力
2) 一端固定,一端铰支
C w
BC段,曲线上凸,
1 0;

材料力学课件 压杆稳定

材料力学课件 压杆稳定

1907年加拿大魁 北克桥的失稳
(跨度548m,重9000T。 86人施工,死75人)
2.1922年冬天下大雪,美国华盛顿 尼克尔卜克尔剧院由于屋顶结构中的一 根压杆超载失稳,造成剧院倒塌,死98 人,伤100余人。
3.2000年10月25日上午10时30分, 在南京电视台演播中心演播厅屋顶的浇 筑混凝土施工中,因脚手架失稳,造成 演播厅屋顶模板倒塌,死5人,伤35人。
2)求得不为零的挠曲函数,说明压杆的 确能够在曲线状态下平衡,即出现失 稳现象。
一、两端铰支细长压杆的临界压力
设: 压杆处于微弯状态,
x
x
且 p
F
由 Ew IM x MxFw
wk2w0 k2 F
EI
FN
M(x) l
y
y
x
x
y
y
F
F
w k2w0 w A sk i B n x ck ox s(c)
一、欧拉临界应力公式及其使用范围
欧拉公式
Fcr

π2 EI
l 2
1.临界应力
临界应力——临界压力除以横截面面积
即:
cr
F cr A
2 EI
l 2 A
2E l 2
2E 2
i
I Ai2
i I ——惯性半径
A
l ——压杆的柔度或细长比
w k2 w k2
EI
w A s k i B c n x k o x ( s 2 )
w A s k i B c n x k o x ( s 2 )
一阶导数为 w A c k o k B x s s k i k ( n x 3 )

《压杆稳定教学》课件

《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2E
2 1
2E : 22
2E
:
2 3
i12 :i2 2 :i32
I1 : I2 : I3 A1 A2 A3
d4
64
d2
d4
:
64
d2
d 4
2
:
64
d2
4
d2
d 2
2
4
2
4
44
4
1:1:5
Pcr a : Pcr b : Pcr c cr a A1 : cr b A2 : cr c A3
例:非细长杆如果误用了欧拉公式计算临 界力,其结果比实际_大_,_危_险__;横截面上 的正应力有可能__超_过_比_例_极_限__。
例:三根材料、长度均相同、两端均为球 铰支座的细长杆结构,各自的截面形状如图, 求三根杆的临界应力之比以及临界力之比。
CL13TU25
cr a
: crb : cr c
1:2:20
例:图示圆截面压杆d=40mm,σs=235MPa。 求可以用经验公式σcr=304-1.12λ (MPa)计算临 界应力时的最小杆长。
CL13TU26
解: s
a s
b
304 235 61.6 1.12

l
i
61.6
4 0.7
0.88 m
作业(P251-254)
p
2E p
2 206 109
200 106 100
所以,只有压杆的长细比λ≥100时,才能应用欧 拉公式计算其临界压力。
当压杆的长细比λ<λp时,欧拉公式已不适 用。 在工程上,一般采用经验公式。 在我国 的设计手册和规范中给出的是直线公式和抛物 线公式。
直线公式 cr a b
l
i
CL13TU20
§13-4 压杆的稳定性计算
稳定性条件:
Pmax
Pc r [nst ]
式中 Pmax ------压杆所受最大工作载荷 Pcr ------压杆的临界压力 [nst ] ------压杆的规定稳定安全系数
稳定性条件也可以表示成: nst
Pc r Pmax
[nst ]
式中 nst 为压杆实际的工作稳定安全系数。
1,2,3,6,16
在推导欧拉公式时,使用了挠曲线的近似微 分方程
E I v M(x)
在推导该方程时,应用了胡克定律。因此,欧拉 公式也只有在满足胡克定律时才能适用:
cr
2E 2
p
或写成
2E p

p
2E p
则 欧拉公式的适用范围:
p
满足该条件的杆称为细长杆或大柔度杆
对A3钢,当取E=206GPa,σp=200MPa,则
三、临界应力总图
1. 细长杆( p ), 用欧拉公式
cr
2E 2
2. 中长杆( s p ), 用经验公式
cr a b
3. 粗短杆( s ), 用强度条件
cr s
cr s cr s
p
cr a b
cr
2E 2
小柔度杆 中柔度杆 大柔度杆
O
s
a
s
b
p
2E p
式中 a、b是与材料性质有关的系数。
表 13-2 直线公式的系数 a 和 b
材料 A3 钢 优质碳钢 硅钢 铬钼钢 铸铁 强铝 松木
a(MPa) 304 461 578 9807
332.2 373 28.7
b(MPa) 1.12 2.568 3.744 5.296 1.454 2.15 0.19
下面考虑经验公式的适用范围:
对于塑性材料:
cr a b s

as
b

s
a
s
b
则 s p 经验公式的适用范围
对于 λ<λs的杆,不存在失稳问题,应考虑强度 问题
cr s
经验公式中,抛物线公式的表达式为
cr a1 b12
式中 a1、b1 也是与材料性质有关的系数,可
在有关的设计手册和规范中查到。
§13-3 压杆的临界应力及临界应力总图
一、压杆的临界应力
2EI Pcr (l )2
cr
Pc r A
2EI (l )2 A
2 E (i 2 A) (l )2 A
2E l 2
i
令 l
i

cr
2E 2
l
i
cr
2E 2
压杆的长细比 压杆的柔度
计算压杆的临界 应力的欧拉公式
二、欧拉公式的适用范围 经验公式
相关文档
最新文档