2020-2021学年初中数学人教版九年级上册 第二十四章 圆 单元测试卷
第24章 圆单元测试(提高卷)-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)
单元卷圆提高卷一、单选题(共12小题)1.Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.12B.13C.14D.15【解答】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=12.故选:A.【知识点】三角形的内切圆与内心2.一根水平放置的圆柱形输水管横截面如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.8米B.6米C.5米D.4米【解答】解:连接OA,作OC⊥AB交AB于C,交圆于D,由题意得,AB=8,CD=2,∵OC⊥AB,∴AC=AB=4,设圆的半径为r,则OC=r﹣2,由勾股定理得,OA2=OC2+AC2,即r2=(r﹣2)2+42,解得,r=5,即此输水管道的半径是5米,故选:C.【知识点】垂径定理的应用3.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=85°,∠F=28°,则∠E的度数为()A.38°B.48°C.58°D.68°【解答】解:∠B=∠DCE﹣∠F=57°,∵四边形ABCD是⊙O的内接四边形,∴∠EDC=∠B=57°,∴∠E=180°﹣∠DCE﹣∠EDC=38°,故选:A.【知识点】圆内接四边形的性质、圆周角定理4.如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,折痕交OB于点C,则弧O'B的长是()A.πB.πC.2πD.3π【解答】解:连接OO′,∴OO′=OA,∵将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,∴OA=O′A,∴△AOO′是等边三角形,∴∠AOO′=60°,∵∠AOB=90°,∴∠BOO′=30°,∴的长==π,故选:B.【知识点】翻折变换(折叠问题)、圆周角定理、弧长的计算、垂径定理5.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则OD的长是()A.B.2C.3D.【解答】解:如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,设⊙O与△ABC的三边的切点为E、F、G,连接OE、OF、OG,得正方形CGOF设OF=OE=OG=CG=CF=x,则AG=AE=6﹣x,BE=BF=8﹣x,∴6﹣x+8﹣x=10,解得x=2,∴AE=6﹣x=4,∵点D是斜边AB的中点,∴AD=5,∴DE=AD﹣AE=1,在Rt△ODE中,根据勾股定理,得OD===.故选:A.【知识点】三角形的内切圆与内心、直角三角形斜边上的中线6.如图,将矩形ABCD绕点A逆时针旋转90°至矩形AEFG,点D的旋转路径为,若AB=2,BC=4,则阴影部分的面积为()A.B.C.D.【解答】解:如图,设与EF交于H,连接AH,∵四边形ABCD是矩形,AB=2,BC=4,∴AH=AD=BC=4,∴∠AHE=∠GAH=30°,∵AE=AB=2,∴HE=2,∴阴影部分的面积=S扇形AHG+S△AHE=+×2×2=+2,故选:D.【知识点】扇形面积的计算、矩形的性质、旋转的性质7.如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.16【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【知识点】勾股定理、垂径定理、圆心角、弧、弦的关系8.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.﹣1C.2﹣D.【解答】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【知识点】旋转的性质、勾股定理、三角形三边关系、全等三角形的判定与性质、等腰直角三角形、圆周角定理9.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC=∠PCD,则线段PD的最小值为()A.5B.1C.2D.3【解答】解:∵四边形ABCD为矩形,∴∠BCD=90°,∵∠PBC=∠PCD,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的⊙O上,连接OD交⊙O于P′,连接OP、PD,如图,∵PD≥OD﹣OP(当且仅当O、P、D共线时,取等号),即P点运动到P′位置时,PD的值最小,最小值为DP′,在Rt△OCD中,OC=BC=4,CD=AB=3,∴OD==5,∴DP′=OD﹣OP′=5﹣4=1,∴线段PD的最小值为1.故选:B.【知识点】矩形的性质、圆周角定理10.如图,在平面直角坐标系中,⊙P与y轴相切,直线y=x被⊙P截得的弦AB长为,若点P的坐标为(4,p),则p的值为()A.B.C.D.【解答】解:如图,作PF⊥x轴于F,交AB于D,作PE⊥AB于E,连结PB,∵⊙P与y轴相切于点C,⊙P的半径是4,∴OF=4,把x=4代入y=x得y=4,∴D点坐标为(4,4),∴DF=4,∴△ODF为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=4,∴PE==2,∴PD=PE=2,∴PF=PD+DF=4+2,∴p=4+2,故选:B.【知识点】切线的性质、一次函数图象上点的坐标特征、正比例函数的性质、垂径定理11.如图1、2、3中,点E、D分别是正△ABC、正方形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点,∠APD的度数分别为60°,90°,108°.若其余条件不变,在正九边形ABCFGHIMN中,∠APD的度数是()A.120°B.135°C.140°D.144°【解答】解:正△ABC时,∠APD=∠ABC==60°,正方形ABCM时,∠APD=∠ABC==90°,正五边形时,∠APD=∠ABC==108°,正六边形时,∠APD=∠ABC==120°,依此类推得出正n边形时,∠APD=∠ABC=.当n=9时,∠APD=∠ABC==140°,故选:C.【知识点】正多边形和圆、正方形的性质、全等三角形的判定与性质、等边三角形的性质12.如图,在△ABC中,∠ABC=90°,AB=8,点P是AB边上的一个动点,以BP为直径的圆交CP于点Q,若线段AQ长度的最小值是4,则△ABC的面积为()A.32B.36C.40D.48【解答】解:如图,取BC的中点T,连接AT,QT.∵PB是⊙O的直径,∴∠PQB=∠CQB=90°,∴QT=BC=定值,AT是定值,∵AQ≥AT﹣TQ,∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(4+x)2=x2+82,解得x=6,∴BC=2x=12,∴S△ABC=•AB•BC=×8×12=48,故选:D.【知识点】圆周角定理、勾股定理二、填空题(共4小题)13.如图,⊙O的半径为2,AB是⊙O的切线,A为切点.若半径OC∥AB,则阴影部分的面积为.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∵OC∥AB,∴OA⊥OC,即∠AOC=90°,∴阴影部分的面积==3π,故答案为:3π.【知识点】扇形面积的计算、切线的性质14.如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30°,则圆锥的全面积.【解答】解:∵AO⊥BC,∠BAO=30°,∴OB=AB=1,∴圆锥的侧面积=×2π×1×2=2π,底面积为π,∴全面积为3π.故答案为:3π.【知识点】圆锥的计算15.如图,正方形ABCD边长为4,点O为对角线BD上一点,以点O为圆心,BO长为半径的圆与AD相切于F,则⊙O的半径为﹣.【解答】解:连接OF,设⊙O的半径为R,∵四边形ABCD为正方形,∴∠A=90°,∠ADB=45°,∴DF=OF=R,BD===4,∵AD为⊙O的切线,∴OF⊥AD,∴OD==R,则R+R=4,解得,R=8﹣4,故答案为:8﹣4.【知识点】切线的性质、正方形的性质16.在平面直角坐标系中,点A、B、C的坐标分别为(﹣2,0)、(0,2)、(4,0),点E是△ABC的外接圆上一点,BE交线段AC于点D,若∠DBC=45°,则点D的坐标为.【解答】解:连接CE,过E作EF⊥AC于F,∵点A、B、C的坐标分别为(﹣2,0)、(0,2)、(4,0),∴OA=OB=2,OC=4,∴△OBA是等腰直角三角形,∴∠BAC=45°,∴∠BEC=∠BAC=45°,∵∠DBC=45°,∴∠BCE=90°,∴△BCE是等腰直角三角形,∴BC=CE,∵∠CBO+∠BCO=∠BOC+∠ECF=90°,∴∠OBC=∠FCE,在△OBC与△FCE中,,∴△OBC≌△FCE(AAS),∴CF=OB=2,EF=OC=4,∴OF=2,∴E(2,﹣4),设直线BE的解析式为y=kx+b,∴,∴,∴直线BE的解析式为y=﹣3x+2,当y=0时,x=,∴D(,0),故答案为:(,0).【知识点】坐标与图形性质、三角形的外接圆与外心三、解答题(共6小题)17.如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.【解答】解:(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【知识点】圆周角定理、作图—复杂作图18.如图,AB是半圆O的直径,C、D是半圆上的点,且0D⊥AC于点E,连接BE,BC,若AC=8,DE=2.(1)求半圆的半径长;(2)求BE的长.【解答】解:(1)∵OD⊥AC于点E且AC=8,∴,设半径为r,则OE=r﹣2在Rt△AOE中有r2=42+(r﹣2)2解得:r=5即半圆O的半径为5;(2)∵AB为半圆O的直径,∴∠C=90°,AB=10,则在Rt△BCE中有BE===2.【知识点】圆周角定理19.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC===5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,设BF=BD=x,则AD=AE=13﹣x,CFCE=12﹣x,∵AE+EC=5,∴13﹣x+12﹣x=5,∴x=10,∴BF=10.(2)连接OE,OF,∵OE⊥AC,OF⊥BC,∴∠OEC=∠C=∠OFC=90°,∴四边形OECF是矩形,∴OE=CF=BC﹣BF=12﹣10=2.即r=2.【知识点】切线的性质、三角形的内切圆与内心、勾股定理20.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.【解答】(1)证明:连接OC,如图:∵OB=OC,∴∠OBC=∠OCB,∵AB是⊙O的直径,PB切⊙O于点B,∴AB⊥PB,∠PBO=∠OBC+∠PBC=90°,∵BC⊥PO,∴BD=CD,∴PO是BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∴∠OCB+∠PCB=∠OBC+∠PBC=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:由(1)知,PB、PC为⊙O的切线,∴PB=PC,∵∠BPC=60°,PB=3,∴△PBC是等边三角形,∴BC=PB=3,∠PBC=60°,∴∠OBC=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC=OB=PB=,∴扇形OAC的面积==,△OAC的面积=×()2=,∴阴影部分面积=﹣.【知识点】圆周角定理、扇形面积的计算、含30度角的直角三角形、切线的判定与性质21.如图,在直角坐标系中,以点C(2,0)为圆心,以3为半径的圆分别交x轴正半轴于点A,交y轴正半轴于点B,过点B的直线交x轴负半轴于点D(﹣,0).(1)求A、B两点的坐标;(2)求证:直线BD是⊙C的切线.【解答】解:(1)∵点C(2,0),圆的半径为3,∴OC=2,AC=3,∴OA=OC+CA=5,∴A(5,0),连接CB,在Rt△OCB中,∵OB===,∴B(0,);(2)∵点D(﹣,0),∴OD=.在Rt△DBO中,∵DB2=BO2+DO2=5+=,又∵DC=DO+OC=,CB=3,∴在△DBC中,DB2+CB2=+9==DC2,∴△DBC是直角三角形,∴BC⊥DB于点B.∵BC是⊙C半径,∴直线BD是⊙C的切线.【知识点】坐标与图形性质、切线的判定22.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若∠B=30°,AC=6,OA=2,直接写出阴影部分的面积.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,即OD⊥DE,又∵OD为⊙O的半径,∴直线DE与⊙O相切;(2)连接OE,∵∠B=30°,∴∠A=60°,∵OD=OA,∴∠ODA=∠A=60°,∴AD=AO=DO=2,∠MOD=120°,∵AC=6,∠B=30°,∴AB=12,∴BD=10,∵EF是BD的垂直平分线,∴BF=DF=5,∴EF=,BE=DE=,∴CE=BC﹣BE=,∴阴影部分的面积=四边形CEDO﹣扇形DOM的面积=××4+××2﹣=.【知识点】扇形面积的计算、直线与圆的位置关系、含30度角的直角三角形、线段垂直平分线的性质。
人教版九年级上册数学第二十四章测试题及答案
人教版九年级上册数学第二十四章测试卷一、单选题1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A .1个B .2个C .3个D .4个2.如图,CD 为圆O 的直径,弦AB ⊥CD ,垂足为E ,CE=1,半径为25,则弦AB 的长为A .24B .14C .10D .73.如图,,AB CD 是O 的直径,AE BD ,若32AOE ︒∠=,则COE ∠的度数是( )A .32°B .60°C .68°D .64°4.如图,圆的两条弦,AB CD 相交于点E ,且弧AD =弧CB ,40A ∠=︒,则CEB ∠的度数为A .50︒B .80︒C .70︒D .90︒5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.若大圆半径为2,小圆半径为1,则AB 的长为( )A .B .CD .26.已知正六边形的边长是2,则该正六边形的边心距是( )A.1 B C.2 D7.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为()A.πB.2πC.3πD.4π8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16 B.14 C.12 D.109.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD 的度数为()A.25°B.50°C.40°D.80°10.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°二、填空题11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB =30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为______.三、解答题19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,AC=CB.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案1.A【解析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中. 2.B【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.D【分析】根据已知条件和圆心角、弧、弦的关系,可知32∠=∠=,然后根据对顶角相等BOD AOE︒即可求解.【详解】=,AE BD∴∠=∠=.32BOD AOE︒BOD AOC∠=∠,∴∠=︒,32AOCCOE︒︒︒∴∠=+=,323264故选:D.【点睛】本题主要考查圆心角、弧、弦的关系、对顶角相等,较简单,掌握基本概念是解题关键.4.B【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.A【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴∴故选A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.6.B【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM12=AB12=⨯2=1,∴正六边形的边心距是OM tanAMAOM∠===故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.7.B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=90π4180⨯=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式lπ180n r .8.B【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.9.A【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD12∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.10.B【分析】根据邻补角的定义求出∠BOC的度数,然后根据同弦所对的圆周角等于对应圆心角的一半即可解答.【详解】解:∵∠AOC=130°,∴∠BOC=50°,∴∠D=12∠BOC=25°,故选:B.【点睛】本题考查的是圆周角定理,掌握同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半是解答本题的关键.11.∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.30【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.4【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.15.5【分析】连接OA ,根据垂径定理求出AD .在Rt △AOD 中,根据勾股定理列式计算即可.【详解】连接OA .∵OD ⊥AB ,∴AD 12=AB =3.在Rt △AOD 中,OA 2=OD 2+AD 2,即OC 2=(9﹣OC )2+32,解得:OC =5.故答案为5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键. 16.70【分析】连接OA 、OB ,如图,根据切线的性质得∠OAP =∠OBP =90°,再利用四边形的内角和计算出∠AOB 的度数,然后根据圆周角定理计算∠ACB 的度数.【详解】连接OA 、OB ,如图,∵P A ,PB 分别与⊙O 相切于A ,B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB12=∠AOB12=⨯140°=70°.故答案为70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.(3,-【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=∵D在第四象限,∴D(3,﹣,即旋转2019后点A的坐标是(3,﹣.故答案为(3,﹣.【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.9π . 【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=2360ar π在△ABC 中,D 为BC 的中点∴BD=DCBD 长为半径画一弧交AC 于E 点∴BD=DE∠A =60°,∠B =100°∴∠C =20°=∠DEC∴∠BDE=∠C+∠DEC=40°=aBC =2 r=1∴S=24013603609ar πππ=⨯︒⨯= 故答案为9π 【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键19.见解析【分析】连结AD ,如图,根据垂径定理由CD ⊥AB 得到弧AC=弧AD ,再根据圆周角定理得∠ADC=∠AED ,然后根据圆内接四边形的性质得∠CEF=∠ADC ,于是利用等量代换即可得到结论.【详解】证明:连结AD ,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.证明见解析【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.(1)答案见解析;(2)135°.【分析】(1)根据正方形的性质得到AB =CD ,根据圆心角、弧、弦的关系得到AB CD =,得到BM CM =,即可得到结论;(2)连接OA 、OB 、OM ,根据正方形的性质求出∠AOB 和∠AOM ,计算即可.【详解】(1)∵四边形ABCD 是正方形,∴AB =CD ,∴AB CD =.∵M 为AD 的中点,∴AM DM =,∴BM CM =,∴BM =CM ;(2)连接OA 、OB 、OM .∵四边形ABCD 是正方形,∴∠AOB =90°.∵M 为弧AD 的中点,∴∠AOM =45°,∴∠BOM =∠AOB +∠AOM =135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.(1)45°;(2)14π-. 【分析】(1)根据圆周角定理得到∠ACB =90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S △ABC -S 扇形DBC 即可得到结论.【详解】(1)∵AB 为半圆⊙O 的直径,∴∠ACB =90°.∵AC =BC ,∴∠ABC =45°;(2)∵AC =BC ,∴∠ABC =45°,∴△ABC 是等腰直角三角形.∵AB=2,∴BC,∴阴影部分的面积=S△ABC-S扇形DBC=1214π=-.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.(1)证明见解析;(2)2.【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵AC=CB,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,OD OECOD COEOC OC⎧⎪∠∠⎨⎪⎩===,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=12OA=12x,在Rt△COD中,CD=OD•tan∠∴四边形ODCE的面积为y=12×OD×CD×2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.(1)2(2)见解析【详解】解:(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°.∴∠BOC=60°.∵OB=OC,∴△OBC是等边三角形.∵OC =2,∴BC=OC=2.(2)证明:∵OC=CP,BC=OC,∴BC=CP.∴∠CBP=∠CPB.∵△OBC是等边三角形,∴∠OBC=∠OCB=60°.∴∠CBP=30°.∴∠OBP=∠CBP+∠OBC=90°.∴OB⊥BP.∵点B在⊙O上,∴PB是⊙O的切线.(1)连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长.(2)由OC=CP=2,△OBC 是等边三角形,可求得BC=CP ,即可得∠P=∠CBP ,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB ⊥BP ,从而证得PB 是⊙O 的切线.25.(1)证明见解析;(2 【解析】【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD△CDE ∽△DBE ,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE .∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°.∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3.∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD ==∴⊙O 的半径=【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.21。
24-25学年九年级数学上学期期中测试卷(北京专用,测试范围:人教版九上第二十一章-第二十四章)解析
2024-2025学年九年级数学上学期期中模拟卷(北京专用)(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册第二十一章-第二十四章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将抛物线y=2x2向左平移3个单位,再向上平移1个单位得到的抛物线表达式是().A.B.C.D.【答案】B【详解】由题意可知,平移后的抛物线的顶点为(-3,1),所以平移后的抛物线表达式为.故选B.2.把如图中的三角形A()可以得到三角形B.A.先向右平移5格,再向上平移2格.B.先向右平移7格,再以直角顶点为中心逆时针旋转90°,然后向上平移1格.C.先以直角顶点为中心顺时针旋转90°,再向右平移5格.D.先向右平移5格,再以直角顶点为中心逆时针旋转90°.【答案】B【详解】解:先向右平移7格,再以直角顶点为中心逆时针旋转90°,然后向上平移1格,三角形A可以得到三角形B.故选项B符合题意;其他三个选项,都向右只平移5格,三角形A不能得到三角形B.故选:B.3.已知三角形两边长分别为4和7,第三边的长是方程217660-+=的根,则第三边的长为()x xA.6B.11C.6或11D.74.如图,四边形ABCD内接于⊙O,若∠BCD=110°,则∠BOD的度数为( )A.35°B.70°C.110°D.140°【答案】D【详解】解:∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:D.5.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为( )A.a=2B.a≠﹣2C.a≠±2D.a≠2【答案】D【详解】解:由题意得:a-2≠0,解得:a≠2,故选:D.6.如图,⊙O的半径为9,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB折叠交OC于点D,若OD=DC,则弦AB的长为()A.B.C.D.7.如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕着点A 顺时针方向旋转得△ADE ,AB ,CE 相交于点F ,若AD ∥CE 时,则∠BAE 的大小是( )A .20°B .25°C .30°D .35°8.在数学实践活动课中,某小组的四位同学对二次函数21(,y ax bx a b =++为常数,且0)a ¹的图象及其性质进行研究,分别得到如下结论:小赵:该函数图象开口向上;小钱:该函数的图象经过点(3,1);小孙:该函数的图象经过点(2,1)-;小李:该函数的图象的对称轴为直线1x =.若这四个结论中只有一个是错误的,则得到错误结论的同学是( )A .小赵B .小钱C .小孙D .小李第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
圆单元基础测试卷(含答案)
新人教版九年级数学上册圆单元测试卷一.选择题(共10 小题 ,每题3 分)1.以下说法,正确的选项是()A.弦是直径C.半圆是弧2.如图,在半径为A. 3cm 5cm 的⊙ O 中,弦B. 4cmB.弧是半圆D.过圆心的线段是直径AB=6cm, OC⊥ AB 于点 C,则C. 5cmOC=(D. 6cm)(2 题图)(3题图)(4 题图)(5 题图)(8 题图)3.一个地道的横截面如下图,它的形状是以点O 为圆心, 5 为半径的圆的一部分,M 是⊙O 中弦 CD的中点, EM 经过圆心 O 交⊙ O 于点 E.若 CD=6,则地道的高( ME 的长)为()A. 4B. 6C. 8D. 94.如图, AB 是⊙ O 的直径,= =,∠ COD=34°,则∠AEO 的度数是()A. 51°B. 56°C. 68°D. 78°5.如图,在⊙ O 中,弦 AC∥半径 OB,∠BOC=50°,则∠ OAB 的度数为()A. 25°B. 50°C. 60°D. 30°6.⊙ O 的半径为 5cm,点 A 到圆心 O 的距离 OA=3cm,则点 A 与圆 O 的地点关系为()A.点 A 在圆上B.点 A在圆内C.点 A 在圆外D.没法确立7.已知⊙ O 的直径是10,圆心 O 到直线 l 的距离是5,则直线 l 和⊙ O 的地点关系是()A.相离B.订交C.相切D.外切8.如图,正六边形 ABCDEF内接于⊙ O,半径为 4,则这个正六边形的边心距OM 和的长分别为()A. 2,B. 2 ,πC.,D.2 ,9.如图,四边形ABCD是⊙O 的内接四边形,⊙ O 的半径为2,∠ B=135°,则的长()A. 2πB.πC.D.10.如图,直径AB 为12 的半圆,绕 A 点逆时针旋转60°,此时点 B 旋转到点B′,则图中暗影部分的面积是()A. 12πB. 24πC. 6πD. 36π二.填空题(共10 小题 ,每题 3 分)11.如图, AB 是⊙ O 的直径, CD 为⊙O 的一条弦, CD⊥ AB 于点 E,已知 CD=4, AE=1,则⊙ O的半径为.(9 题图)(10题图)(11题图)(12 题图)12.如图,在△ABC中,∠ C=90 °,∠ A=25°,以点 C 为圆心,BC 为半径的圆交AB 于点D,交AC 于点E,则的度数为.C 为的中点.若∠ A=40°,则∠ B=____ 13.如图,四边形ABCD内接于⊙ O,AB 为⊙ O 的直径,点( 13 题图)( 14题图)( 15 题图)( 17 题图)14.如下图,在平面直角坐标系xOy 中,半径为 2 的⊙ P 的圆心 P 的坐标为(﹣ 3,0),将⊙ P 沿 x 轴正方向平移,使⊙ P 与 y 轴相切,则平移的距离为.15.如图,点 O 是正五边形 ABCDE的中心,则∠ BAO 的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为 4 的正方形 ABCD中,先以点 A 为圆心, AD 的长为半径画弧,再以AB 边的中点为圆心, AB 长的一半为半径画弧,则两弧之间的暗影部分面积是(结果保存π).18.已知圆锥的底面圆半径为3,母线长为 5 ,则圆锥的全面积是.19.假如圆柱的母线长为5cm ,底面半径为 2cm,那么这个圆柱的侧面积是.20.半径为 R 的圆中,有一弦恰巧等于半径,则弦所对的圆心角为.三.解答题(共 5 小题 ,每题 8 分)21.如图,已知圆O 的直径 AB 垂直于弦 CD 于点 E,连结 CO 并延伸交AD 于点 F,且 CF⊥ AD.( 1)请证明: E 是 OB 的中点;(2)若AB=8,求CD的长.22.已知:如图,C, D 是以 AB 为直径的⊙O 上的两点,且OD∥ BC.求证: AD=DC.23.如图,在△ ABC中, AB=AC,以 AB 为直径的⊙ O 分别与 BC,AC 交于点 D, E,过点 D 作⊙O 的切线 DF,交 AC 于点 F.(1)求证: DF⊥ AC;(2)若⊙ O 的半径为 4,∠ CDF=°,求暗影部分的面积.24.如图,△ OAB 中, OA=OB=4,∠ A=30°,AB 与⊙ O 相切于点 C,求图中暗影部分的面积.(结果保存π)25.一个几何体的三视图如下图,依据图示的数据计算出该几何体的表面积.新人教版九年级数学上册第二十四章圆单元试题参照答案一.选择题(共10 小题)1. C2.B3. D4.A5.A6.B7.C8.D9. B10.B二.填空题(共10 小题)11.12.50°13.7014.1 或 5 15. 54°16. 50°17. 2π218. 24π19.20π cm20. 60°三.解答题(共 5 小题)21.(1)证明:连结AC,如图∵ 直径AB垂直于弦CD于点 E,∴,∴ AC=AD,∵过圆心 O 的线 CF⊥ AD,∴ AF=DF,即 CF 是 AD 的中垂线,∴ AC=CD,∴AC=AD=CD.即:△ ACD是等边三角形,∴ ∠ FCD=30 ,°在 Rt△ COE中,,∴,∴ 点E为OB的中点;( 2)解:在Rt△ OCE中, AB=8,∴,又∵BE=OE,∴ OE=2,∴,∴.(21 题图)(22题图)(23题图)(24题图)22.证明:连结OC,如图,∵OD∥BC,∴ ∠ 1=∠ B,∠ 2 =∠ 3,又∵ OB=OC,∴ ∠ B=∠ 3,∴ ∠1=∠ 2,∴AD=DC.23.( 1)证明:连结OD,∵OB=OD,∴ ∠ ABC=∠ ODB,∵AB=AC,∴ ∠ ABC=∠ACB,∴ ∠ ODB=∠ ACB,∴OD∥ AC,∵DF 是⊙ O 的切线,∴DF⊥ OD,∴ DF⊥ AC.(2)解:连结 OE,∵ DF⊥ AC,∠ CDF=°,∴ ∠ABC=∠ ACB=°,∴ ∠ BAC=45°,∵OA=OE,∴∠ AOE=90 ,°∵⊙ O 的半径为 4,∴ S 扇形AOE=4π, S△AOE=8,∴ S暗影 =4π﹣8.24.解:连结OC,∵ AB 与圆 O 相切,∴ OC⊥ AB,∵OA=OB,∴∠ AOC=∠ BOC,∠ A=∠ B=30 ,°在 Rt△ AOC中,∠ A=30°, OA=4,∴ OC= OA=2,∠ AOC=60°,∴ ∠AOB=120 ,°AC==2,即AB=2AC=4,则 S 暗影 =S△AOB﹣ S扇形 = ×4 ×2﹣=4﹣.故暗影部分面积4﹣.25.解:由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,因此圆锥的母线长 ==13,因此圆锥的表面积2=π5+ 2π 513=90.π。
第二十四章 圆 试题精选2022-2023学年九年级上册人教版数学 【天津市】
2022-2023年九年级上册人教版数学第二十四章 圆试题精选【天津市】一、单选题(本大题共10小题)1. (天津市河西区2020年数学中考热身数学试卷)一个圆的内接正三角形的边长为23( )A 2B .4C .23D .222. (天津市和平区2019届中考模拟数学试题)如图,⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B ,∠BAC =25°,则∠AMB 的大小为( )A .25°B .30°C .45°D .50°3. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A .6B .3C .9D .124. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,⊙O 是∆ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°5. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,AB 是O 的直径,C ,D 是O 上的两点,连接AC ,CD ,AD ,若75ADC ∠=︒,则BAC ∠的度数是( )A .15°B .25°C .30°D .75°6. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,四边形ABCD为O 的内接四边形,已知140BCD ∠︒=,则BOD ∠的度数为( )A .40°B .50°C .80°D .100°7. (天津市西青区2021-2022学年九年级上学期期末数学试题)如图,OA 是⊙O 的半径,弦BC ⊥OA ,垂足为D .连接AC .若BC =42AC =3,则⊙O 的半径长为( )A .9B .8C .92D .38. (天津市南开区2021-2022学年九年级上学期期末数学试题)如图AB 是O 切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若35ADC ∠=︒,则ABO ∠的度数为( )A .25︒B .20︒C .30D .35︒52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10. (天津市滨海新区2019届九年级第一次模拟试卷数学试题)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .23πB .33πC .323πD .323π 二、填空题(本大题共6小题)11. (天津市南开区2021-2022学年九年级上学期期末数学试题)已知⊙O 的半径为10,直线AB 与⊙O 相切,则圆心O 到直线AB 的距离为 .12. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,一条公路的转弯处是一段圆弧(图中的AB ),点O 是这段弧的圆心,C 是AB 上一点,OC AB ⊥.垂足为D ,160m AB =,40m CD =,则这段弯路的半径是 m .13. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,半径为2的O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则劣弧BD 的长为 .PA PB 、切O 于点A B 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点C D 、,则PCD 的周长是 .15. (天津市河北区2021-2022学年九年级上学期期末数学试题)已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16. (天津市河东区2021-2022学年九年级上学期期末数学试题)如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE ,若AB =4cm ,则OE 的最大值为 cm .三、解答题(本大题共11小题)17. (天津市和平区2022年中考数学二模试题)如图,AB 为⊙O 直径,△ACD 是⊙O 的内接三角形,PB 切⊙O 于点B .(1)如图①,延长AD 交PB 于点P ,若∠C =40°,求∠P 和∠BAP 的度数;(2)如图②,连接AP 交⊙O 于点E ,若∠D =∠P ,弧CE =弧AC ,求∠P 和∠BAP 的度数.18. (天津市津南区2020年中考一模数学试题)已知:ABC 内接于O ,AB AC =,P 是ABC 外一点.(Ⅰ)如图①,点P 在O 上,若78BPC ∠=︒,求CAB ∠和ACB ∠的大小;(Ⅱ)如图②,点P 在O 外,BC 是O 的直径,PB 与O 相切于点B ,若55BPC ∠=︒,求PCA ∠的大小.19. (天津市南开区2020年中考二模数学试题)如图1,AB 是O 的直径,弦CD AB ⊥于G ,过C 点的切线与射线DO 相交于点E ,直线DB 与CE 交于点H ,OG BG =,1BH =.(Ⅰ)求O 的半径;(Ⅱ)将射线DO 绕D 点逆时针旋转,得射线DM (如图2),DM 与AB 交于点M ,与O 及切线CF 分别相交于点N ,F ,当GM GD =时,求切线CF 的长.20. (天津市河东区2021-2022学年中考数学一模试题)已知,四边形ABCD 为菱形,点A ,B ,D 在⊙O 上.(Ⅰ)如图①,若CB ,CD 为⊙O 的切线,求∠C 的大小;(Ⅱ)如图②,BC ,CD 与⊙O 分别交于点E ,点F ,连接BF ,若∠BDC =50°,求∠CBF 的度数.21. (天津市滨海新区2020年中考一模数学试题)如图,△ABC 内接于⊙O .(1)如图①,连接OA ,OC ,若28B ∠=︒,求OAC ∠的度数;(2)如图②,直径CD 的延长线与过点A 的切线相交于点P .若60B ∠=︒,⊙O 的半径为2,求AD ,PD 的长.22. (天津市河西区2019年中考二模数学试题)如图,ABC 中,AB AC = ,以AB 为直径的O 与BC 相交于点D ,与CA 的延长线相交于点E ,O 的切线DF 交EC 于点F .(Ⅰ)求DFC ∠的度数;(Ⅱ)若3AC AE =,12BC = ,求O 的直径AB . 23. (天津市河北区2020年中考一模数学试题)已知AB 是⊙O 的直径,C 为⊙O 上一点,∠OAC =58°.(Ⅰ)如图①,过点C 作⊙O 的切线,与BA 的延长线交于点P ,求∠P 的大小;(Ⅱ)如图②,P 为AB 上一点,CP 延长线与⊙O 交于点Q .若AQ =CQ ,求∠APC 的大小.24. (天津市2019年中考数学试题)已知PA ,PB 分别与O 相切于点A ,B ,80APB ︒∠=,C 为O 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.25. (天津市和平区2019届中考模拟数学试题)已知,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,在CD 的延长线上取一点P ,PG 与⊙O 相切于点G ,连接AG 交CD 于点F .(Ⅰ)如图①,若∠A =20°,求∠GFP 和∠AGP 的大小;(Ⅱ)如图②,若E 为半径OA 的中点,DG ∥AB ,且OA =3PF 的长. 26. (天津市西青区2020年二模数学试题)已知⊙O 是ABC ∆的外接圆, 过点A 作⊙O 的切线, 与CO 的延长线交于点P ,CP 与⊙O 交于点D .(1)如图①, 若ABC ∆为等边三角形, 求P ∠的大小;(2)如图②, 连接AD , 若PD AD =, 求ABC ∠的大小.27. (天津市滨海新区2020年中考二模数学试题)如图①,在O 中,AB 为直径,C 为O 上一点,30A ∠︒=,过点C 作O 的切线,与AB 的延长线相交于点P .(Ⅰ)求P∠的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求F∠的大小;②若O的半径为2,求AF的长.参考答案1. 【答案】D【分析】先根据圆的内接正三角形的边长求出圆的半径,再根据正方形的性质求出圆的内接正方形的边长即可.【详解】根据题意画图如下:过点O作OD⊥BC于D,连接OB,BC=3∴BD=CD=12∵△ABC是等边三角形,∴∠ABC=60°,∴∠OBD=30°,∴OD=1OB,2OB)2=BD2,∴OB2-(12解得:OB=2,即圆的半径为2,∴该圆的内接正方形的对角线长为4,设正方形的边长为x,∴x2+x2=42,解得x=2∴该圆的内接正方形的边长为2故选D.2. 【答案】D【分析】由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC﹣∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数.【详解】解:∵MA切⊙O于点A,AC为直径,∴∠MAC=90°,又∠BAC=25°,∴∠MAB=∠MAC﹣∠BAC=65°,∵MA、MB分别切⊙O于点A、B,∴MA=MB,∴∠MAB=∠MBA=65°,∴∠AMB=180°﹣(∠MAB+∠MBA)=50°,故选D.3. 【答案】A【分析】连接AC,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC.∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.4. 【答案】A【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【详解】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.5. 【答案】A【分析】连结BC ,根据直径所对圆周角可得90ACB ∠=︒ ,由同弧所对圆周可求出∠ABC 的度数,利用直角三角形两锐角互余求出∠BAC 的度数即可.【详解】解:连结BC ,∵AB 是O 的直径,90ACB ∴∠=︒,∵∠ABC =∠ADC =75°,909075BAC ABC ∴∠=︒-∠=︒-︒︒=15 ,故选A .6. 【答案】C【分析】由圆内接四边形的对角互补可得∠A =40°,再根据同弧所对的圆心角是圆周角的2倍,即可求出∠BOD 的度数.【详解】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A =180°-∠BCD =180°-140°=40°,∴∠BOD =2∠A =80°,故选C .7. 【答案】C【分析】如图所示,连接OC ,先由BC ⊥OA ,得到∠ADC =∠ODC =90°,1222CD BD BC ===AD =1,设OA OC r ==,则1OD OA AD r =-=-,由勾股定理得到222OD CD OC +=则()(222122r r -+=,由此即可得到答案.【详解】解:如图所示,连接OC ,∵BC ⊥OA ,∴∠ADC =∠ODC =90°,1222CD BD BC === ∴221AD AC CD -=,设OA OC r ==,则1OD OA AD r =-=-,∵222OD CD OC +=,∴()()222122r r -+=, 解得92r =, 故选C .8. 【答案】B【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由35ADC ∠=︒可求出∠AOC =70︒.再由AB 为圆O 的切线,得AB ⊥OA ,由直角三角形的两锐角互余,即可求出∠ABO 的度数,【详解】解:∵AC AC = ,∴223570AOC ADC ∠=∠=⨯︒=︒,∵AB 为圆O 的切线,∴AB ⊥OA ,即∠OAB =90°,∴90907020ABO AOC ∠=︒-∠=︒-︒=︒,故选:B .9. 【答案】C【分析】过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c --,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .10. 【答案】C【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【详解】连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠O AO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B-(S扇形O′OB-S△OO′B)=12×1×3(260?2360π⨯-12×2×3323π.故选C.11. 【答案】10【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案.【详解】解:∵⊙O的半径为10,直线AB与⊙O相切,∴圆心到直线AB的距离等于圆的半径,∴d =10;故答案为:10;12. 【答案】100【分析】设这段弯路的半径是rm ,可得,40,OA r OD r ==- 由垂径定理可得:80,AD = 再由勾股定理建立方程,解方程可得答案.【详解】解:设这段弯路的半径是rm ,40m CD =,则OA=OC=rm ,()40OD r m =-,∵OC ⊥AB , 160m AB = ∴1802AD AB m ==, 在Rt △AOD 中,由勾股定理得:()2228040r r =+-,解得:100r =,则这段弯路的半径是100m .故答案为:100. 13. 【答案】85π##85π 【分析】连接OB ,OD ,根据正多边形内角和公式可求出∠E 、∠A ,根据切线的性质可求出∠OBA 、∠ODE ,从而可求出∠BOD 的度数,根据弧长的公式即可得到结论.【详解】解:连接OB ,OD ,∵五边形ABCDE 是正五边形,∴∠E =∠A =()521801085-⨯︒=︒. ∵AB 、DE 与⊙O 相切,∴∠OBA =∠ODE =90°,∴∠BOD =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴劣弧BD 的长为14428=1805,故答案为:85π. 14. 【答案】20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE ====所以PCD ∆的周长为 101020PC PD CD PC AC DB PD PA PB ++=+++=+=+= 15. 【答案】26cm π【分析】如图,连接OC 、OD 、CD ,OC 交AD 于点E ,由点C ,D 是这个半圆的三等分点可得60AOC COD ∴∠=∠=︒,在同圆中,同弧所对的圆周角是圆心角的一半,即可得出1302CAD COD ∠=∠=︒,再根据OA OC OD ==得,AOC △,COD △都是等边三角形,所以60ACM DOM ∠=∠=︒,AC OC OD ==,可证()ACM DOM AAS ≅,故=COD S S 阴扇形,由扇形的面积公式计算即可.【详解】如图所示,连接OC 、OD 、CD ,OC 交AD 于点E ,点C ,D 是这个半圆的三等分点,180603AOC COD DOB ︒∴∠=∠=∠==︒, 1302CAD COD ∴∠=∠=︒, OA OC OD ==,AOC ∴,COD △都是等边三角形,60ACM DOM ∴∠=∠=︒,AC OC OD ==,在ACM △与DOM △中,AMC DMO ACM DOM AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACM DOM AAS ∴≅,ACM DOM S S ∴=,2260()60362=6(cm )360360COD AB S S πππ⨯⨯⨯⨯∴===阴扇形. 故答案为:26cm π.16. 【答案】(222)【分析】如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM ,通过△OCD ≌△OBE (SAS ),可得OE =OD ,通过旋转观察如图可知当DO ⊥AB 时,DO 最长,此时OE 最长,设DO 与⊙O 交于点M ,连接CM ,先证明△MED ≌△MEB ,得MD =BM .再利用勾股定理计算即可.【详解】解:如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM , ∵四边形BCDE 是正方形,∴∠BCD =∠CBE =90°,CD =BC =BE =DE ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠BCD +∠OCB =∠CBE +∠OBC ,即∠OCD =∠OBE ,∴△OCD ≌△OBE (SAS ),∴OE =OD ,根据旋转的性质,观察图形可知当DO ⊥AB 时,DO 最长,即OE 最长,∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°,∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM ,在△EMD 和△EMB 中, DE BC MED MEB WE WEE =⎧⎪∠=∠⎨⎪=⎩,∴△MED ≌△MEB (SAS ),∴DM =BM 22OM OB +2222+22(cm ),∴OD 的最大值=2+2,即OE 的最大值=2+2;故答案为:(2)cm .17. 【答案】(1)40︒;50︒(2)60︒;30【详解】解:(1)如图①,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∵在⊙O 中,∠C =∠ABD =40°,∴∠BAD =90°﹣∠ABD =50°. ∵PB 是⊙O 的切线,∴AB ⊥PB∴∠ABP =90°.∴∠P =90°﹣∠BAD =40°.(2)如图②,连接CE 交AB 于点F ,∵∠D =∠P ,在⊙O 中,∠D =∠AEC∴∠P =∠AEC .∴CE //BP .∴∠AFE = ∠ABP =90°.∴AB ⊥CE又∵AB 是⊙O 的直径,∴弧AC =弧AE ,弧BC =弧BE .∵弧CE =弧AC∴弧CE =弧AC =弧AE .∴CE =AC =AE .∴△ACE 是等边三角形∴∠CAE =∠ACE = ∠AEC =60°∴∠P = ∠AEC =60°∵弧BC =弧BE∴∠CAB = ∠BAP =12∠CAE =30°18. 【答案】(Ⅰ)102CAB ∠=︒,39ACB ∠=︒;(Ⅱ)80PCA ∠=︒.【分析】(Ⅰ)根据圆内接四边形的性质可得CAB ∠的度数,根据AB AC =可得AB AC =,再根据等腰三角形的定义、三角形的内角和定理即可得ACB ∠的度数;(Ⅱ)先根据圆周角定理得出90CAB ∠=︒,从而可得45ACB ∠=︒,再根据圆的切线的性质得出90PBC ∠=︒,然后根据直角三角形的性质可得35PCB ∠=︒,最后根据角的和差即可得.【详解】(Ⅰ)∵四边形ABPC 是O 的内接四边形,78BPC ∠=︒∴180102CAB BPC ∠=︒-∠=︒∵AB AC =∴AB AC =∴∠=∠ACB ABC102CAB ∠=︒ ∴()1180392ACB CAB ∠=︒-∠=︒; (Ⅱ)∵BC 是O 的直径∴90CAB ∠=︒由(Ⅰ)知,∠=∠ACB ABC∴45ACB ∠=︒ 又PB 与O 相切∴PB BC ⊥,即90PBC ∠=︒55BPC ∠=︒∴9035PCB BPC ∠=︒-∠=︒∴354580PCA PCB ACB ∠=∠+∠=︒+︒=︒即80PCA ∠=︒.19. 【答案】(Ⅰ)2;(Ⅱ)63+【分析】(Ⅰ)由题意连接OC ,结合圆的切线定理和等边三角形性质以及平行线性质和同弧所对的圆心角与圆周角之间的关系进行分析求解;(Ⅱ)根据题意过点F 作PQ DC ⊥.交DC 延长线于点Q ,并设CQ x =,则2CF x =,3QF x =,利用勾股定理建立方程求解进而得出切线CF 的长.【详解】解:(Ⅰ)连接OC ,∵CE 为O 的切线,∴OC CE ⊥∴90OCH ∠=︒∵CD AB ⊥,OG BG =∴OC CB =,又∵OB OC =∴OB OC CB ==∴BOC 为等边三角形∴460OCB ∠=∠=︒∴906030BCH OCH OCB ∠=∠-∠=︒-︒=︒∵OC BC =,CD OB ⊥ ∴113302OCB ∠=∠=∠=︒ 由同弧所对的圆心角与圆周角之间的关系可知:124302∠=∠=︒ ∴23∠∠=∴//DH OC∴90H ∠=︒在Rt BCH 中,90H ∠=︒,30BCH ∠=︒,1BH =∴22BC BH ==∴2OB BC ==即O 的半径为2.(Ⅱ)如图2,过点F 作PQ DC ⊥.交DC 延长线于点Q ,∴90CFQ FCQ ∠+∠=︒,∵OC FC ⊥,∴90OCG FCQ ∠+∠=︒,∴30CFQ OCG ∠=∠=︒,设CQ x =,则2CF x =,3QF x =,∵GM GD =,MG CD ⊥,∴45MDG ∠=︒,∵FQ QD ⊥,∴9045DFQ MDG MDG ∠=︒-∠=︒=∠,∴QF QD QC CD ==+,∵AB CD ⊥,2OC =,1OG GB ==,又∵22222123CD CG ==-= ∴323x x =+ 解得33x = ∴263CF CQ ==+20. 【答案】(Ⅰ)60︒;(Ⅱ)20︒.【分析】(Ⅰ)如图(见解析),先根据圆的切线的性质可得,OB BC OD CD ⊥⊥,再根据四边形的内角和可得180C BOD ∠+∠=︒,然后根据圆周角定理可得2BOD A ∠=∠,最后根据菱形的性质即可得;(Ⅱ)如图(见解析),先根据菱形的性质、等腰三角形的性质可得50CBD ∠=︒,再根据三角形的内角和定理可得80A C ∠=∠=︒,然后根据圆内接四边形的性质可得100BED ∠=︒,又根据三角形的外角性质可得20CDE ∠=︒,最后利用圆周角定理即可得.【详解】(Ⅰ)如图,连接,OB OD ,,CB CD 为O 的切线,,OB BC OD CD ∴⊥⊥,即90OBC ODC ∠=∠=︒,3609090180C BOD ∴∠+∠=︒-︒-︒=︒,由圆周角定理得:2BOD A ∠=∠,2180C A ∴∠+∠=︒, 又四边形ABCD 为菱形,A C ∴∠=∠,2180C C ∴∠+∠=︒,解得60C ∠=°;(Ⅱ)如图,连接DE ,四边形ABCD 为菱形,,A C BC CD ∴∠=∠=,又50BDC ∠=︒,50BDC CBD ∴=∠=∠︒,00881C CB BDC D ∴∠=︒-∠∠=-︒,80A ∴∠=︒,由圆内接四边形的性质得:180100BED A ∠=︒-∠=︒,1008020CDE BED C ∴∠=∠-∠=︒-︒=︒,由圆周角定理得:20CDE CBF ∠∠==︒.21. 【答案】(1)62OAC ∠=︒;(2)2AD =;2PD =【分析】(Ⅰ)由题意根据圆周角定理和∠B=28°,即可求出∠OAC 的度数;(Ⅱ)根据题意连接OA ,再根据切线的性质和圆周角定理可得△AOD 是等边三角形,进而根据特殊角30度即可求出AD ,PD 的长.【详解】解:(Ⅰ)∵∠AOC=2∠ABC ,28B ∠=︒,∴∠AOC=56°.∵OA=OC ,∴∠OAC=∠OCA . ∴18056622OAC ︒-︒∠==︒. (Ⅱ)连接OA .∵PA 与⊙O 相切于点A ,∴PA OA ⊥.∵∠AOC=2∠ABC ,60B ∠=︒,∴∠AOC=120°.∴∠POA=60°又OA OD =,∴AOD △是等边三角形.∴2AD OA ==.∵∠PAO=90°,∴∠P=30°.在Rt PAO △中,24PO OA ==.∴2PD PO OD =-=.22. 【答案】(Ⅰ)90DFC ∠=︒;(Ⅱ)36AB =【分析】(Ⅰ)连接OD .由切线的性质可知OD ⊥DF .再由AC=AB ,OB=OD 可证明∠ODB=∠C ,从而可证明OD ∥AC ,再由平行线的性质可证明DF ⊥AC ; (Ⅱ)连结BE ,根据直径所对的圆周角为直角得出90AEB =︒∠,设AE k =,根据已知用k 表示出AB 、EC,然后根据勾股定理列出关于k 的方程求解即可.【详解】解:(Ⅰ)连接OD ,∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴ODB C ∠=∠,∴OD AC ,∵DF 是O 的切线∴OD DF ⊥,∴DF AC ⊥,∴90DFC ODF ∠=∠=︒;(Ⅱ)连接BE∵AB 是直径,∴90AEB =︒∠,∵AB AC =,3AC AE = ,∴3AB AE =,4CE AE = ,设AE k =,则3AB k =,3AB AC k ==,4EC k = ,∴在Rt ABE △中,22228BE AB AE k =-=,在Rt BEC △中,222BE EC BC +=.∵12BC =,∴22281612k k +=,∴26k =∴6k (负舍),∴直径336AB AE ==.23. 【答案】(I )∠P =26°;(II )∠APC =48°.【分析】(I )根据等腰三角形中有一底角为58度时,可得∠COA =64°,根据切线的性质得出∠OCP =90°,进而求得∠P 的度数;(II )先由(I )知∠AOC =64°,根据圆周角定理得∠Q =12∠AOC =32°,根据等腰三角形的性质和三角形内角和定理得∠QAC =∠QCA =74°,最后由三角形外角的性质可得结论.【详解】(I )如图①,∵OA =OC ,∠OAC =58°,∴∠OCA =58°∴∠COA =180°﹣2×58°=64°∵PC 是⊙O 的切线,∴∠OCP =90°,∴∠P =90°﹣64°=26°;(II )∵∠AOC =64°,∴∠Q =12∠AOC =32°, ∵AQ =CQ ,∴∠QAC =∠QCA =74°,∵∠OCA =58°,∴∠PCO =74°﹣58°=16°,∵∠AOC =∠QCO +∠APC ,∴∠APC =64°﹣16°=48°.24. 【答案】(Ⅰ)50ACB ︒∠=;(Ⅱ)20EAC ︒∠=.【分析】(Ⅰ)连接OA 、OB ,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE ,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【详解】解:(Ⅰ)如图,连接OAOB ,. ∵PA PB ,是O 的切线,∴OA PA ⊥,OB PB ⊥.即90OAP OBP ︒∠=∠=.∵80APB ︒∠=,∴在四边形OAPB 中,360100AOB OAP OBP APB ︒︒∠=-∠-∠-∠=.∵在O 中,12ACB AOB ∠=∠, ∴50ACB ︒∠=.(Ⅱ)如图,连接CE .∵AE 为O 的直径,∴90ACE ︒∠=.由(Ⅰ)知,50ACB ︒∠=,∴40BCE ACE ACB ︒∠=∠-∠=.∴40BAE BCE ︒∠=∠=.∵在ABD ∆中,AB AD =, ∴1(180)702ADB ABD BAE ︒︒∠=∠=-∠=. 又ADB ∠是ADC ∆的一个外角,有EAC ADB ACB ∠=∠-∠,∴20EAC ︒∠=.25. 【答案】(Ⅰ)∠GFP =70°,∠AGP =70°;(Ⅱ)PF =4.【分析】(Ⅰ)连接OG ,在Rt △AEF 中,∠A =20°,可得∠GFP =∠EFA =70°,因为OA =OG ,所以∠OGA =∠A =20°,因为PG 与⊙O 相切于点G ,得∠OGP =90°,可得∠AGP =90°﹣20°=70°.;(Ⅱ)如图,连结BG ,OG ,OD ,AD ,证明△OAD 为等边三角形,得∠AOD =60°,所以∠AGD =30°,因为DG ∥AB ,所以∠BAG =∠AGD =30°,在Rt △AGB 中可求得AG =6,在Rt △AEF 中可求得AF =2,再证明△GFP 为等边三角形,所以PF =FG =AG ﹣AF =6﹣2=4.【详解】解:(Ⅰ)连接OG ,∵CD ⊥AB 于E ,∴∠AEF =90°,∵∠A =20°,∴∠EFA =90°﹣∠A =90°﹣20°=70°,∴∠GFP =∠EFA =70°,∵OA =OG ,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∠AOD=30°,∴∠AGD=12∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=3∴∠AGB=90°,AB=3∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.26. 【答案】(1)30︒;(2)60︒【分析】(1)连接AO ,根据ABC ∆为等边三角形得到60ABC ∠=,根据圆周角定理得到2120AOC ABC ∠=∠=,进而求得60AOP ∠=,再由切线的性质的PAO 90∠=,然后根据三角形内角和得到结果.(2))连接AO ,由已知条件证的2∠=∠OAD PAD ,根据切线的性质推出30PAD ∠=,进而求得答案.【详解】(1)连接AOABC ∆∴为等边三角形;60ABC ∴∠=;2120AOC ABC ∴∠=∠=;180AOC AOP ∴∠+∠=;60AOP ∴∠=; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90P AOP ∴∠+∠=;90906030P AOP ∴∠=-∠=-=;(2)连接AOPD AD =;P PAD ∴∠=∠;OA OD =;ADO OAD ∴∠=∠;2ADO P PAD PAD ∠=∠+∠=∠;2OAD PAD ∴∠=∠; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90PAD OAD ∴∠+∠=;290PAD PAD ∴∠+∠=;30PAD ∴∠=;260ADO PAD ∴∠=∠=;即ADC 60∠=;60ABC ADC ∴∠=∠=;27. 【答案】(Ⅰ)30P ∠=︒;(Ⅱ)①30F ∠=︒;②43AF =【分析】(Ⅰ)如图①中,连接OC .利用切线的性质解决问题即可; (Ⅱ)①证明OC ∥BF ,即可解决问题;②证明△OBC 是等边三角形,利用勾股定理即可解决问题.【详解】(Ⅰ)如图,连接OC .∵O 与PC 相切于点C ,∴OC PC ⊥,即90OCP ∠=︒,∵30A ∠=︒,∴260BOC A ∠=∠=︒,在Rt OPC △中,90POC P ∠+∠=︒ ,∴906030P ∠=︒-︒=︒;(Ⅱ)①由(I )得90OCP ∠=︒,又∵BF PC ⊥,即90PEB ∠=︒∴//OC BF∴30F ACO A ∠=∠=∠=︒;②由①F A ∠=∠,∴AB BF =,连接BC ,∵AB 是直径,∴90BCA ∠=︒,即BC AF ⊥,=∴AC CF∵60=,BOC∠=︒,OC OB∴OBC是等边三角形,∴2BC OC==,∴2222-=-=4223 AC AB BC∴43AF=。
人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)
24.3 正多边形和圆附参考答案一、正多边形的有关概念1.把圆分成n 等份,依次连接各分点所得的多边形是______________.2.正多边形__________________叫做正多边形的中心,______________________叫做正多边形的半径,中心到正多边形一边的距离叫做正多边形的_____________,正多边形的每一边所对的圆心角叫做正多边形的______________.问题1.圆内接正六边形一边所对的圆周角是( ) (A )30︒.(B )60︒.(C )150︒.(D )30︒或150︒. 二、正多边形的对称性3.正多边形都是______对称图形,正n 边形有_______条对称轴,每条对称轴都经过正n 边形的__________.4.若n 为偶数,正n 边形为_________对称图形,它的中心就是__________. 问题2.正n 边形的对称轴的总数是( ) (A )n 条.(B )2n条.(C )2n 条.(D )()2n -条. 三、正多边形的有关计算5.正n 边形的内角和为_______________,每个内角的度数为________________. 6.正n 边形有n 个相等的中心角,每个中心角的度数为____________,正n 边形有n 个相等的外角,每个外角的度数为____________,正n 边形的中心角和它的外角__________.问题3.要用圆形要板截出一个边长为3cm 的正方形桌面,则选用的圆形木板的直径至少应为_____________cm .要点探究探究1.正多边形的有关计算例1.如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积.解析:连接正六边形半径,把一个正六边形划分为六个全等的等边三角形,再利用每个三角形的面积求正六边形的面积.答案:正六边形的中心角为360︒÷6=60︒.∵OA =OF ,∠AOF =60︒,∴△AOF 是等边三角形,∴AF =OA =4.∴正六边形的周长为24.过O 作OG ⊥AF 于G ,∴∠AOG =30︒,∴AG =2,则OG 23=.∴△AOF 的面积为43,∴正六边形的面积为243.智慧背囊:正多边形边长的一半、半径、边心距构成了一个直角三角形,正多边形的有关计算都可以归结到这个直角三角形中.活学活用:已知正三角形、正方形、正六边形的半径都是R ,请你将各正多边形的边长、边心距、周长和面积值填在下表中.(用R 来表示)边长 边心距 周长 面积 正三角形 正方形 正六边形随堂尝试A 基础达标1.选择题(1)如图,将若干全等的正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要五边形( )(A )7个.(B )8个.(C )9个.(D )10个.ORQDCBA(第1(1)题) (第1(2)题)(2)如图,正方形ABCD 与等边△PRQ 内接于⊙O ,RQ ∥BC ,则∠AOP 等于( ) (A )45o .(B )60o .(C )30o .(D )55o .(3)下列图形中既是中心对称图形,又是轴对称图形的是( ) (A )正三角形.(B )正五边形.(C )正六边形.(D )正七边形.(4)若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是( ) (A )4.(B )6.(C )8.(D )12. 2.填空题(1)要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要____________cm.(2)如图,这是一个滚珠轴承的平面示意图,若该滚珠轴承的内外圆的半径分别为2和6,则在该轴承内最多能放___________颗半径为2的滚珠.F EDCBA A'HGA(第2(2)题)(第2(3)题)(第2(4)题)(3)如图,有一个边长为1.5cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为___________cm.(4)如图,将一块正六边形硬纸片,做成一个底面仍为正六边形且高相等的无盖的纸盒(侧面均垂直于底面),需在每一个顶点处剪去一个四边形,则∠GA/H为________度.3.已知两个正多边形的边数之比为2:1,而它们的内角和之比为8:3,求这两个正多边形的边数.4.如图,已知⊙O的两直径AB、CD互相垂直,弦MN垂直平分OB,交OB于点E;求证:MB与MC分别为该圆的内接正六边形和正十二边形的边长.B能力升级5.图①是“口子窖”酒的一个由铁片制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图②),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边长是3cm,每个内角都是120 ,六棱柱的高为3cm.现沿它的侧棱剪开展平,得到如图③的平面展开图.①②③④⑤(1)制作这种底盒时,可以按图④中虚线裁剪出如图③的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁片,请问能否按图④的裁剪方法制作这样的无盖底盒?并请说明理由;(2)如果用一块正三角形铁皮按图⑤中虚线剪出如图③的模片,那么这个正三角形的边长至少应为________________cm.(说明:以上裁剪不计接缝处损耗)C感受中考6.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是____________.7.如图①、②、③、④分别是⊙O的内接正三角形、正四边形、正五边形、…、正n边形,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数;(2)图②中,∠APN的度数是___________,图③中,∠APN的度数是___________;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案).图①图②图③图④课后实践从正五角星形的内角谈起我们常见到的五星红旗上的五角星形,不但给庄严的感觉,而且还给人一种和谐、对称、协调的美感,很容易得到它的一个内角为36︒.我们将圆周五等分,得五个分点1、2、3、4、5,如果按1→2→3→4→5相连,则得一个正五边形(如图①).如果按1→3→5→2→4→1相连,则得一个正五角星形(如图②).前者看成是5/1边形,后者则可以看成是5/2边形.所以每一个内角为55 18023622⎛⎫︒⨯-÷=︒⎪⎝⎭.图①图②图③图④以此类推,如图③、④将两个七角星形分别看成7/2边形和7/3边形,其内角分别为77540 1802227︒⎛⎫︒⨯-÷= ⎪⎝⎭,77180 1802337︒⎛⎫︒⨯-÷=⎪⎝⎭.有兴趣的同学不妨继续沿着这个思路研究下去,你一定会有很大的收获.参考答案基础准备问题1.D.问题2.A.问题3.要点探究活学活用:略.随堂尝试A基础达标1.(1)A (2)A (3)C (4)C2.(1)(2)6 (3)1.5 (4)60 3.两个正多边形的边数分别为10和5.4.连结MO.∵弦MN垂直平分OB,OE=BE=12OB=12OM,∠EMO=30︒,∴∠MOE=60︒.MB为圆内接六边形边长,CD⊥AB,∠MOC=30︒,∴MC为圆内接十二边形的边长.B能力升级5.(1)经计算所需的长方形铁片至少为(12+cm,宽至少为(6+cm,1217.5+<,616.5+<,能按图④裁剪方法制作无盖底盒;(2)约25.4cm.C感受中考6.7.(1)∠APN=60︒;(2)90︒,108︒;(3)∠APN=()2180 nn-.以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
【初三数学】天津市九年级数学上(人教版)第24章圆测试卷及答案
人教版九年级上册第24章数学圆单元测试卷(含答案)(2)一、选择题1.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为( )A .2 5cmB .4 5cmC .2 5cm 或4 5cmD .2 3cm 或4 3cm2.在△ABC 中,若O 为BC 边的中点,则必有AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图1,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A.10B.192C .34D .10图1 图23.如图2,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转40°得到△ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积为( )A.143π-6 B.259π C.338π-3 D.33+π 4.如图3,在平面直角坐标系xOy 中,已知A (4,0),B (0,3),C (4,3),I 是△ABC 的内心,将△ABC 绕原点逆时针旋转90°后,点I 的对应点I ′的坐标为( )图3A .(-2,3)B .(-3,2)C .(3,-2)D .(2,-3) 5.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =3x +2 3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2 C.3 D. 26.如图4,在矩形ABCD 中,G 是BC 的中点,过A ,D ,G 三点的⊙O 与边AB ,CD 分别交于点E,F,给出下列说法:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O 的圆心;(3)BC与⊙O相切,其中正确说法的个数是( )图4A.0 B.1 C.2 D.3二、填空题7.如图5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=________°.图5 图68.如图6,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为________.9.如图7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.图7 图810.如图8,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为________.三.解答题11.如图9,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD 与⊙O 有怎样的位置关系?请说明理由; (2)若∠CDB =60°,AB =6,求AD ︵的长.图912.如图10,在△ABC 中,AB =AC ,以AB 为直径的半圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF =AE ,连接FB ,FC .(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.图1013.如图11,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是半圆O 的切线;(2)若F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.图1114.如图12,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形;(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.图12答案1.[解析]C 如图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴AM =12AB =12×8=4 cm ,OD =OC =5 cm.当点C 位置如图①所示时, ∵OA =5 cm ,AM =4 cm ,CD ⊥AB , ∴OM =OA 2-AM 2=52-42=3(cm), ∴CM =OC +OM =5+3=8(cm),∴AC =AM 2+CM 2=42+82=4 5(cm);人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是( ) A .弦是直径B .弧是半圆C .半圆是圆中最长的弧D .直径是圆中最长的弦2.已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .75°B .65°C .60°D .50°3.如图,△ABC 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是( )A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O 的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP =2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D(1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=OB×AC=×2×2=2,S扇形AOC==,则图中阴影部分面积为S扇形AOC ﹣S菱形ABCO=π﹣2,故选:C.12.解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO =∠C =90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点, ∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版数学九年级上册第24章《圆》培优检测题(含祥细答案)一.选择题1.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.2.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.25.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°6.对于以下图形有下列结论,其中正确的是()A.如图①,AC是弦B.如图①,直径AB与组成半圆C.如图②,线段CD是△ABC边AB上的高D.如图②,线段AE是△ABC边AC上的高7.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A.30°B.45°C.60°D.90°8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点且不与点A、B重合.若OP 的长为整数,则符合条件的点P有()A.2个B.3个C.4个D.5个9.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6 B.6C.6D.910.如图,△ABC是半径为1的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A.3 B.C.D.11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°12.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4二.填空题13.在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED =,则BC=.14.如图,△ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为.15.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE 交于点G,则劣弧的长为.16.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.三.解答题19.如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.21.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交A C于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.22.如图,AB是⊙O的直径,D是弦AC延长线上一点,且AB=BD,DB的延长线交⊙O于点E,过点C作CF⊥BD,垂足为点F.(1)CF与⊙O有怎样的位置关系?请说明理由;(2)若BF+CF=6,⊙O的半径为5,求BE的长度.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)24.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.25.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.26.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,CF 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.参考答案一.选择题1.解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.2.解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.3.解:该扇形的弧长==3π.故选:C.4.解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.5.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.6.解:A、AC不是弦,故错误;B、半圆是弧,不包括弧所对的弦,故错误;C、线段CD是△ABC边AB上的高,正确;D、线段AE不是△ABC边AC上的高,故错误,故选:C.7.解:∵BC为⊙O的直径,∴∠BAC=90°,∵AB=OB,∴BC=2AB,∴sin C==,∴∠C=30°.故选:A.8.解:连接OA,作OC⊥AB于C,则AC=AB=4,由勾股定理得,OC==3,则3≤OP<5,OP=3有一种情况,OP=4有两种情况,则符合条件的点P有3个,故选:B.9.解:分别过正六边形的顶点A,B作AE⊥MN于E,BF⊥MN于F,则∠EAM=∠NBF=30°,EF=AB=2,∵AM=BN=2=1,∴EM=FN=1=,∴MN=++2=3,∴△PMN的周长3×3=9,故选:D.10.解:连接BD,如图所示:∵△ABC是等边三角形,∴∠BAC=60°,∴∠BDC=∠BAC=60°,∵四边形BCDE是矩形,∴∠BCD=90°,∴BD是⊙O的直径,∠CBD=90°﹣60°=30°,∴BD=2,CD=BD=1,∴BC==,∴矩形BCDE的面积=BC•CD=×1=;故选:C.11.【解答】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB =∠D =80°,∴∠EAC =∠AEB ﹣∠ACE =30°,故选:C .12.解:连接BP ,如图,当y =0时, x 2﹣4=0,解得x 1=4,x 2=﹣4,则A (﹣4,0),B (4,0), ∵Q 是线段PA 的中点,∴OQ 为△ABP 的中位线,∴OQ =BP ,当BP 最大时,OQ 最大,而BP 过圆心C 时,PB 最大,如图,点P 运动到P ′位置时,BP 最大, ∵BC ==5,∴BP ′=5+2=7,∴线段OQ 的最大值是.故选:C .二.填空题(共6小题)13.解:∵OD ⊥AB ,∴AE =EB =AB =,设OA =OD =r ,在Rt △AOE 中,∵AO 2=OE 2+AE 2,∴r 2=()2+(r ﹣)2,∴r=,∴OE=﹣=,∵OA=OC,AE=EB,∴BC=2OE=,故答案为.14.解:∵AB、AC的延长线与圆分别相切于点F、E,∴AF=AE,∵圆O与BC相切于点D,∴CE=CD,BF=BD,∴BC=DC+BD=CE+BF,∵△AB C的周长等于16,∴AB+AC+BC=16,∴AB+AC+CE+BF=16,∴AF+AE=16,∴AF=8.故答案为:8.15.解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.16.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.17.解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为18.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.三.解答题(共8小题)19.(1)证明:连接OC,∵D为的中点,∴=,∴∠BOD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.21.解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.22.解:(1)CF与⊙O相切.连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=BD,∴∠A=∠D,又∵OA=OB,∴OC是△ABD的中位线.∴OC∥BD,∴∠OCF=∠CFD=90°,即CF⊥OC.∴CF与⊙O相切;(2)过点O作OH⊥BE于点H,则∠OCF=∠CFH=∠OHB=90°,∴四边形OCFH是矩形,∴OC=FH,OH=CF,设BH=x,∵OC=5,BF+CF=6,∴BF=5﹣x,OH=CF=6﹣(5﹣x)=x+1,在Rt△BOH中,由勾股定理知:BH 2+OH 2=OB 2,即x 2+(x +1)2=52,解得x 1=3,x 2=﹣4(不合题意,舍去).∴BH =3,∵OH ⊥BE ,∴BH =EH =BE ,∴BE =2BH =2×3=6.23.(1)证明:∵四边形ABCD 是正方形,AB 为⊙O 的直径,∴∠ABE =∠BCG =∠AFB =90°,∴∠BAF +∠ABF =90°,∠ABF +∠EBF =90°,∴∠EBF =∠BAF ,在△ABE 与△BCG 中,,∴△ABE ≌△BCG (ASA );(2)解:连接OF ,∵∠ABE =∠AFB =90°,∠AEB =55°,∴∠BAE =90°﹣55°=35°,∴∠BOF =2∠BAE =70°,∵OA =3,∴的长==.24.(1)证明:连接OA ,则∠COA =2∠B ,∵AD =AB ,∴∠B =∠D =30°,∴∠COA =60°,∴∠OAD =180°﹣60°﹣30°=90°,∴OA ⊥AD ,即CD 是⊙O 的切线;(2)解:∵BC =4,∴OA =OC =2,在Rt △OAD 中,OA =2,∠D =30°,∴OD =2OA =4,AD =2,所以S △OAD =OA •AD =×2×2=2, 因为∠COA =60°,所以S 扇形COA ==π,所以S 阴影=S △OAD ﹣S 扇形COA =2﹣.25.证明(1)∵AB =AC ,AC =CD∴∠ABC =∠ACB ,∠CAD =∠D∵∠ACB =∠CAD +∠D =2∠CAD∴∠ABC =∠ACB =2∠CAD∵∠CAD =∠EBC ,且∠ABC =∠ABE +∠EBC∴∠ABE =∠EBC =∠CA D ,∵∠ABE =∠ACE∴∠CAD =∠ACE∴CE =AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:26.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠EC O=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC=-=5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.。
初中数学人教版九年级上册-第二十四章-圆单元测试卷(含答案)
人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8−4πB.16−4πC.32−4πD.32−8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A .B .C .D .6.如图.将扇形AOB 翻折,使点A 与圆心O 重合,展开后折痕所在直线l 与AB 交于点C ,连接AC .若OA =2,则图中阴影部分的面积是( )A .2π3−32B .2π3−3C .π3−32D .π37.如图,⊙O 是正△ABC 的外接圆,△DOE 是顶角为120°的等腰三角形,点O 与圆心重合,点D ,E 分别在圆弧上,若⊙O 的半径是6,则图中阴影部分的面积是( )A .4πB .12π−9 3C .12π−923D .24π− 9 38.如图,在正方形ABCD 中,点E ,F 分别是边BC 和CD 上的动点(不与端点重合),∠EAF =45°,AF 、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43−1B.3+5C.1+25D.35−110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC=x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2−AC2=0.52−0.42=0.3m,∴CD=OD−OC=0.5−0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°−∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG−S梯形OEDF−S扇形BOF=6×23−12×(2+4)×23−60π⋅42360=63−83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(−2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,∠HAM=∠CMOMC=MA∴△AMH≌△MCO(ASA),∠OCM=∠AMH故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,∠CMO=∠MPECM=PM∴△MCO≌△PME(ASA)∠MCO=∠PME∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(−1,−3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24−t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2−C F2=x2−(24−t)2,在Rt△BFO中,B F2=B O2−O F2=242−t2,于是有:x2−(24−t)2=242−t2,整理得,t=−148x2+24,∴y=−124x 2+2x+96=−124(x−24)2+120,当x=24时,y max=120。
【学生卷】初中数学九年级数学上册第二十四章《圆》知识点总结(培优)
一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°3.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 5.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°6.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π7.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 8.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .229.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠ 10.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40°11.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .612.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°13.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°14.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π15.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3n cmD .4cm二、填空题16.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.17.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.18.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .19.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.20.如图,A 是半径为1的O 外一点,2OA =,AB 是O 的切线,点B 是切点,弦//BC OA ,连接AC ,则图中阴影部分的面积为________.21.如图,Rt △ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,则Rt △ABC 的面积为_______.22.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.23.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.24.在矩形ABCD 中,43AB =,6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.25.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________26.如图,⊙O 的半径为3,点A 是⊙O 外一点,OA =6,B 是⊙O 上的动点,线段AB 的中点为P ,连接 OA 、OP .则线段 OP 的最大值是______.三、解答题27.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .28.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.29.如图,在△ABC 中,∠C =90°,AB =10,BC +AC =14,且BC >AC .(1)求BC 的长;(2)在线段BC 上求作一点Q ,使得以点Q 为圆心,QC 为半径的⊙Q 刚好与AB 相切,请运用尺规作图找出符合条件的点Q ,并求出⊙Q 的半径.(不写作法,保留作图痕迹)30.如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE .(1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,43AC =求CD 的长.参考答案。
定弦定角构造辅助圆-2020-2021学年九年级数学全一册重点题型通关训练(人教版)(原卷版)
专题12 定弦定角构造辅助圆【专题导入】1.(1)如图1,A,B,C,D,E都是⊙O上的点,已知∠A=55°,则∠B=____°,∠C=_____°.图1(2)思考:如图2,已知∠A=∠B=∠C,试问A,B,C三点在什么图形上?【方法点睛】*常用的角度:90°.90°角所对的弦为直径.【例1】问题提出:(1)如图1,已知线段AB,试在线段外确定一点P,使得PA⊥PB,画出满足条件的点P的位置(尺规作图,保留作图痕迹).图1问题探究:(2)如图2,在矩形ABCD中,AD=12,AB=10,且在矩形内部存在一动点P,使得PD⊥PC,连接BP,试求BP的最小值.同步练习1.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为______.提示:点E是动点,点F也随着E的移动而移动,不变的是∠AFC=_____°,∠AFC所对的边AC的长度也不变,由此得出点F的轨迹是__________________.【例2】如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【专题过关】1.如图,点D在半圆O上,半径OB=√61,AD=10,点C在BD上移动,连接AC,H是AC 上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A.5B.6C.7D.82.如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O 为CF的中点,连接OE,OD.当α=360°时,若AB=4√2,请直接写出点O经过的路径长.3.(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC 的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=_____°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是______.4.如图,在Rt△ABC中,BC=AC=2,点M是AC边上一动点,连接BM,以CM为直径的⊙O交BM于N,则线段AN的最小值为.5.如图,等边三角形ABC中,点D,E分别在边BC、AC上,AE=CD,连接AD,BE交于点P.(1)求证:∠A PB=120°;(2)若等边三角形ABC的边长为2√6,CP的最小值是多少?【专题提升】̂的中点,P为BĈ上任意一点,CD⊥CP交AP于D,连结BD,6. 已知以AB为直径的圆O,C为AB若AB=6,求BD的最小值.7.如图1,在正方形ABCD中,AB=4,点E,F是线段DC,AD上的动点且EC=FD.连接BE,CF交于点G.(1)求∠BGC的度数;(2)连接DG,求DG的最小值.(3)如图2,若点I是△BCG的内心,求ID的最小值.图1图2。
人教版九年级上册第二十四章《圆》培优练习卷(含答案)
人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4 又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,∴S=﹣=﹣=18π.阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣. 15.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB 、BC 、CD 、AD ,则四边形ABCD 是正方形,连接OB ,如图所示:则正方形ABCD 的对角线=2OA =4,OA ⊥OB ,OA =OB =2,∴AB =2,过点O 作ON ⊥AB 于N ,则NA =AB =, ∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连结AB、BC,如图,∵A点坐标为(a,a),∴点A在直线y=x上,作BH⊥直线y=x于H,∵∠AOB=45°,∴△BOH为等腰直角三角形,∴BH=OB=2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为==.故答案为.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积=﹣2×1=﹣23.证明:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.(2)证明:连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.24.(1)解:∵AB是⊙O的直径,∴∠ADB=90°,∵DH⊥AB,∴∠DHA=∠ADB=90°,又∵∠DAB=∠HAD,∴△DAB∽△HAD,∴=即=,∴AH=3.6.(2)证明:∵=,∴∠DAC=∠DBA,∵DH⊥AB,∴∠FDE+∠B=90°,∵∠ADB=90°,∴∠DEF+∠DAC=90°,∴∠DEF=∠FDE,∴DF=EF.25.解:(1)如图1,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵点C是的中点,∴AC=BC,则△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,设∠CBK=∠DAC=α,则∠DAB=∠DCB=45°﹣α,∠AK B=90°﹣α,∴∠AKB﹣∠BCD=(90°﹣α)﹣(45°﹣α)=45°;(2)过点C作CH⊥AD,∵∠CDH=∠CBA=45°,∴则△CHD是等腰直角三角形,∴CD=CH,∵CD=DB,∴CH=DB,在△EBD和△EHC中,∴△EBD≌△EHC(AAS),∴CE=BE=BC,在△ACE和△BCK中,∴△ACE≌△BCK(ASA),∴CK=CE=BE=BC,即BC=2CK.人教版数学九年级上册第二十四章《圆》培优单元测试卷(含解析)一.选择题1.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE=3,则EG的长为()A.B.C.D.9.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.B.πC.50 D.50π10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,C D=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.(1)求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长.参考答案一.选择题1.解:圆锥的侧面积=×2π×1×3=3π,故选:B .2.解:连接OD ,交CB 于点F ,连接BD ,∵=,∴∠DBC =∠ABC =30°,∴∠ABD =60°,∵OB =OD ,∴△OBD 是等边三角形,∴OD ⊥FB ,∴OF =DF ,∴BF ∥DE ,∴OB =BE =6∴CF =FB =OB •cos30°=6×=3,在Rt △POD 中,OF =DF ,∴PF =DO =3(直角三角形斜边上的中线,等于斜边的一半),∴CP =CF ﹣PF =3﹣3. 故选:B .3.解:∵ABCDEF 为正六边形,∴∠COB =360°×=60°,∴△OBC 是等边三角形,∴OB =OC =BC =6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠OAB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:圆锥的侧面积=•5•5=.故选:A.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,=﹣=﹣=18π.∴S阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD =1,∴四边形ODCE 和四边形ABEO 都是正方形,∴BE =1,∠DOE =∠BEO =90°∵∠BFE =∠DFO , OD =BE ,∴△ODF ≌△EBF (AAS ),∴S △ODF =S △EBF ,∴阴影部分的面积=S 扇形EOD ==.故选:C .二.填空题(共6小题)13.解:∵圆锥的底面圆的周长是5πcm ,∴圆锥的侧面展开扇形的弧长为5πcm ,∴=5π,解得:n =150故答案为150°.14.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.15.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,O A⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最大,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OA=OB=8,∵AB是直径,∴∠APB=90°,∴AB长度的最大值为16,故答案为16.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵O C∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积=﹣2×1=﹣23.证明:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.(2)证明:连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.24.(1)解:∵AB是⊙O的直径,∴∠ADB=90°,∵DH⊥AB,∴∠DHA=∠ADB=90°,又∵∠DAB=∠HAD,∴△DAB∽△HAD,∴=即=,∴AH=3.6.(2)证明:∵=,∴∠DAC=∠DBA,∵DH⊥AB,∴∠FDE+∠B=90°,∵∠ADB=90°,∴∠DEF+∠DAC=90°,∴∠DEF=∠DEF,∴DF=EF.25.(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC.(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE,∵OC=OE,∴∠BCE=∠OEC,∴∠DCE=∠OEC,∴OE∥CD,∴△POE∽△PCD,∴=,∵PB=BO,DE=2∴PB=BO=OC∴==,∴=,∴PE=4.人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.。
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。
这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。
但是,对于圆的性质和概念的理解还需要进一步的引导和培养。
此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。
四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。
2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。
2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。
通过示例和练习,帮助学生理解和掌握圆的性质。
第二十四章 圆单元测试卷(含解析)
人教版九年级数学《第24章圆》综合测试卷答案解析一、选择题(本题共10个小题,每小题3分,共30分)1、下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.2、如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.3、已知⊙O的半径为5cm,直线L上有一点P,OP=5cm,则直线L与⊙O的位置关系为()A.相交 B.相离 C.相切 D.相交或相切【解答】解:当OP垂直于直线L时,即圆心O到直线L的距离d=5cm=r,⊙O 与L相切;当OP不垂直于直线L时,即圆心O到直线L的距离d<5cm=r,⊙O与直线L相交.故直线L与⊙O的位置关系是相切或相交.故选:D.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70°C.120°D.140°【解答】解:过A作⊙O的直径,交⊙O于D;在△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D4、如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.5、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.6、如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.4【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.7、如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8 B.4 C.4π+4 D.4π﹣4 【解答】解:如图所示:可得正方形EFMN,边长为2,正方形中两部分阴影面积为:22﹣π×12=4﹣π,∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,∵⊙O的半径为2,∴O1,O2,O3,O4的半径为1,∴小圆的面积为:π×12=π,扇形COB的面积为: =π,∴扇形COB中两空白面积相等,∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.故选A.8、如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A .15°B .20°C .25°D .30° 【解答】解;如图, 由四边形的内角和定理,得∠BOA =360°﹣90°﹣90°﹣80°=100°, 由=,得∠AOC =∠BOC =50°. 由圆周角定理,得 ∠ADC =∠AOC =25°, 故选:C .9、已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) A .25cm B .45cm C .25cm 或45cm D .23cm 或43cm【解答】解:连接AC ,AO ,∵⊙O 的直径CD=10cm ,AB ⊥CD ,AB=8cm , ∴AM=1AB=1×8=4cm ,OD=OC=5cm , 当C 点位置如图1所示时, ∵OA=5cm ,AM=4cm ,CD ⊥AB , ∴OM=22AM OA -=2245-=3cm , ∴CM=OC+OM=5+3=8cm ,∴AC=22CM AM +=2284+=45cm ; 当C 点位置如图2所示时,同理可得OM=3cm , ∵OC=5cm , ∴MC=5﹣3=2cm ,在Rt △AMC 中,AC=22CM AM +=2224+=25cm . 故选:C .10、如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( )A .OC ∥AEB .EC=BC C .∠DAE=∠ABED .AC ⊥OE【解答】解:A 、∵点C 是的中点,∴OC ⊥BE ,∵AB 为圆O 的直径, ∴AE ⊥BE ,∴OC ∥AE ,本选项正确; B 、∵=,∴BC=CE ,本选项正确; C 、∵AD 为圆O 的切线, ∴AD ⊥OA ,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D、AC不一定垂直于OE,本选项错误,故选D二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.12、已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为25 cm.【解答】解:扇形的弧长是: =50πcm,设底面半径是rcm,则2πr=50π,解得:r=25.故答案是:25.13、如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=()518025⨯-=108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.14、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠PAO=25°.16、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.17、如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是【解答】解:如图1所示,S△ABC=•r•(AB+BC+AC)==21r,过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,∴S△ABC==×7×12=42,∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π•22=4π(cm2),18、如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.三、解答题(共66分)19、(6分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB=45°,BC ∥AD ,CD ∥AB .若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).【解答】解:连接OD , ∵OA=OD ,∠A=45°, ∴∠A=∠ADO=45°, ∴∠DOB=90°,即OD ⊥AB , ∵BC ∥AD ,CD ∥AB ,∴四边形ABCD 是平行四边形, ∴CD=AB=2 ∴S 梯形OBCD=()()2321212=⨯+=⨯+OD CD OB ,∴图中阴影部分的面积S=S 梯形OBCD ﹣S 扇形OBD=23﹣3601902⨯π=23﹣4π.20、(8分)如图,AB 和CD 分别是⊙O 上的两条弦,过点O 分别作ON ⊥CD 于点N ,OM ⊥AB 于点M ,若ON=AB ,证明:OM=CD .【解答】证明:设圆的半径是r ,ON=x ,则AB=2x ,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.21、(8分)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.【解答】解:(1)∵CD是圆O的直径,CD⊥AB,∴=,∴∠C=∠AOD,∵∠AOD=∠COE,∴∠C=∠COE,∵AO⊥BC,∴∠C=30°.(2)连接OB,由(1)知,∠C=30°,∴∠AOD=60°,∴∠AOB=120°,在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=,∴AB=,∴S阴影=S扇形OADB﹣S△OAB=﹣××=π﹣.22、(10分)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.【解答】证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=x,∵BE=2,∴OE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣2)2+(2)2,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∵AD=CD,∴平行四边形FADC是菱形;(2)连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA , ∵AO=CO , ∴∠OAC=∠OCA ,∴∠FAC+∠OAC=∠FCA+∠OCA , 即∠OCF=∠OAF=90°, 即OC ⊥FC , ∵点C 在⊙O 上, ∴FC 是⊙O 的切线.23、(10分)如图,在正六边形ABCDEF 中,对角线AE 与BF 相交于点M ,BD 与CE 相交于点N . (1)求证:AE=FB ;(2)在不添加任何辅助线的情况下,请直接写出所有与△ABM 全等的三角形.【解答】证明:(1)∵正六边形ABCDEF , ∴AF=EF=AB ,∠AFE=∠FAB , 在△AFE 与△BAF 中,⎪⎩⎪⎨⎧=∠=∠=FE AB FAB AFE AF AF , ∴△AFE ≌△BAF (SAS ),∴AE=FB ;(2)与△ABM 全等的三角形有△DEN ,△FEM ,△CBN ; ∵六边形ABCDEF 是正六边形, ∴AB=DE ,∠BAF=120°, ∴∠ABM=30°, ∴∠BAM=90°,同理∠DEN=30°,∠EDN=90°, ∴∠ABM=∠DEN ,∠BAM=∠EDN , 在△ABM 和△DEN 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DEN ABM DEAB EDN BAM , ∴△ABM ≌△DEN (ASA ).同理利用ASA 证明△FEM ≌△ABM ,△CBN ≌△ABM .24、(12分)如图,已知等边△ABC ,以边BC 为直径的半圆与边AB ,AC 分别交于点D 、E ,过点D 作DF ⊥AC 于点F ,(1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC 于点H ,若等边△ABC 的边长为8,求AF ,FH 的长.【解答】解:(1)DF 与⊙O 相切.理由如下: 连接OD .∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°, ∵OD=OB ,∴△ODB 是等边三角形,∴∠DOB=60°,∴∠DOB=∠C=60°,∴OD∥AC.∵DF⊥AC,∴DO⊥DF,∴DF与⊙O相切;(2)连接CD.∵CB是⊙O直径,∴DC⊥AB.又∵AC=CB=AB,∴D是AB中点,∴AD=.在直角三角形ADF中,∠A=60°,∠ADF=30°,∠AFD=90°,∴,∴FC=AC﹣AF=8﹣2=6.∵FH⊥BC,∴∠FHC=90°.∵∠ACB=60°,∴∠HFC=30°,∴,∴FH==3.25、(12分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.【解答】(1)PN与⊙O相切.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠OAN=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt △AOM 中, ∵∠OMA+∠OAM=90°, ∴∠PNM+∠ONA=90°. ∴∠PNO=180°﹣90°=90°. 即PN 与⊙O 相切.(3)解:连接ON ,由(2)可知∠ONP=90°. ∵∠AMO=15°,PM=PN ,∴∠PNM=15°,∠OPN=30°, ∴∠PON=60°,∠AON=30°. 作NE ⊥OD ,垂足为点E ,则NE=ON •sin60°=1×=.S 阴影=S △AOC +S 扇形AON ﹣S △CON =OC •OA+CO •NE =×1×1+π﹣×1× =+π﹣.中小学教育资源及组卷应用平台。
人教版2020-2021数学九年级上册 第25章 概率初步 选择题专题训练
32.一个不透明的袋子中装有 1 个红球、2 个白球和 3 个黑球,每个球除颜色外都相同.将
球摇匀后,从中任意摸出一个球,则摸到红球是( )
A.必然事件
B.不可能事件
C.确定事件
D.随机事件
33.下列事件:
①掷一次骰子,向上一面的点数是 3;
②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;
③13 个人中至少有两个人的生日是在同一个月份;
A.36
B.32
C.28
D.24
36.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向 3 的概率为 ()
A.
B.
C.
D.
37.下列事件中,是确定事件的为( ) A.最近 3 天内会下雨 B.367 人中没有人公历生日相同 C.打开电视,正在播放连续剧《清平乐》 D.重庆八中高 2023 级将招收 1500 人
45.某校有教师 80 名,为体现“人文关怀,尊师重教”,学校决定按月为教师过集体生日.办 公室先随机抽查统计了其中 13 名教师的出生月份,则下列说法正确的是( ) A.这是一个抽样调查,样本是被抽查的 13 名教师 B.这个问题中的总体是 80 名教师 C.“这 13 名教师中有人出生月份相同”是随机事件 D.这是一个抽样调查,样本是被抽查的 13 名教师的出生月份
A.0
B.1
C.2
D.3
31.一个不透明的盒子里有 n 个除颜色外其他完全相同的小球,其中有 9 个黄球.每次摸球
前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实
验后发现,摸到黄球的频率稳定在 30%,那么估计盒子中小球的个数 n 为( )
A.30
B.28
人教版九年级上册数学第24章测试卷
第二十四章测试卷时间:120分钟 满分:150分一、选择题(每小题4分,共40分)A .1个B .2个C .3个D .4个2.如图,AB 与⊙O 相切于点C ,OA =OB ,⊙O 的直径为8,AB =10,则OA 的长为( A )A .41B .6C .39D .33.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( B )A .5πB .10πC .20πD .40π4.如图,⊙O 的直径AB =6,若∠BAC =50°,则劣弧AC 的长为( D )A .2πB .8π3C .3π4D .4π35.如图,点A ,B ,C 都在⊙O 上,∠A =∠B =20°,则∠AOB 等于( C )A .40°B .60°C .80°D .100°6.已知,⊙O 半径为10,圆心O 为坐标原点,点P 的坐标为(8,6),则点P 与⊙O 的位置关系是( B )A .点在圆内B .点在圆上C .点在圆外D .不能确定7.平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( C )A .0条B .1条C .2条D .无数条8.如图,A 是⊙O 上一点,BC 是直径,AC =2,AB =4,点D 在⊙O上且平分BC ︵ ,则DC 的长为( D )A .2 2B . 5C .2 5D .109.如图,AD 是半圆的直径,点C 是BD ︵ 的中点,∠ADC =55°,则∠BAD 等于( D )A .50°B .55°C .65°D .70°10.如图,在菱形ABCD 中,以AB 为直径画弧分别交BC 于点F ,交对角线AC 于点E .若AB =4,F 为BC 的中点,则图中阴影部分的面积为( D )A .23-2π3B .2 3C .4π3-3 3D .2π3二、填空题(每小题5分,共20分)11.用反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.证明时,可以先假设__这两个角所对的边相等__.12.如图,在扇形OAB 中,OA =10,∠AOB =36°.若将此扇形绕点B 顺时针旋转,得一新扇形O′A′B,其中点A 在O′B 上,则点O 的运动路径为__4π__cm .(结果保留π)13.如图,在Rt△ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为__125__.14.如图,把一个直角三角形ABC 的斜边AB 放在直线l 上,按顺时针方向在l 上转动两次,使它转到△A″B″C″的位置.设BC =2,AC =23,则顶点A 运动到点A″的位置时,线段AB 扫过的图形面积是__43π6.三、解答题(共90分)15.(8分)已知:如图,四边形ABCD 的顶点都在⊙O 上,BD 平分∠ADC ,且BC =CD .求证:AB =CD .证明:∵BD 平分∠ADC ,∴∠ADB =∠CDB ,∴AB ︵ =BC ︵ ,∴AB=BC ,∵BC =CD ,∴AB =CD .16.(8分)如图,已知AB 是⊙P 的直径,点C 在⊙P 上,D 为⊙P 外一点,且∠ADC =90°,直线CD 为⊙P 的切线.(1)求证:2∠B +∠DAB =180°;(2)若∠B =30°,AD =2,求⊙P 的半径.(1)证明:连接CP ,∵PC =PB ,∴∠B =∠PCB ,∴∠APC =∠PCB +∠B =2∠B ,∵CD 是⊙P 的切线,∴∠DCP =90°,∵∠ADC =90°,∴AD ∥PC ,∴∠DAB +∠APC =180°,∴2∠B +∠DAB =180°;(2)解:连接AC ,∵∠B =30°,∴∠APC =60°,∵PC =PA ,∴△ACP 是等边三角形,∴AC =PA ,∠ACP =60°,∴∠ACD =30°,∴AC =2AD =4,∴PA =4,∴⊙P 的半径为4.17.(8分)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB =62°,∠APD =86°.(1)求∠B 的大小;(2)已知AD =6,求圆心O 到BD 的距离.解:(1)∵∠APD =∠CAB +∠C ,∴∠C =∠APD -∠CAB =86°-62°=24°,∴∠B =∠C =24°;(2)作OE ⊥BD 于E ,如图所示,则DE =BE ,∵OA =OB ,∴OE 是△ABD的中位线,∴OE =12AD =12×6=3,即圆心O 到BD 的距离为3.18.(8分)如图,已知四边形ABCD 内接于⊙O ,连接BD ,∠BAD =105°,∠DBC =75°.(1)求证:BD =CD ;(2)若⊙O 的半径为3,求BC ︵ 的长.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠DCB +∠BAD =180°,∵∠BAD =105°,∴∠DCB =180°-∠BAD =75°,∵∠DBC =75°,∴∠DBC =∠DCB =75°,∴DB =DC ;(2)解:连接OB ,OC ,∵∠DBC =∠DCB =75°,∴∠BDC =30°,由圆周角定理,得∠BOC =2∠BDC =60°,∴BC ︵ 的长=60π×3180=π.19.(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .证明:(1)∵AB 是半圆O 的直径,∴∠ACB =∠ADB =90°,在Rt △CBA与Rt △DAB 中,⎩⎪⎨⎪⎧ BC =AD ,BA =AB ,Rt△CBA≌Rt△DAB(HL);(2)∵BE =BF ,由(1)知BC ⊥EF ,∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线,∴∠ABE =90°,∴∠E +∠BAE =90°,由(1)知∠D =90°,∠DAF +∠AFD =90°,∵∠AFD =∠BFE ,∴∠AFD =∠E ,∵∠DAF =90°-∠AFD ,∠BAF =90°-∠E ,∴∠DAF =∠BAF ,∴AC 平分∠DAB .20.(10分)如图1,AB 是半圆O 的直径,AC 是一条弦,D 是AC ︵ 上一点,DE ⊥AB 于点E ,交AC 于点F ,连接BD 交AC 于点G ,且AF =FG .(1)求证:点D 平分AC ︵ ;(2)如图2所示,延长BA 至点H ,使AH =AO ,连接DH .若点E 是线段AO 的中点.求证:DH 是⊙O 的切线.图1 图2 证明:(1)连接AD ,BC ,如图所示,∵AB 是半圆O 的直径,∴∠ADB =90°,∠ABD +∠DAE =90°,∵DE ⊥AB ,∴∠ADE +∠DAE =90°,∴∠ADE =∠ABD ,又∵AF =FG ,即点F 是Rt △AGD 的斜边AG 的中点,∴DF=AF ,∴∠DAC=∠ADE,∴∠ABD=∠DAC,∴AD ︵ =CD ︵ ,即点D 平分AC ︵ ;(2)如图所示,连接OD ,AD ,∵点E 是线段OA 的中点,DE ⊥AB ,AH =AO =OB ,∴DA =DO ,DH =DB ,∴∠DAO =∠DOA ,∠H =∠B ∴∠H +∠DOA =∠B +∠DAO ,又∵∠B +∠DAO =90°,∴∠H +∠DOA =90°,∴∠HDO =90°,∴DH 是⊙O 的切线.21.(12分)如图,在△ABC 中,AB =AC =210,BC =4,⊙O 是△ABC 的外接圆.(1)求⊙O 的半径;(2)若在同一平面内的⊙P 也经过B ,C 两点,且PA =2,请直接写出⊙P 的半径的长.解:(1)如图,过点A 作AD ⊥BC ,垂足为D ,连接OB ,OC ,∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∵OB =OC ,∴点O 在BC 的垂直平分线上,即O 在AD 上,∵BC =4,∴BD =12BC =2,∵在Rt △ABD 中,∠ADB =90°,AB =210,∴AD =AB 2-BD 2=6,设OA =OB =r ,则OD =6-r .∵在Rt△OBD 中,∠ODB =90°,∴OD 2+BD 2=OB 2,即(6-r)2+22=r 2,解得r =103,即⊙O 的半径为103;(2)当⊙P 也经过B ,C 两点,则设PB =r ,PA =2,则PD =6-2=4或6+2=8,BD =2,∴PB =42+22=25,或PB =82+22=217.所以⊙P 的半径的长为25或217.22.(12分)如图,△ABC 内接于⊙O ,∠B =60°,点E 在直径CD 的延长线上,且AE =AC .(1)试判断AE 与⊙O 的位置关系,并说明理由;(2)若AC =6,求阴影部分的面积.解:(1)AE 与⊙O 相切.理由:连接OA ,AD ,如图,∵CD 为⊙O 的直径,∴∠DAC =90°,又∵∠ADC =∠B =60°,∴∠ACE =30°,又∵AE =AC ,OA =OD ,∴∠AEC =30°,△ADO 为等边三角形,∠ADO =∠DAO =60°,∴∠EAO =90°,即OA ⊥AE ,∴AE 为⊙O 的切线;(2)由(1)可知AE =AC =6,△AEO 为直角三角形,且∠E =30°,∴OA=23,∴阴影部分的面积为12×6×23-60π×232360=63-2π.23.(14分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:△AOE ≌△POC ;②写出∠1,∠2和∠C 三者间的数量关系,并说明理由;(2)若OC =2OA =2,当∠C 最大时,直接..指出CP 与小半圆的位置关系,并求此时S 扇形EOD (答案保留π).(1)①证明:在△AOE 和△POC 中,⎩⎪⎨⎪⎧ AO =PO ,∠AOE =∠POC ,OE =OC ,∴△AOE ≌△POC(SAS);②解:∠2=∠C +∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质,可得∠2=∠C +∠OPC ,∴∠2=∠C +∠1;(2)解:在P 点的运动过程中,只有CP 与小圆相切时,∠C 才有最大值,∴当∠C最大时,可知此时CP与小半圆相切,由此可得CP⊥OP,又∵OC=2OA=2OP=2,∴在Rt△POC中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S扇形EOD=120×π×22360=43π.。
2020-2021学年广东省九年级上册数学(人教版)期末考试复习:第24章《圆》解答题精选
第24章《圆》解答题精选1.(2019秋•白云区期末)如图,在△ABC中,边BC与⊙A相切于点D,∠BAD=∠CAD.求证:AB=AC.2.(2019秋•怀集县期末)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.3.(2019秋•金平区期末)如图,⊙O的直径AB=10,点C为⊙O上一点,连接AC、BC.(1)作∠ACB的角平分线,交⊙O于点D;(2)在(1)的条件下,连接AD.求AD的长.4.(2019秋•龙湖区期末)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.5.(2019秋•新会区期末)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP =∠A.(1)求证:直线PC是⊙O的切线;(2)若CA=CP,⊙O的半径为2,求CP的长.6.(2019秋•阳江期末)如图,AB是⊙O的直径,弦EF⊥AB,垂足为C,∠A=30°,连结BE,M为BE 的中点,连结MF,过点F作直线FD∥AE,交AB的延长线于点D.(1)求证:FD是⊙O的切线;(2)若MF=√7,求⊙O的半径.7.(2019秋•端州区期末)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.8.(2019秋•番禺区期末)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB =13,BC=12.(1)求BF的长;(2)求⊙O的半径r.9.(2019秋•香洲区期末)如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC,作CD平分∠ACB交AB于点E,交⊙O于点D.连结PC,BD.(1)求证:PC为⊙O的切线;(2)求证:BD=√2P A;(3)若PC=6√3,求AE的长.10.(2019秋•南沙区期末)如图,在Rt△ABC中,∠C=90°,点E在边AB上,点D在边BC上,且AE 是⊙O的直径,∠CAB的平分线于⊙O相交于点D.(1)证明:直线BC是⊙O的切线;(2)连接ED,若ED=4,∠B=30°,求边AB的长.11.(2019秋•斗门区期末)如图,已知点D在⊙O的直径AB延长线上,点C为⊙O上,过D作ED⊥AD,与AC的延长线相交于E,CD为⊙O的切线,AB=2,AE=3.(1)求证:CD=DE;(2)求BD的长;(3)若∠ACB的平分线与⊙O交于点F,P为△ABC的内心,求PF的长.12.(2019秋•中山市期末)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.13.(2019秋•黄埔区期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=10cm,CD=16cm,求AE 的长.14.(2019秋•潮南区期末)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG的长.15.(2019秋•东莞市期末)如图,AE是⊙O的直径,半径OC⊥弦AB,点D为垂足,连接BE、EC.(1)若∠BEC =26°,求∠AOC 的度数;(2)若∠CEA =∠A ,EC =6,求⊙O 的半径.16.(2019秋•雷州市期末)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AD 平分∠CAB ,过点D 作AC的垂线,与AC 的延长线相交于E ,与AB 的延长线相交于点F ,G 为AB 的下半圆弧的中点,DG 交AB 于H ,连接DB 、GB .(1)证明EF 是⊙O 的切线;(2)求证:∠DGB =∠BDF ;(3)已知圆的半径R =5,BH =3,求GH 的长.17.(2019秋•惠城区期末)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A 、B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,若AC =FC .(1)求证:AC 是⊙O 的切线:(2)若BF =8,DF =√40,求⊙O 的半径;(3)若∠ADB =60°,BD =1,求阴影部分的面积.(结果保留根号)18.(2018秋•增城区期末)如图,⊙O 的直径为AB ,点C 在圆周上(异于点A ,B ),AD ⊥CD ,∠CAD =∠CAB .求证:直线CD 是⊙O 的切线.19.(2018秋•黄埔区期末)如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且满足BB̂=BB ̂,过点C 作⊙O 的切线交AB 的延长线于D 点,交AF 的延长线于E 点.(1)求证:AE ⊥DE ;(2)若∠CBA =60°,AE =3,求AF 的长.20.(2018秋•天河区期末)如图,⊙O 中,OA ⊥BC ,∠AOB =50°,求∠ADC 的度数.21.(2018秋•番禺区期末)如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交边AB 与点D ,以A 为圆心,AD 长为半径画弧,交边AC 于点E ,连接CD .(1)若∠A =28°,求∠ACD 的度数;(2)设BC =a ,AC =b .⊙线段AD 的长是方程x 2+2ax ﹣b 2=0的一个根吗?为什么?⊙若AD =EC ,求B B 的值. 22.(2018秋•海珠区期末)如图,已知:AB 为⊙O 直径,PQ 与⊙O 交于点C ,AD ⊥PQ 于点D ,且AC 为∠DAB 的平分线,BE ⊥PQ 于点E .(1)求证:PQ 与⊙O 相切;(2)求证:点C 是DE 的中点.23.(2018秋•白云区期末)已知如图1,在△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于D ,过点D 作⊙O 的切线交BC 于点E .(1)求证:∠B =∠ACD ,DE =12BC ; (2)已知如图2,BG 是△BDE 的中线,延长ED 至点F ,使ED =FD ,求证:BF =2BG .24.(2018秋•饶平县期末)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.25.(2018秋•惠城区期末)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.26.(2018秋•白云区期末)⊙O的直径为10cm,AB、CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,求AB和CD之间的距离.27.(2018秋•惠城区期末)如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=2√3,求阴影部分的面积.28.(2018秋•徐闻县期末)如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;̂的长度.(2)若∠CAB=30°,BC=4,求劣弧BB29.(2018秋•江海区期末)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.30.(2018秋•江海区期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.第24章《圆》解答题精选参考答案与试题解析一.解答题(共30小题)1.【解答】解:∵BC与⊙A相切于点D,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.2.【解答】证明:连接OD,∵AB是⊙O的直径,∴OA=OB=OD,∵BC是⊙O的切线,∴∠OBC=90°,∵OC∥AD,∴∠A=∠COB,∠ODA=∠COD,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠COB,在△COD和△COB中,{BB=BBBBBB=BBBB BB=BB,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴OD⊥CD,∴DC是⊙O的切线.3.【解答】解:(1)如图,射线CD为所求.(2)连接OD,∵⊙O的直径AB=10,∴∠ACB=90°,AO=DO=5.∵CD平分∠ACB,∴∠BBB=12BBBB=45°.∴∠AOD=2∠ACD=90°.在Rt△AOD中,BB=√BB2+BB2=√52+52=5√2.4.【解答】证明:(1)如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为10,∴OF=2x﹣10,在Rt△OEF中,OE2=OF2+EF2,即102=x2+(2x﹣10)2,解得x=8,∴EF=8,∴BE=2EF=16.5.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC =√42−22=2√3.6.【解答】(1)证明:连接OE ,OF ,如图1, ∵EF ⊥AB ,AB 是⊙O 的直径,∴∠DOF =∠DOE ,∵∠DOE =2∠A ,∠A =30°,∴∠DOF =60°,∵∠D =30°,∴∠OFD =90°.∴OF ⊥FD .∴FD 为⊙O 的切线;(2)解:连接OM .如图2所示:∵AB 为⊙O 的直径,∴O 为AB 中点,∠AEB =90°.∵M 为BE 的中点,∴OM ∥AE ,OM =12AE ,∵∠A =30°,∴∠MOB =∠A =30°.∵∠DOF =2∠A =60°,∴∠MOF =90°,∴OM 2+OF 2=MF 2.设⊙O 的半径为r .∵∠AEB =90°,∠A =30°,∴BE =12AB =r ,AE =√3BE =√3r ,∴OM =12AE =√32r , ∵FM =√7,∴(√32r )2+r 2=(√7)2. 解得r =2(舍去负根),∴⊙O 的半径为2.7.【解答】解:(1)连接OC ,在△OAD 和△OCD 中,{BB =BB BB =BB BB =BB ,∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,又AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)证明:∵AB =2BC ,∴设BC =a 、则AC =2a , ∴AD =AB =√BB 2+BB 2=√B 2+(2B )2=√5a ,∵OE ∥BC ,且AO =BO ,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE =√BB 2−BB 2=√5B 2−B 2=2a ,在△AOD 中,AO 2+AD 2=(√52B )2+(√5a )2=254a 2,OD 2=(OE +DE )2=(12a +2a )2=254a 2, ∴AO 2+AD 2=OD 2,∴∠OAD =90°,则DA 与⊙O 相切.8.【解答】解:(1)在Rt △ABC 中,∵∠C =90°,AB =13,BC =12, ∴AC =√BB 2−BB 2=√132−122=5,∵⊙O 为Rt △ABC 的内切圆,切点分别为D ,E ,F ,∴BD =BF ,AD =AE ,CF =CE ,设BF =BD =x ,则AD =AE =13﹣x ,CF =CE =12﹣x ,∵AE +EC =5,∴13﹣x +12﹣x =5,∴x =10,∴BF =10.(2)连接OE ,OF ,∵OE ⊥AC ,OF ⊥BC ,∴∠OEC =∠C =∠OFC =90°,∴四边形OECF 是矩形,∴OE =CF =BC ﹣BF =12﹣10=2.即r =2.9.【解答】解:(1)连接OC,∵∠BAC=60°,且OA=OC,∴∠OCA=∠OAC=60°.∵AP=AC,且∠P+∠PCA=∠BAC=60°,∴∠P=∠PCA=30°.∴∠PCO=∠PCA+∠ACO=90°.∴PC为切线;(2)连结AD.∵CD平分∠ACB,且∠ACB=90°,∴∠ACD=∠BCD=45°.∴AD=BD.∵在Rt△ADB中,AD2+BD2=AB2.∴AD=BD=√22 AB,又∵OA=OC,∠CAO=60°,∴△ACO为等边三角形,∴AC=CO=AO.∴P A=AC=AO=12 AB.∴BD=√2P A;(3)∵∠PCE=∠PCA+∠ACD=75°,∠P=30°,∴∠PEC=75°,∴PC=PE=6√3.又在Rt△PCO中,OP=OA+P A=2OC,PO2=PC2+CO2,∴CO=6,PO=12.∴OE=OP﹣PE=12﹣6√3,∴AE=OA﹣OE=OC﹣OE=6﹣(12﹣6√3)=6√3−6.10.【解答】解:(1)证明:连接OD∵AD平分∠CAB,∴∠CAD=∠BAD,∵在⊙O 中,OA =OD ,∴∠OAD =∠ADO ,∴∠CAD =∠ADO ,∴AC ∥OD ,∵Rt △ABC 中,∠C =90°∴OD ⊥BC ,∴直线BC 为圆O 的切线(2)如上图:连接DE ,∵Rt △ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°,∵由(1)可得:AC ∥OD ,∴∠DOB =60°,∴△DOE 为等边三角形,OD =OE =DE =4,∴OA =OD =4,∵由(1)可得∠ODB =90°,且∠B =30°, ∴在Rt △ODB 中,OB =2OD =8,∴AB =OA +OB =12.11.【解答】解:(1)证明:如图,连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠ACO +∠ECD =90°,∵ED ⊥AD ,∴∠A +∠E =90°,∵OA =OC ,∴∠A =∠ACO ,∴∠E =∠DCE ,∴CD =DE .(2)方法一:∵AB =2,∴OA =OB =OC =1,∵OC ⊥CD ,∴由勾股定理可得,CD 2=(1+BD )2﹣12,∵ED ⊥AD ,∴由勾股定理可得,DE 2=32﹣(2+BD )2,∵CD =DE ,∴(1+BD )2﹣12=32﹣(2+BD )2,∴BB =−3+√192或−3−√192(舍去). 方法二:由弦切角定理得∠DCB =∠DAC ,∵∠CDB =∠ADC ,∴△CDB ∽△ADC ,∴BB BB =BB BB ,即CD 2=AD •BD =(2+BD )•BD ,∵ED ⊥AD ,∴由勾股定理可得,DE 2=32﹣(2+BD )2,∵CD =DE ,∴(2+BD )•BD =32﹣(2+BD )2,解得BB =−3+√192或−3−√192(舍去). (3)如图,连接BF ,PB ,AF ,∵CF 平分∠ACB ,∴BB̂=BB ̂, ∴AF =BF ,∵AB 为直径,AB =2,∴BB =BB =√2,∵P 为△ABC 的内心,∴∠1=∠2,∠CBP =∠ABP ,∵∠1=∠3,∴∠2=∠3,∴∠2+∠CBP =∠3+∠ABP ,∴∠FPB =∠FBP ,∴BB =BB =√2.方法二:如图,连接AF ,BF ,AP ,∵CF 平分∠ACB ,∴BB̂=BB ̂, ∴∠ACF =∠ABF =∠BAF ,∴AF =BF ,∵AB 为直径,AB =2,∴BB =BB =√2,∵P 为△ABC 的内心,∴AP 平分∠CAB ,∴∠CAP =∠BAP ,∵∠P AF =∠BAP +∠BAF ,∠APF =∠CAP +∠ACF , ∴∠P AF =∠APF ,∴BB =BB =√2.12.【解答】解:连接OC ,如图,∵AB 是⊙O 的直径,AB =10,∴OC =OA =5,∵CD ⊥AB ,∴CE =DE =12CD =12×8=4, 在Rt △OCE 中,OC =5,CE =4,∴OE =√BB 2−BB 2=3,∴AE =OA ﹣OE =5﹣3=2.13.【解答】解:∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴OE =√BB 2−BB 2=√102−82=6(cm ),∴AE =AO +OE =10+6=16(cm ).14.【解答】解:(1)BD 与⊙O 相切,理由:如图1,连接OB ,∵OB =OF ,∴∠OBF =∠OFB ,∵∠ABC =90°,AD =CD ,∴BD =CD ,∠EBF =90°,∴∠C =∠DBC ,EF 为直径,∴点O 在EF 上,∵∠C =∠BFE ,∴∠DBC =∠OBF ,∵∠CBO +∠OBF =90°,∴∠DBC +∠CBO =90°,∴∠DBO =90°,∴BD 与⊙O 相切;(2)如图2,连接CF ,HE ,∵∠CDE =90°,∠ABC =90°,∴∠DEC =∠A ,∵∠CED =∠FEB ,∴∠FEB =∠A .∵AB =BE ,∠ABC =∠CBF =90°,∴△ABC ≌△EBF (ASA ),∵BC =BF ,∴CF =√2BF ,∵DF 垂直平分AC ,∴AF =CF =AB +BF =1+BF =√2BF ,∴BF =√2+1,∴EF =√BB 2+BB 2=√4+2√2,∵∠CBF =90°,∴EF 是⊙O 的直径,∴⊙O 的面积=(12EF )2•π=4+2√24π=2+√22π;(3)∵AB =BE ,∠ABE =90°,∴∠AEB =45°,∵EA =EC ,∴∠C =22.5°,∴∠H =∠BEG =∠CED =90°﹣22.5°=67.5°, ∵BH 平分∠CBF ,∴∠EBG =∠HBF =45°,∴∠BGE =∠BFH =67.5°,∴BG =BE =1,BH =BF =1+√2,∴HG =BH ﹣BG =√2.15.【解答】解:(1)∵OC ⊥AB , ∴BB̂=BB ̂, ∴∠CEB =∠AEC =26°,由圆周角定理得,∠AOC =2∠AEC =52°;(2)连接AC∵AE 是⊙O 的直径,∴∠ABE =∠ACE =90°,∴∠AEB +∠A =90°,∵∠CEA =∠A ,∠CEB =∠AEC ,∴∠A =∠AEC =30°,∴AE =BB BBB30°=4√3, ∴⊙O 的半径为2√3.16.【解答】解:(1)证明:连接OD ,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(2)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=2.∴GH=√BB2+BB2=√2917.【解答】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=(√40)2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD 为等腰直角三角形,∴OB =√22BD =√22, ∴OA =√22, ∵∠AOB =2∠ADB =120°,∴∠AOE =60°,在Rt △OAC 中,AC =√3OA =√62, ∴阴影部分的面积=12•√22•√62−60⋅B ⋅(√22)2360=3√3−B 12.18.【解答】证明:连接OC ,∵OA =OC , ∴∠OAC =∠OCA ,∵∠CAD =∠CAB ,∴∠CAD =∠ACO ,∴OC ∥AD ,∵AD ⊥DC ,∴∠ADC =90°,∴∠OCD =90°,∴∠OCA +∠ACD =∠OCD =90°,∴CD 是⊙O 的切线.19.【解答】(1)证明:连接OC ,∵OC =OA ,∴∠BAC =∠OCA ,∵BB ̂=BB ̂,∴∠BAC =∠EAC ,∴∠EAC =∠OCA ,∴OC ∥AE ,∵DE 切⊙O 于点C ,∴OC ⊥DE ,∴AE ⊥DE ;(2)解:∵AB 是⊙O 的直径,∴△ABC 是直角三角形,∵∠CBA =60°,∴∠BAC =∠EAC =30°,∵△AEC 为直角三角形,AE =3,∴AC =2√3,连接OF ,∵OF =OA ,∠OAF =∠BAC +∠EAC =60°, ∴△OAF 为等边三角形,∴AF =OA =12AB ,在Rt △ACB 中,AC =2√3,∠CBA =60°,∴AB =BB BBB60°=√3√32=4, ∴AF =2.20.【解答】解:∵⊙O 中,OA ⊥BC , ∴BB̂=BB ̂, ∴∠ADC =12∠AOB =12×50°=25°. 21.【解答】解:(1)∵∠ACB =90°,∠A =28°, ∴∠B =62°,∵BD =BC ,∴∠BCD =∠BDC =59°,∴∠ACD =90°﹣∠BCD =31°;(2)⊙由勾股定理得,AB =√BB 2+BB 2=√B 2+B 2, ∴BB =√B 2+B 2−B ,解方程x 2+2ax ﹣b 2=0得,x =−2B ±√4B 2+4B 22=±√B 2+B 2−B , ∴线段AD 的长是方程x 2+2ax ﹣b 2=0的一个根; ⊙∵AD =AE ,∴AE =EC =B 2,由勾股定理得,a 2+b 2=(12B +B )2,整理得,BB =34. 22.【解答】证明:(1)连接OC ,∵AC 平分∠DAB∴∠DAC =∠CAO ,∵OA =OC ,∴∠OAC =∠OCA∴∠DAC =∠ACO∴AD ∥OC ,且AD ⊥PQ∴OC ⊥PQ ,且OC 为半径∴PQ 与⊙O 相切(2)∵OC ⊥PQ ,AD ⊥PQ ,BE ⊥PQ ∴OC ∥AD ∥BE∴BB BB =BB BB =1∴DC =CE∴点C 是DE 的中点.23.【解答】证明:(1)∵∠ACB =90, ∴∠ACD +∠BCD =90°,∵AC 为⊙O 的直径,∴∠ADC =∠BDC =90°,∴∠B +∠BDC =90°,∴∠B =∠ACD ,连接OD ,如图1,∵DE 为⊙O 的切线,∴∠ODE =∠ODC +∠CDE =90°, ∵∠CDE +∠BDE =90°,∵OC =OD ,∴∠ACD =∠ODC ,∴∠ODC =∠BDE =∠B ,∴DE =BE ,同理可得DE =CE ,∴CE =BE ,Rt △CDB 中,DE =12BC ;(2)如图2,由(1)知:BE =DE , ∵ED =FD , ∴BE =12EF ,∵BG 是△BDE 的中线,∴EG =DG =12DE ,∴BB BB=BB BB =12 ∵∠BEG =∠BEF ∴△BEG ∽△FEB ∴BB BB =BB BB =12∴BF =2BG .24.【解答】证明:过点O作OE⊥AB于点E,∵在⊙O中,OE⊥CD,∴CE=DE,∵OA=OB,OE⊥AB,∴AE=BE,∴AE﹣CE=BE﹣DE,∴AC=BD.25.【解答】(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=54⋅B⋅3180=910π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.26.【解答】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥CD,交CD于点E,交AB于点F,连接OC,OA,∵AB ∥CD ,∴OE ⊥AB ,∴E 、F 分别为CD 、AB 的中点,∴CE =DE =12CD =3cm ,AF =BF =12AB =4cm ,在Rt △AOF 中,OA =5cm ,AF =4cm ,根据勾股定理得:OF =3cm ,在Rt △COE 中,OC =5cm ,CE =3cm ,根据勾股定理得:OE ═4cm ,则EF =OE ﹣OF =4cm ﹣3cm =1cm ;当两条弦位于圆心O 两侧时,如图2所示,同理可得EF =4cm +3cm =7cm ,综上,弦AB 与CD 的距离为7cm 或1cm .27.【解答】解:连接OD .∵CD ⊥AB ,∴CE =DE =12CD =√3(垂径定理),故S △OCE =S △ODE ,∴S 阴=S 扇形OBD ,又∵∠CDB =30°,∴∠COB =60°(圆周角定理),∴OC =2, 故S 扇形OBD =60B ⋅22360=2B 3,即阴影部分的面积为2B 3. 28.【解答】(1)证明:∵AD 平分∠EAC ,∴∠EAD =∠CAD ,∵A ,D ,C ,B 四点共圆,∴∠EAD =∠DCB ,由圆周角定理得,∠CAD =∠CBD ,∴∠DCB =∠DBC ,∴DB =DC ;(2)解:由圆周角定理得,∠COB =2∠CAB =60°,∠CDB =∠CAB =30°, ∴△COB 为等边三角形,∴OC =BC =4,∵DC =DB ,∠CDB =30°,∴∠DCB =75°,∴∠DCO =15°,∴∠COD =150°,则劣弧BB ̂的长=150B ×4180=103π.29.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=12∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3√3cm,∴光盘的直径为6√3cm.30.【解答】证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.。
第二十四章 圆 单元测试卷(含答案)
第二十四章 圆一、选择题(每题3分,共30分)1.如图,点A ,B ,C 均在⊙O 上,∠BOC =100°,则∠BAC 的度数为( )A .70°B .60°C .50°D .40°(第1题) (第2题) (第3题) (第4题)2.【教材P 89习题T 3拓展】如图,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC的度数为( )A .65°B .75°C .50°D .55°3.【教材P 83练习T 1变式】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,AE =1,则弦CD 的长是( ) A.7 B .27 C .6 D .84.如图,四边形ABCD 内接于圆O ,∠BOD =108°,则∠BCD 的度数是( )A .127°B .108°C .126°D .125°5.【教材P 108习题T 1变式】如图,⊙O 是正六边形ABCDEF 的外接圆,P 是弧EF 上一点,则∠BPD 的度数是( )A .30°B .60°C .55°D .75°(第5题) (第6题) (第7题) (第9题) 6.如图,P A 、PB 切⊙O 于点A 、B ,直线FG 切⊙O 于点E ,交P A 于点F ,交PB 于点G ,若P A =8 c m ,则△PFG 的周长是( )A .8 cmB .12 cmC .16 cmD .20 cm7.如图,△ABC 内接于圆O ,∠ACB =90°,过点C 的切线交AB 的延长线于点P ,∠P =28°,则∠CAB =( )A.62°B.31°C.28°D.56°8.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面半径和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径为60 cm,则这块扇形铁皮的半径是() A.40 cm B.50 cm C.60 cm D.80 cm 10.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.9(第10题)(第12题)(第14题)(第15题) 二、填空题(每题3分,共24分)11.【教材P106例题改编】已知圆的半径是22,则该圆的内接正方形的面积是________.12.如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是________.13.【教材P101习题T1拓展】在矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD的长为半径的圆,那么点B在⊙P________,点C在⊙P________.(填“内”或“外”)14.【教材P124复习题T10改编】在底面直径为52 cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16 cm,那么油面宽度AB是________cm.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=________.16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD =6,则BC=________.(第16题)(第17题)(第18题)17.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB 于点D,连接CD,则图中阴影部分的面积为________(结果用含π的式子表示).18.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF的面积为3π,则菱形OABC的边长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在Rt△ABC中,∠BAC=90°.(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,P A长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.20.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于H.若OH=2,AB=12,BO=13.求:(1)⊙O的半径;(2)AC的长.21.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,AB =6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD .(1)求证:∠BAD =∠CBD ;(2)若∠AEB =125°,求BD ︵的长(结果保留π).22.如图,正方形ABCD 内接于⊙O ,M 为AD ︵的中点,连接BM ,CM .(1)求证:BM =CM ;(2)求∠BOM 的度数.23.某灯具厂生产一批台灯灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA =24 cm ,OC =12 cm ,∠AOB =135°.(计算结果保留π)(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),至少需要多长的花边?(2)求灯罩的侧面积(接缝处忽略不计).24.如图,AB 为⊙O 的直径,且AB =43,点C 是AB ︵上的一动点(不与A ,B重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求阴影部分的面积.25.如图,在平面直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.答案一、1.C 2.A 3.B 4.C 5.B 6.C7.B8.B9.A10.A点思路:由AB=5,BC=13,CA=12,易知△ABC为直角三角形,且∠A=90°.由AB,AC与⊙O分别相切于点F,E,得OF⊥AB,OE⊥AC.易知四边形OF AE为正方形.设OE=r,则AE=AF=r.由切线长定理得BD=BF =5-r,CD=CE=12-r.所以5-r+12-r=13,解得r=2.所以阴影部分(即四边形AEOF)的面积是2×2=4.二、11.1612.1313.内;外14.4815.125°16.617.π-1点技巧:利用割补法,将阴影部分的面积转化为△CDB与弓形AB的面积之和.18.3三、19.解:(1)如图所示.(2)BC与⊙P相切.证明如下:如图,过P点作PD⊥BC,垂足为D.∵CP为∠ACB的平分线,且P A⊥AC,PD⊥CB,∴PD=P A.∵P A为⊙P的半径,∴PD为⊙P的半径.∴BC与⊙P相切.20.解:(1)连接OA.∵AB是⊙O的切线,A为切点,∴OA⊥AB.在Rt△AOB中,AO=O B2-AB2=132-122=5, ∴⊙O的半径为5.(2)∵OH⊥AC,∴在Rt△AOH中,AH=A O2-OH2=52-22=21.∴AC=2AH=221.21.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵∠CBD =∠CAD ,∴∠BAD =∠CBD .(2)解:连接OD .∵∠AEB =125°,∴∠AEC =55°.∵AB 为⊙O 的直径,∴∠ACE =90°.∴∠CAE =35°.∴∠DAB =35°.则BD ︵所对圆心角∠DOB =70°.∴BD ︵的长为70π×3180=76π. 22.(1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∴AB ︵=CD ︵.∵M 为A D ︵的中点,∴AM ︵=DM ︵,∴BM ︵=CM ︵,∴BM =CM ;(2)解:连接OA 、OB 、OM ,如图.∵四边形ABCD 是正方形,∴∠AOB =90°.∵M 为AD ︵的中点,∴∠AOM =45°,∴∠BOM =∠AOB +∠AOM =135°.23.解:(1)优弧AB 的长为(360-135)π×24180=30π(cm), 优弧CD 的长为(360-135)π×12180=15π(cm), 至少需要花边的长度为30π+15π=45π(cm);(2)灯罩的侧面积=S 阴影=(360-135)π×242360-(360-135)π×122360=360π-90π=270π(cm2).24.(1)证明:连接OC,BC,OE.∵AB是⊙O的直径,∴∠ACB=90°.∴∠BCD=90°,∵在Rt△BCD中,点E是BD的中点,∴CE=BE.又∵OB=OC,OE=OE,∴△OBE≌△OCE.∴∠OBE=∠OCE.∵BD是⊙O的切线,∴∠OBE=∠OCE=90°.∴EC是⊙O的切线.(2)解:∵∠D=30°,∠OBD=90°,∴∠A=60°.∴∠BOC=120°.∴∠BOE=60°.∴∠OEB=30°.∵AB=43,∴OB=2 3.∴OE=4 3.∴BE=6.∴S阴影=2×12×6×23-120×π×(23)2360=123-4π.25.(1)解:∵∠AOB=90°,∴AB是⊙M的直径.∵A(6,0),B(0,-2),∴OA=6,OB= 2.∴AB=6+2=2 2.∴⊙M的半径为 2.(2)证明:∵∠COD=∠CBO,∠COD=∠ABD,∴∠ABD=∠CBO.∴BD平分∠ABO.(3)解:∵AB为⊙M的直径,∴过点A作直线l⊥AB,直线l与BD的延长线的交点即是所求的点E,此时直线AE必为⊙M的切线(如图).易求得OC=63,∠ECA=∠EAC=60°,∴△ECA为边长等于263的正三角形.设点E的坐标为(x,y),易得x =63+263×12=263, y =263×32=2,∴点E 的坐标为⎝ ⎛⎭⎪⎫263,2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年初中数学人教版九年级上册 第二十四章 圆 单
元测试卷
一,选择题
1.已知O 的半径为4cm ,点A 到圆心O 的距离为3 cm ,则点A 与O 的位置关系是( )
A.点A 在O 内
B.点A 在O 上
C.点A 在O 外
D.不能确定 2.在Rt ABC △中,90C ∠=°,8cm AC =,10cm AB =,以C 为圆心,以9cm 长为直径的C 与直线AB 的位置关系为( )
A.相交
B.相离
C.相切
D.相离或相交
3.如图,在O 内有折线OABC ,点,B C 在圆上,点A 在O 内,其中4cm OA =,10cm 60BC A B =∠=∠=︒,,则AB 的长为( )
A.5 cm
B.6 cm
C.7 cm
D.8 cm
4.已知点P 是线段OA 的中点,P 在半径为r 的
O 外,点A 与点O 的距离为8,则r 的取值范围是( )
A.4r >
B.8r >
C.4r <
D.8r <
5.如图,圆心在y 轴的负半轴上,半径为5的B 与y 轴的正半轴交于点(01)A ,,过点(07)P -,的直线l 与B 相交于,C D 两点,则弦CD 的长所有可能的整数值有( )
A.1个
B.2个
C.3个
D.4个
6.如图,AC 是O 的直径,弦BD AO ⊥于E ,连接BC ,过点O 作OF BC ⊥于F ,若8cm,2cm BD AE ==,则OF 的长度是( )
A.3cm
B.
C.2.5cm
D.
7.如图,若ABC △内接于半径为R 的
O ,且60A ∠=°,连接,OB OC ,则边BC 的长
为( )
8.如图,M 的半径为2,圆心M 的坐标为(3,4),点P 是M 上的任意一点,PA PB ⊥,且,PA PB 与x 轴分别交于,A B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )。