广东省--东莞市-2019-2020学年九年级数学人教版(上册)- 期末综合测试。文字版含 答案

合集下载

广东省东莞市2019-2020学年九年级(上)期末数学试卷 解析版

广东省东莞市2019-2020学年九年级(上)期末数学试卷  解析版

2019-2020学年九年级(上)期末数学试卷一.选择题(共10小题)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.3.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE 与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt △A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°6.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0 7.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等8.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°9.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5 cm B.10 cm C.15 cm D.20 cm10.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共7小题)11.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.12.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.13.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.14.如图,将△ABC绕点A逆时针旋转90°得到△ADE,点C和点E是对应点,若AB=1,则BD=.15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣(k>0)图象上的两个点,则y1与y2的大小关系为.16.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为.三.解答题(共8小题)18.解方程:(x+3)2=2x+6.19.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?20.如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.21.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.22.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.23.如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.24.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.25.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形的定义即可判断;【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.【分析】直接利用概率公式求解.【解答】解:从该盒子中任意摸出一个球,摸到黄球的概率==.故选:A.3.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)【分析】利用反比例函数图象上点的坐标特征进行判断.【解答】解:∵点(3,﹣4)在反比例函数y=的图象上,∴k=3×(﹣4)=﹣12,而3×4=﹣3×(﹣4)=2×6=12,﹣2×6=﹣12,∴点(﹣2,6)在该反比例函数图象上.故选:C.4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:16【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.5.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt △A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选:A.6.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.7.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等【分析】根据切线的性质、三角形的外心、圆的有关性质分别对每一项进行判断即可.【解答】解:A、经过不在同一直线上的三个点可以作圆,故本选项错误;B、经过切点且垂直于切线的直线必经过圆心,正确;C、同圆或等圆中,相等的圆心角所对的弧相等,正确;D、三角形的外心到三角形各顶点的距离相等,正确;故选:A.8.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选:B.9.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5 cm B.10 cm C.15 cm D.20 cm【分析】根据圆锥的侧面展开图是一个扇形和扇形面积计算公式,可以求得这个圆锥的底面半径,从而可以解答本题.【解答】解:设这个圆锥的底面半径为rcm,300π=,解得,r=10,故选:B.10.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【解答】解:分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确,故选:D.二.填空题(共7小题)11.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是(﹣2,3).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).12.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为 2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.13.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.14.如图,将△ABC绕点A逆时针旋转90°得到△ADE,点C和点E是对应点,若AB=1,则BD=.【分析】由旋转的性质可得AB=AD=1,∠DAB=90°,由勾股定理可求BD的长.【解答】解:∵将△ABC绕点A逆时针旋转90°得到△ADE,∴AB=AD=1,∠DAB=90°,∴BD==故答案为:15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣(k>0)图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据双曲线所在的象限,得出y随x的增大而增大,进而作差判断.【解答】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y2,故答案为:y1<y2.16.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为9 .【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得=()2,据此建立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为4π﹣8 .【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣=4π﹣8,故答案为:4π﹣8.三.解答题(共8小题)18.解方程:(x+3)2=2x+6.【分析】先变形得到(x+3)2﹣2(x+3)=0,然后利用因式分解法解方程.【解答】解:(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,x+3=0或x+3﹣2=0,所以x1=﹣3,x2=﹣1.19.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码相同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这两个小球的号码相同的有2种情况,∴这两个小球的号码相同的概率为:=.20.如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.【解答】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E 在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=1421.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【分析】(1)设11、12两月平均每月降价的百分率是x,那么4月份的房价为14000(1﹣x),12月份的房价为14000(1﹣x)2,然后根据12月份的11340元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出今年2月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.【解答】解:(1)设11、12两月平均每月降价的百分率是x,则11月份的成交价是:14000(1﹣x),12月份的成交价是:14000(1﹣x)2∴14000(1﹣x)2=11340,∴(1﹣x)2=0.81,∴x1=0.1=10%,x2=1.9(不合题意,舍去).答:11、12两月平均每月降价的百分率是10%;(2)会跌破10000元/m2.如果按此降价的百分率继续回落,估计今年2月份该市的商品房成交均价为:11340(1﹣x)2=11340×0.81=9185.4<10000.由此可知今年2月份该市的商品房成交均价会跌破10000元/m2.22.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.【分析】(1)欲证明PD∥BC,只要证明∠P=∠CBF即可.(2)由△ACE∽△CBE,可得=,求出EC,再根据垂径定理即可解决问题;【解答】(1)证明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)解:连接AC.∵AB是直径,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴=,∴=,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=24.23.如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)把A的坐标代入y=,求出反比例函数的解析式,把A的坐标代入y=x+b 求出一次函数的解析式;(2)求出D、B的坐标,利用S△AOB=S△AOD+S△BOD计算,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.【解答】解:(1)∵反比例函数y=的图象过点A(4,1),∴1=,即k=4,∴反比例函数的解析式为:y=.∵一次函数y=x+b(k≠0)的图象过点A(4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB=S△AOD+S△BOD=×3×4+×3×1=;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.24.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.25.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】方法一:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.方法二:(1)略.(2)找出A点的对称点点B,根据C,P,B三点共线求出BC与对称轴的交点P.(3)用参数表示的点M坐标,分类讨论三种情况,利用两点间距离公式就可求解.(4)先求出AC的直线方程,利用斜率垂直公式求出OO’斜率及其直线方程,并求出H 点坐标,进而求出O’坐标,求出DO’直线方程后再与AC的直线方程联立,求出Q点坐标.【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,1)(1,0).方法二:(1)∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).追加第(4)问:若抛物线顶点为D,点Q为直线AC上一动点,当△DOQ的周长最小时,求点Q的坐标.(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).。

2019-2020学年广东省深圳中学九年级(上)期中数学试卷含解析

2019-2020学年广东省深圳中学九年级(上)期中数学试卷含解析

2019-2020学年广东省深圳中学九年级(上)期中数学试卷一、选择题(本部分共12分,每小题3分,共36分)1.(3分)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2.(3分)下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.3.(3分)一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和34.(3分)一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.5.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.56.(3分)如图所示的工件的主视图是()A.B.C.D.7.(3分)如图,在矩形ABCD中,对角线AC、BD交于O,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECO的面积是()A.B.C.D.8.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+19.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(2,)B.(﹣2,﹣)C.(2,)或(﹣2,)D.(2,)或(﹣2,﹣)10.(3分)如图,小明晚上由路灯A下的点B处走到点C处,测得自身影子CD的长为1米,向前继续走3米,测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()米.A.8B.7.2C.6D.4.511.(3分)如图,A,B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=,则k2﹣k1=()A.4B.C.D.612.(3分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的编号组合是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每小题3分,共12分)13.(3分)已知x1,x2是一元二次方程5x(x﹣3)=1的解,则x1+x2的值为.14.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB上任意一点(不与点A、B重合).CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE中点,则四边形ODEF的周长为.16.(3分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为.三、解答题(本大题共7个小题)17.(6分)解方程:(x﹣3)(x﹣1)=15.18.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<1001019.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.(8分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?21.(8分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.22.(8分)如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明沿AB方向匀速前进的速度.23.(8分)如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A、B,四边形OAMB的面积为6.(1)求k的值;(2)点P在(1)的反比例函数y=(x>0)的图象上,若点P的横坐标为3,在x轴上有一点D(4,0),若在直线y=x上有动点C,构成△PDC,其面积为3,请写出C点的坐标;(3)若∠EPF=90°,其两边分别为与x轴正半轴,直线y=x交于点E、F,问是否存在点E,使PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.2019-2020学年广东省深圳中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本部分共12分,每小题3分,共36分)1.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.2.【解答】解:设小正方形的边长为1,那么已知三角形的三边长分别为,2,,所以三边之比为1:2:.A、三角形的三边分别为2,,3,三边之比为::3,故本选项错误;B、三角形的三边分别为2,4,2,三边之比为1:2:,故本选项正确;C、三角形的三边分别为2,3,,三边之比为2:3:,故本选项错误;D、三角形的三边分别为,,4,三边之比为::4,故本选项错误.故选:B.3.【解答】解:x=0或x﹣3=0,所以x1=0,x2=3.故选:C.4.【解答】解:因为一共有6个球,红球有2个,所以从布袋里任意摸出1个球,摸到红球的概率为:=.故选:D.5.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.6.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.7.【解答】解:如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.∴△ABE≌△CDF,(AAS),∴AE=CF.∴CF=AE=AD=1,∴BE=AE=,AB=2BE=,∵BD=2AB=,∴OE=,∴S△ECO=OE•CF=××1=,故选:B.8.【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当P′Q⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sin B=2×=.故选:B.9.【解答】解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,∴矩形OA′B′C′与矩形OABC的位似比为:1:3,∵点B的坐标为:(6,4),∴点B′的坐标是:(2,)或(﹣2,﹣).故选:D.10.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△F AB,∴=,即=②,∴=,解得:BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选:C.11.【解答】解:解法一:设A(m,),B(n,)则C(m,),D(n,),由题意:解得k2﹣k1=4.解法二:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=|k1|=﹣k1,S△COE=S△DOF=k2,∵S△AOC=S△AOE+S△COE,∴AC•OE=×2OE=OE=(k2﹣k1)…①,∵S△BOD=S△DOF+S△BOF,∴BD•OF=×3(EF﹣OE)=×3(﹣OE)=5﹣OE=(k2﹣k1)…②,由①②两式解得OE=2,则k2﹣k1=4.故选:A.12.【解答】解:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.故①正确;∴DG=GE=DF=EF.∴四边形EFDG为菱形,故②正确;如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DF A,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.故③正确;如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△F AD.∴=,即=,∴GH=,∴BE=AD﹣GH=4﹣=.故④正确.故选:D.二、填空题(每小题3分,共12分)13.【解答】解:原方程可整理得:5x2﹣15x﹣1=0.∵x1,x2是一元二次方程5x(x﹣3)=1的解,∴x1+x2=﹣=3.故答案为:3.14.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DEA﹣∠AEB=60°﹣15°=45°.故答案为:45°.15.【解答】解:设直线AB的解析式为y=kx+b,将点A(4,0)、点B(0,2)代入y=kx+b中,得:,解得:.∴直线AB的解析式为y=﹣x+2.设点C的坐标为(m,﹣m+2)(0<m<4),则点E的坐标为(m,﹣m+4),∴OD=EF=m,CD=2﹣m,DE=4﹣m,∵ED⊥OA,EF⊥y轴,BO⊥OA,∴∠O=∠F=∠ODE=90°,∴四边形ODEF为矩形.∴C矩形ODEF=2×(OD+DE)=2×(m+4﹣m)=8.故答案为:8.16.【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵∠ACB=90°,∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,∴四边形ACFM是矩形,∴AM=CF,AC=MF=3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=6,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.三、解答题(本大题共7个小题)17.【解答】解:(x﹣3)(x﹣1)=15,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,∴x﹣6=0或x+2=0,∴x1=6,x2=﹣2.18.【解答】解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为:12,3;②(2)×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.19.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.20.【解答】解:设每件商品的售价定为a元,则(a﹣18)(320﹣10a)=400,整理得a2﹣50a+616=0,∴a1=22,a2=28∵18(1+25%)=22.5,而28>22.5∴a=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.21.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)如图,∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.22.【解答】解:(1)如图所示:FM即为所求;(2)设速度为x米/秒,根据题意得CG∥AH,∴△COG∽△OAH,∴=,即:==,又∵CG∥AH,∴△EOG∽△OMH,即:=,∴解得:x=答:小明沿AB方向匀速前进的速度为米/秒.23.【解答】解:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6;(2)如图1﹣1中,延长DP交OC于点E,作DH⊥OC于H,作PJ⊥OC于J,∵D(4,0),P(3,2),∴直线PD的解析式为y=﹣2x+8,由,解得.∴E(,),在Rt△ODH中,∵∠DOH=45°,OD=4,∴DH=2,同法可得PJ=∵•EC•DH﹣•EC•PJ=3,∴EC=2,∴满足条件的点C坐标为(,)或(,).(3)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0),故答案为(4,0)和(6,0).。

2019-2020学年广东省实验学校九年级数学上册期中考试试卷(含解析)

2019-2020学年广东省实验学校九年级数学上册期中考试试卷(含解析)
(3)指出抛物线的顶点坐标和对称轴.
20.已知△ABC的一条边BC的长为5,另两边AB,AC的长分别为关于x的一元二次方程 的两个实数根。
(1)无论k为何值,方程总有两个不相等的实数根;
(2)当k=2时,请判断△ABC的形状并说明理由;
(3)k为何值时,△ABC是等腰三角形,并求△ABC的周长。
21.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2016年交易额为500亿元,2018年交易额为720亿元。
∴△OAP≌△OBP′,
∴P′B=PA=3,BO=OA=2,
∴P′(3,-2),
故答案为:D.
3.解:当a=5时,原方程变形为-4x-1=0,解得x=- ;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故答案为:A.
①方程 是倍根方程;②若 是倍根方程,则 ;③若点 在反比例函数 的图像上,则关于 的方程 是倍根方程;④若方程 是倍根方程,且相异两点 , 都在抛物线 上,则方程 的一个根为 .
16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为________分米.
25.两条抛物线 与 的顶点相同.
(1)求抛物线 的解析式;
(2)点 是抛物找 在第四象限内图象上的一动点,过点 作 轴, 为垂足,求 的最大值;

2020年广东省中考模拟试卷·2019-2020学年度第二学期佛山市大沥镇初中教学质量检测九年级数学试题(含答案)

2020年广东省中考模拟试卷·2019-2020学年度第二学期佛山市大沥镇初中教学质量检测九年级数学试题(含答案)

2019-2020学年度第二学期大沥镇初中教学质量检测九 年 级 数 学 试 题命题学校:石门实验学校 命题人:农成遐 审核人:李富泉 把关人:大沥镇教育局左世良一.选择题(共10小题,每小题3分,共30分) 1.﹣2020的相反数是( ) A .B .C .2020D .﹣20202.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1063.如图,下列结论正确的是( )A .c >a >bB .C .|a |<|b |D .abc >04.如表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是( ) A .13,11 B .13,13 C .13,14 D .14,13.5 5.在Rt △ABC ,∠C =90°,sin B =,则sin A 的值是( ) A . B . C . D . 6.下列运算中,计算正确的是( ) A .2a +3a =5a 2 B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 27.下列命题中,假命题的是()A .分别有一个角是110的两个等腰三角形相似B .若5x =8y (xy ≠0),则58y xC .如果两个三角形相似,则他们的面积比等于相似比D .有一个角相等的两个菱形相似 8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .=B .=C .=D .=9.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB //x 轴,交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( )A. 2B. 3C. 4D. 510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b =0;③若m ≠1,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2. 其中正确的有( )A .2个B .3个C .4个. D.5个二.填空题(共7小题,每小题4分,共28分) 11.因式分解:x 2﹣9= .12.在平面直角坐标系中点P (﹣2,3)关于x 轴的对称点在第 象限. 13.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 .14.已知反比例函数y =(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .16.如下左图,DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,则线段BF 长为 cm .17. 如上右图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为 .三.解答题(一)(第18~20题,每题6分,共18分)18.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.先化简,再求值(﹣)÷,其中a,b满足a+b ﹣=0.20.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.四.解答题(二)(第21~23题,每题8分,共24分)21.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.22.2020年4月23日是第二十五个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并将获奖人数绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?五.解答题(三)(第24~25题,每题10分,共20分)24.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB 交于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG 与的位置关系,并说明理由;(2)求证:2OB2=BC·BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2时,求DE的长.25.如图,直线23y x c=-+与x轴交于点A(3,0),与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m 的值.2019-2020学年度第二学期大沥镇初中教学质量检测九年级数学答案及评分标准一.选择题(共10小题,每小题3分,满分30分)1.C .2.C.3.B4.B5.B6.B7.C8.A9.D10.B二.填空题(共7小题,每小题4分,满分28分)11.(x +3)(x ﹣3).12.第三象限.13.414.k <1.15.8.16.10.17.16三.解答题(一)(第18~20题,每题6分,共18分)18.解:原式=2×﹣1+﹣1+2.............4分=1+.......................6分19.解:原式=•.............3分=, (4)分由a +b ﹣=0,得到a +b =,则原式=2...........6分20.解:(1)如图所示:CO 与⊙O 为所求....................4分(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB =OD ,即d =r ,∴⊙O 与直线AC 相切.......................6分四.解答题(二)(第21~23题,每题8分,共24分)21.解:(1)∵E 是AC 的中点,∴AE =CE ,∵AB ∥CD ,∴∠AFE =∠CDE ,................1分在△AEF 和△CED 中,.6分∵,∴△AEF ≌△CED (AAS ),∴AF =CD ,........3分又AB ∥CD ,即AF ∥CD ,∴四边形AFCD 是平行四边形;........4分(2)∵AB ∥CD ,∴△GBF ∽△GCD ,...............5分∴=,即=,解得:CD =,...............6分∵四边形AFCD 是平行四边形,∴AF =CD =,...................7分.∴AB=AF+BF=+=6................8分22.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人)..................2分.补全条形图如下:............3分.(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;...............4分(3)树状图如图所示,∵从四人中随机抽到甲和乙两人共有12种可能性结果,每种结果的可能性相同,恰好是甲和乙的结果有两种,分别是(甲,乙),(乙,甲)..............7分∴抽取两人恰好是甲和乙的概率是=........................................................8分23.解:(1)设y与x之间的函数关系式为y=kx+b,..........................1分.将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y=﹣2x+80.......................................................................3分当x=29.6,y=25.2和x=28,y=26也满足上述关系式∴y与x之间的函数关系式为y=﹣2x+80.................................4分当x=23.5时,y=﹣2x+80=33...答:当天该水果的销售量为33千克................................5分(2)根据题意得:(x﹣20)(﹣2x+80)=150,...............................6分解得:x1=35,x2=25.∵20≤x≤32,∴x=25...............................7分答:如果某天销售这种水果获利150元,那么该天水果的售价为25元................................8分五.解答题(三)(第24~25题,每题10分,共20分)24.解:(1)CG与⊙O相切,理由如下:..........1分如图1,连接OC,∵AB是⊙O的直径,∠ACB=∠ACF=90°点G是EF的中点,∴GF=GC=GE∴∠AEO=∠GEC=∠GCE.............................2分∵OF⊥AB ∴∠OAC+∠AEO=90°∴∠OCA+∠GCE=90°∴OC⊥CG∵OC 是⊙O 的半径∴CG 是⊙O 相切...............................3分(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC ∴∠OAE=∠F 又∵∠B=∠B,∴△ABC∽△FBO .............................4分∴BC:BO=AB:BF 即OB·AB=BC·BF ..............................5分∵AB=2OB∴2OB 2=BC·BF ..................6分(3)由(1)知GC=GE=GF ∴∠F=∠GCF∴∠EGC=2∠F...........................7分∵∠DCE=2∠F ∴∠EGC=∠DCE ∵∠DEC=∠CEG ∴△ECD∽△EGC ...............................8分∴EC:EG=ED:EC ∵EC=3,DG=2∴3:(DE+2)=DE:3整理,得:DE 2+2DE-9=0....................................................9分010 1.............10DE DE >∴=- 分2(3,0)3y x c x A =-+25.(1)与轴交于∴0=-2+c,解得:c=2∴B(0,2)..............................1分24+,3y x bx c A B =-+ 抛物线经过(3,0)(0,2)两点-12+3010,223b c b c c +=⎧∴∴==⎨=⎩24102 (333)y x x ∴=-++抛物线的解析式为:分()()22123y x =-+由可知直线AB的解析式为,∵M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2410333P ∴2(m,-m+2),N(m,-m +m+2)222410242,3,2(2)4 (433333)PM m AM m PN m m m m m ∴=-+=-=-++--+=-+分24103332M(m,0),(m,-m+2),N(m,-m +m+2)∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°当∠BNP=90°时,BN⊥MN,N 点的纵坐标为241033∴2-m +m+2=2解得:m=0或m=2.5M(2.5,0).....................................................................5分当∠NBP=90°时,过点N 作NC⊥y 轴于点C,241090, ,33NBC BNC NC m BC m m∠+∠=︒==-+则∵∠NBP=90°,∴∠NBC+∠ABO=90°∴∠ABO=∠BNC ∴Rt△NCB∽Rt△BOA∴NC:OB=BC:OA2410:2():333110811(,0) (68)m m m m m M ∴=-+==∴解得:或分综上可知当以B ,P ,N 为顶点的三角形与△AMP 相似时,点M 的坐标为或;②M ,P ,N 三点为“共谐点”,有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2241012,3()3332P MN m m m m ++==当为线段的中点时,则有2(-m+2)=-解得:三点重合,舍去或224102)0,3()1333M PN m m m ++===-当为线段的中点时,则有-m+2+(-解得:舍去或2241012),3()3334N PM m m m ++==-当为线段的中点时,则有-m+2=2(-解得:舍去或11“” (1024)M P N m 综上可知当,,三点成为共谐点时的值为或-1或-.分。

专题01 一元二次方程(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优训练

专题01 一元二次方程(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优训练

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题01 一元二次方程【典型例题】1.(2020·青浦区实验中学期中)下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1)B .21x +1x-2=0 C .ax 2+bx +c =0 D .x 2+2x =x 2-1 【答案】A2.(2020·山东泗水初三期中)若()11620m m x mx +++-=是关于x 的一元二次方程,则m =________.【答案】1【专题训练】一、选择题1.(2020·湖南湘潭初三期末)已知关于x 的一元二次方程2240x ax -+=的一个根是2,则a 的值为( )A .-1B .1C .-2D .2 【答案】D2.(2020·山东东平期末)下列方程中一定是一元二次方程的是( )A .22731x y -=+B .25620x y --= C .22x x x x -=+ D .()2320ax b x c +-++=【答案】C3.(2020·安徽安庆期末)若x =2是关于x 的一元二次方程x 2-mx +8=0的一个解.则m 的值是( )A .6B .5C .2D .-6【答案】A4.(2019·四川雁江初三期末)如果关于x 的方程27(3)30m m x x ---+=是一元二次方程,那么m 的值为:( ) A .3± B .3 C .-3 D .都不是【答案】C5.(2020·安徽蚌埠期末)一元二次方程4x 2﹣1=5x 的二次项系数、一次项系数、常数项分别为( ) A .4,﹣1,5 B .4,﹣5,﹣1 C .4,5,﹣1 D .4,﹣1,﹣5【答案】B6.(2020·四川米易初三期末)已知a 是方程22430x x --=的一个根,则代数式224a a -的值等于( )A .3B .2C .0D .1 【答案】A7.(2020·安徽铜陵初三期末)已知关于 x 的方程20x ax b ++=有一个根是(0)b b ≠,则a b +的值是( ) A .-1 B .0 C .12 D .1 【答案】A8.(2020·全国初三课时练习)已知m 是方程23220x x --=的值( )A .2BC D【答案】C9.(2019·贵州印江初三期末)将一元二次方程22(1)1(1)2x x x +-=+-写成一般形式_____.【答案】2330x x ++=10.(2020·湖南雨花期末)已知方程ax 2+bx +c =0的一个根是﹣1,则a ﹣b +c =_____.【答案】011.(2020·银川市第十五中学初三一模)关于x 的一元二次方程(m -1)x 2+6x +m 2-m =0的一个根x =0,则m 的值是_____.【答案】012.(2020·贵州印江初三期末)若关于x 的方程||(m 2)m 20m x x --+=为一元二次方程,则m =__________.【答案】-213.(2020·全国初三课时练习)下列方程中,①7x 2+6=3x ;②212x =7;③x 2﹣x =0;④2x 2﹣5y =0;⑤﹣x 2=0中是一元二次方程的有_____. 【答案】①③⑤.14.(2020·全国初三课时练习)把一元二次方程(x ﹣2)2﹣x =7x +6化为一般形式是_____,二次项系数是_____,一次项是_____,常数项是_____.【答案】x 2﹣12x ﹣2=0 1 ﹣12x ﹣215.(2020·河北初三二模)若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.【答案】202316.(2020·南宁市新民中学初三期中)若关于x 的一元二次方程22(1)410a x x a --+-=的一根是0,则a =___________. 【答案】-117.(2019·全国初二单元测试)把关于x 的方程()()()23x x x -=化成一元二次方程的一般形式,并写出方程中各项与各项的系数. 【答案】解:原方程整理得226918x x x -+=-∴22690x x∴各项与各项的系数分别为:二次项22x ,二次项系数2;一次项-6x ,一次项系数-6;常数项-9.18.(2020·安徽天长龙集九年制学校期中)关于x 的方程27(3)5m m x x ---=是一元二次方程,求m 的值.【答案】解:关于x 的方程27(3)5m m x x ---=是一元二次方程,依题意有,27230m m ⎧-=⎨-≠⎩∴m =-3∴当m =-3时方程27(3)5m m x x ---=是一元二次方程.19.(2018·陕西洛南)如果关于x 的方程(m ﹣3)x |m ﹣1|﹣x +3=0是一元二次方程,求m 的值.【答案】由题意,得|m ﹣1|=2且m ﹣3≠0.解得m =﹣3.即m 的值是﹣3.20.(2020·全国初三课时练习)已知m 是方程x 2-x -2=0的一个实数根,求代数式()221m m m m ⎛⎫--+ ⎪⎝⎭的值. 【答案】解:∵m 是方程x 2-x -2=0的根,∴m 2-m -2=0,即m 2-m =2,m 2-2=m .∴()()222221121224m m m m m m m m m m ⎛⎫-⎛⎫⎛⎫--+=-+=+=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.21.(2020·全国初三课时练习)若m 是一元二次方程||120a x x ---=的一个实数根. (1)求a 的值;(2)不解方程,求代数式()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭的值. 【答案】(1)由于||120a x x ---=是关于x 的一元二次方程, 所以||12a -=,解得3a =±;(2)由(1)知,该方程为220x x --=, 把x =m 代入,得220m m --=,所以22m m -=,①由220m m --=,得210m m --=, 所以21m m-=,② 把①和②代入()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭, 得()2212(11)4m m m m ⎛⎫-⋅-+=⨯+= ⎪⎝⎭, 即()2214m m m m ⎛⎫-⋅-+= ⎪⎝⎭.。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

2019-2020学年人教版高中数学选修4-5教材用书:第一讲不等式和绝对值不等式二绝对值不等式2.绝对值不

2019-2020学年人教版高中数学选修4-5教材用书:第一讲不等式和绝对值不等式二绝对值不等式2.绝对值不

2.绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不等式求解.|ax+b|≤c(c>0)型不等式的解法:先化为-c≤ax+b≤c,再由不等式的性质求出原不等式的解集.不等式|ax+b|≥c(c>0)的解法:先化为ax+b≥c或ax+b≤-c,再进一步利用不等式性质求出原不等式的解集.2.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.|ax+b|≤c与|ax+b|≥c(c>0)型的不等式的解法解下列不等式:(1)|5x-2|≥8;(2)2≤|x-2|≤4.利用|x|>a及|x|<a(a>0)型不等式的解法求解.(1)|5x-2|≥8?5x-2≥8或5x-2≤-8?x≥2或x≤-6 5,∴原不等式的解集为x x≥2或x≤-65.(2)原不等式价于|x-2|≥2,①|x-2|≤4.②由①得x-2≤-2,或x-2≥2,∴x≤0或x≥4.由②得-4≤x-2≤4,∴-2≤x≤6.∴原不等式的解集为{x|-2≤x≤0或4≤x≤6}.|ax+b|≥c和|ax+b|≤c型不等式的解法:①当c>0时,|ax+b|≥c?ax+b≥c或ax+b≤-c,|ax+b|≤c?-c≤ax+b≤c.②当c=0时,|ax+b|≥c的解集为R,|ax+b|<c的解集为?.③当c<0时,|ax+b|≥c的解集为R,|ax+b|≤c的解集为?.1.解下列不等式:(1)|3-2x|<9;(2)|x-x2-2|>x2-3x-4;(3)|x2-3x-4|>x+1. 解:(1)∵|3-2x|<9,∴|2x-3|<9.∴-9<2x-3<9.即-6<2x<12.∴-3<x<6.∴原不等式的解集为{x|-3<x<6}.(2)∵|x-x2-2|=|x2-x+2|,而x2-x+2=x-122+74>0,∴|x-x2-2|=|x2-x+2|=x2-x+2.故原不等式等价于x2-x+2>x2-3x-4?x>-3.∴原不等式的解集为{x|x>-3}.(3)不等式可转化为x2-3x-4>x+1或x2-3x-4<-x-1,∴x2-4x-5>0或x2-2x-3<0.解得x>5或x<-1或-1<x<3,∴不等式的解集是(5,+∞)∪(-∞,-1)∪(-1,3).2.已知常数a满足-1<a<1,解关于x的不等式:ax+|x+1|≤1. 解:若x≥-1,则ax+x+1≤1,即(a+1)x≤0.因为-1<a<1,所以x≤0.又x≥-1,所以-1≤x≤0.若x<-1,则ax-x-1≤1,即(a-1)x≤2.因为-1<a<1,所以x≥2a-1.因为-1<a<1,所以2a-1-(-1)=a+1a-1<0.所以2a-1≤x<-1.综上所述,2a-1≤x≤0.故不等式的解集为2a-1,0.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法解不等式|x-3|-|x+1|<1.解该不等式,可采用三种方法:(1)利用绝对值的几何意义;(2)利用各绝对值的零点分段讨论;(3)构造函数,利用函数图象分析求解.法一:在数轴上-1,3,x对应的点分别为A,C,P,而B点对应的实数为12,B点到C点的距离与到A点的距离之差为 1.由绝对值的几何意义知,当点P在射线Bx上(不含B点)时不等式成立,故不等式的解集为x x>12.法二:原不等式?①x<-1,--++或②-1≤x<3,---+或③x≥3,--+①的解集为?,②的解集为x 12<x<3,③的解集为{x|x≥3}.综上所述,原不等式的解集为x x>12.法三:将原不等式转化为|x-3|-|x+1|-1<0,构造函数y=|x-3|-|x+1|-1,即y=3,-2x+1,-5,x≤-1,-1<x<3,x≥3.作出函数的图象(如下图所示),它是分段函数,函数与x轴的交点是12,0,由图象可知,当x>12时,有y<0,即|x-3|-|x+1|-1<0,所以原不等式的解集是x x>12.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.3.解不等式|2x-1|+|3x+2|≥8.解:①当x≤-23时,|2x-1|+|3x+2|≥8?1-2x-(3x+2)≥8?-5x≥9?x≤-95,∴x≤-95;②当-23<x<12时,|2x-1|+|3x+2|≥8?1-2x+3x+2≥8?x+3≥8?x≥5,∴x∈?;③当x≥12时,|2x-1|+|3x+2|≥8?5x+1≥8?5x≥7?x≥75,∴x≥75.∴原不等式的解集为-∞,-95∪75,+∞.4.设函数f(x)=x+1a+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解:(1)证明:由a>0,得f(x)=x+1a+|x-a|≥x+1a--=1a+a≥2,所以f(x)≥2.(2)f(3)=3+1a+|3-a|.当a>3时,f(3)=a+1a,由f(3)<5,得3<a<5+212.当0<a≤3时,f(3)=6-a+1a,由f(3)<5,得1+52<a≤3.综上所述,a的取值范围是1+52,5+212.含绝对值不等式的恒成立问题已知不等式|x+2|-|x+3|>m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为?,分别求出m的取值范围.解答本题可以先根据绝对值|x-a|的意义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和最小值,再分别写出三种情况下m的取值范围.法一:因|x+2|-|x+3|的几何意义为数轴上任意一点P(x)与两定点A(-2),B(-3)距离的差.即|x+2|-|x+3|=|PA|-|PB|.又(|PA|-|PB|)max=1,(|PA|-|PB|)min=-1.即-1≤|x+2|-|x+3|≤1.(1)若不等式有解,m只要比|x+2|-|x+3|的最大值小即可,即m<1,m的取值范围为(-∞,1);(2)若不等式的解集为R,即不等式恒成立,m只要比|x+2|-|x+3|的最小值还小,即m<-1,m的取值范围为(-∞,-1);(3)若不等式的解集为?,m只要不小于|x+2|-|x+3|的最大值即可,即m≥1,m的取值范围为.6.把本例中的“-”改成“+”,即|x+2|+|x+3|>m时,分别求出m的取值范围.解:|x+2|+|x+3|≥|(x+2)-(x+3)|=1,即|x+2|+|x+3|≥1.(1)若不等式有解,m为任何实数均可,即m∈R;(2)若不等式解集为R,即m∈(-∞,1);(3)若不等式解集为?,这样的m不存在,即m∈?.课时跟踪检测(五)1.不等式|x+1|>3的解集是( )A.{x|x<-4或x>2} B.{x|-4<x<2}C.{x|x<-4或x≥2} D.{x|-4≤x<2}解析:选 A |x+1|>3,则x+1>3或x+1<-3,因此x<-4或x>2.2.满足不等式|x+1|+|x+2|<5的所有实数解的集合是( )A.(-3,2) B.(-1,3) C.(-4,1) D.-32,72解析:选C |x+1|+|x+2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x+1|+|x+2|<5解集是(-4,1).3.不等式1≤|2x-1|<2的解集为( )A.-12,0∪1,32B.-12,0∪1,32C.-12,0∪1,32D.-12,0∪1,32解析:选 D 由1≤|2x-1|<2,得1≤2x-1<2或-2<2x-1≤-1,因此-12<x≤0或1≤x<32.4.若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m的取值范围是( )A.(-∞,-4)∪(2,+∞) B.(-∞,-4)∪(1,+∞)C.(-4,2) D.解析:选 A 由题意知,不等式|x-1|+|x+m|>3恒成立,即函数f(x)=|x-1|+|x+m|的最小值大于3,根据绝对值不等式的性质可得|x-1|+|x+m|≥|(x-1)-(x+m)|=|m+1|,故只要满足|m+1|>3即可,所以m+1>3或m+1<-3,解得m>2或m<-4,故实数m的取值范围是(-∞,-4)∪(2,+∞).5.不等式|x+2|≥|x|的解集是________.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x+2)2≥x2,∴x2+4x+4≥x2,即x≥-1,∴原不等式的解集为{x|x≥-1}.答案:{x|x≥-1}6.不等式|2x-1|-x<1的解集是__________.解析:原不等式等价于|2x-1|<x+1?-x-1<2x-1<x+1?3x>0,x<2?0<x<2.答案:{x|0<x<2}7.已知函数f(x)=|x+1|+|x-2|-|a2-2a|,若函数f(x)的图象恒在x轴上方,则实数a的取值范围为________.解析:因为|x+1|+|x-2|≥|x+1-(x-2)|=3,所以f(x)的最小值为3-|a2-2a|.由题意,得|a2-2a|<3,解得-1<a<3.答案:(-1,3)8.解不等式:|x2-2x+3|<|3x-1|.解:原不等式?(x2-2x+3)2<(3x-1)2?<0?(x2+x+2)(x2-5x+4)<0?x2-5x+4<0(因为x2+x+2恒大于0)?1<x<4.所以原不等式的解集是{x|1<x<4}.9.解关于x的不等式|2x-1|<2m-1(m∈R).解:若2m-1<0,即m≤12,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>12,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤12时,原不等式的解集为?;当m>12时,原不等式的解集为{x|1-m<x<m}.10.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈-a2,12时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈-a2,12时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈-a2,12都成立.故-a2≥a-2,即a≤43.从而a的取值范围是-1,43.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(湖南高考)若实数a,b满足1a+2b=ab,则ab的最小值为( )A. 2 B.2C.2 2 D.4解析:选 C 由1a+2b=ab,知a>0,b>0,所以ab=1a+2b≥22ab,即ab≥22,当且仅当1a=2b,1a+2b=ab,即a=42,b=242时取“=”,所以ab的最小值为2 2.2.(重庆高考)设a,b>0,a+b=5,则a+1+b+3的最大值为________.解析:令t=a+1+b+3,则t2=a+1+b+3+2++=9+2++≤9+a+1+b+3=13+a+b=13+5=18,当且仅当a+1=b+3时取等号,此时a=72,b=32.∴t max=18=3 2.答案:3 23.(重庆高考)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________. 解析:由于f(x)=|x+1|+2|x-a|,当a>-1时,f(x)=-3x+2a--,-x+2a+-,3x-2a+作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)=5,即a+1=5,∴a=4.同理,当a≤-1时,-a-1=5,∴a=-6.答案:-6或44.(全国乙卷)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f(x)=错误! 故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5.故f(x)>1的解集为{x|1<x<3},f(x)<-1的解集为x x<13或x>5.所以|f(x)|>1的解集为x x<13或1<x<3或x>5.5.(江苏高考)设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.证明:因为|x-1|<a3,|y-2|<a3,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×a3+a3=a.6.(全国丙卷)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,即x-a2+12-x≥3-a2.又x-a2+12-x min=12-a2,所以12-a2≥3-a2,解得a≥2.所以a的取值范围是“a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>b且c>d.A基本不等式的应用利用基本不等式求最值问题一般有两种类型:①和为定值时,积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.已知x,y,z∈R+,x-2y+3z=0,则y2xz的最小值为________.由x-2y+3z=0,得y=x+3z2,则y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z时,等号成立.3设a,b,c为正实数,求证:1a3+1b3+1c3+abc≥2 3.因为a,b,c为正实数,由平均不等式可得1a3+1b3+1c3≥331a3·1b3·1c3.即1a3+1b3+1c3≥3abc,当且仅当a=b=c时,等号成立.所以1a3+1b3+1c3+abc≥3abc+abc,而3abc+abc≥23abc·abc=2 3.所以1a3+1b3+1c3+abc≥23,当且仅当abc=3时,等号成立.含绝对值的不等式的解法1.公式法|f(x)|>g(x)?f(x)>g(x)或f(x)<-g(x);|f(x)|<g(x)?-g(x)<f(x)<g(x).2.平方法|f(x)|>|g(x)|?2>2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.解下列关于x的不等式:(1)|x+1|>|x-3|;(2)|x-2|-|2x+5|>2x.(1)法一:|x+1|>|x-3|,两边平方得(x+1)2>(x-3)2,∴8x>8.∴x>1.∴原不等式的解集为{x|x>1}.法二:分段讨论:当x≤-1时,有-x-1>-x+3,此时x∈?;当-1<x≤3时,有x+1>-x+3,即x>1,此时1<x≤3;当x>3时,有x+1>x-3成立,∴x>3.∴原不等式的解集为{x|x>1}.(2)分段讨论:①当x<-52时,原不等式变形为2-x+2x+5>2x,解得x<7,∴原不等式的解集为x x<-52.②当-52≤x≤2时,原不等式变形为2-x-2x-5>2x,解得x<-35.∴原不等式的解集为x-52≤x<-35.③当x>2时,原不等式变形为x-2-2x-5>2x,解得x<-73,∴原不等式无解.综上可得,原不等式的解集为x x<-35.不等式的恒成立问题对于不等式恒成立求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f(x)≤a?f(x)max≤a,f(x)≥a?f(x)min≥a”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简便的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.设有关于x的不等式lg(|x+3|+|x-7|)>a.(1)当a=1时,解此不等式.(2)当a为何值时,此不等式的解集是R?(1)当a=1时,lg(|x+3|+|x-7|)>1,?|x+3|+|x-7|>10,?x≥7,2x-4>10或-3<x<7,10>10或x≤-3,4-2x>10,?x>7或x<-3.∴不等式的解集为{x|x<-3或x>7}.(2)设f(x)=|x+3|+|x-7|,则有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x-7)≤0,即-3≤x≤7时,f(x)取得最小值10.∴lg(|x+3|+|x-7|)≥1.要使lg(|x+3|+|x-7|)>a的解集为R,只要a<1.。

2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)

2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)

第二十一章达标测试卷一、选择题(每题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+2=x(x+1) B.x2+1x=3C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.如果2是方程x2-3x+k=0的一个根,那么常数k的值为()A.1 B.2 C.-1 D.-23.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x-2)2=3 C.(x-2)2=5 D.(x+2)2=54.方程x2-42x+9=0的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.无实根D.以上三种情况都有可能5.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为() A.12 B.12或9 C.9 D.76.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行(或列),则列方程得() A.(8-x)(10-x)=8×10-40 B.(8-x)(10-x)=8×10+40C.(8+x)(10+x)=8×10-40 D.(8+x)(10+x)=8×10+40(第7题) 7.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x -3=0的根,则▱ABCD的周长为()A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 28.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()9.在直角坐标系xOy中,已知点P(m,n),m,n满足(m2+1+n2)(m2+3+n2)=8,则OP的长为()A. 5 B.1 C.5 D.5或110.如图,某小区规划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪,若使每块草坪(阴影部分)的面积都为144 m2,则路的宽为()(第10题) A.3 m B.4 mC.2 m D.5 m二、填空题(每题3分,共30分)11.方程(x-3)2+5=6x化成一般形式是__________________,其中一次项系数是________.12.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2 019的值为________.14.若关于x的一元二次方程2x2-5x+k=0无实数根,则k的最小整数值为________.15.已知x1,x2是关于x的一元二次方程x2-5x+a=0的两个实数根,且x21-x22=10,则a=________.16.对于任意实数a,b,定义f(a,b)=a2+5a-b,如f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是________.17.下面是某同学在一次测试中解答的填空题:①若x2=a2,则x=a;②方程2x(x-2)=x-2的解为x=12;③已知x1,x2是方程2x2+3x-4=0的两根,则x1+x2=32,x1x2=-2.其中错误的答案序号是__________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是______三角形.19.若x2-3x+1=0,则x2x4+x2+1的值为________.20.如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15 m,一面利用墙,其余三面用篱笆围,篱笆长为24 m.当围成的花圃面积为40 m2时,平行于墙的边BC的长为________m.(第20题) 三、解答题(21、26题每题12分,22、23题每题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)x(x-4)+5(x-4)=0;(2)(2x+1)2+4(2x+1)+4=0;(3)x2-2x-2=0; (4)(y+1)(y-1)=2y-1.22.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为倒数?请说明理由.23.已知关于x的方程(a-1)x2-4x-1+2a=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.24.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.25.为了贯彻党中央、国务院关于倡导开展全民阅读的重要部署,落实《关于实施中华优秀传统文化传承发展工程的意见》.某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7 500本,2017年图书借阅总量是10 800本.(1)求该社区从2015年至2017年图书借阅总量的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1 350人,预计2018年达到1 440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?26.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33 cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10 cm?(第26题)答案一、1.D 2.B 3.A 4.C 5.A 6.D7.A 8.B 9.B 10.C 二、11.x 2-12x +14=0;-1212.6或10或1213.-1 点拨:将x =1代入方程x 2+ax +b =0,得1+a +b =0,∴a +b =-1,∴(a +b )2 019=-1.14.415.214 点拨:由根与系数的关系,得x 1+x 2=5,x 1·x 2=a .由x 21-x 22=10得,(x 1+x 2)(x 1-x 2)=10,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214.16.-6或1 17.①②③ 18.直角19.18 点拨:由已知x 2-3x +1=0得x 2=3x -1,则x 2x 4+x 2+1=x 2(3x -1)2+x 2+1=x 210x 2-6x +2=3x -110(3x -1)-6x +2=3x -124x -8=3x -18(3x -1)=18.20.4三、21.解:(1)原方程可化为(x -4)(x +5)=0,∴x -4=0或x +5=0, 解得x =4或x =-5. (2)原方程可化为(2x +1+2)2=0,即(2x +3)2=0, 解得x 1=x 2=-32. (3)∵a =1,b =-2,c =-2,∴Δ=4-4×1×(-2)=12>0, ∴x =2±122=2±232=1±3. ∴x 1=1+3,x 2=1- 3. (4)原方程化为一般形式为y 2-2y =0.因式分解,得y(y-2)=0.∴y1=2,y2=0.22.(1)证明:在关于x的一元二次方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设方程的两根分别为m,n,则mn=t-2.∵方程的两个根互为倒数,∴mn=t-2=1,解得t=3.∴当t=3时,方程的两个根互为倒数.23.解:(1)将x=3代入方程(a-1)x2-4x-1+2a=0中,得9(a-1)-12-1+2a=0,解得a=2.将a=2代入原方程中得x2-4x+3=0,因式分解得(x-1)(x-3)=0,∴x1=1,x2=3.∴方程的另一个根是x=1.(2)∵三角形的三边长都是这个方程的根.∴①当三边长都为1时,周长为3;②当三边长都为3时,周长为9;③当两边长为3,一边长为1时,周长为7;④当两边长为1,一边长为3时,不满足三角形三边关系,∴不能构成三角形.故三角形的周长为3或9或7.24.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得k>3 4.(2)∵k>34,∴x1+x2=-(2k+1)<0.又∵x1·x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1.∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,解得k1=0,k2=2.又∵k >34,∴k =2.25.解:(1)设该社区从2015年至2017年图书借阅总量的年平均增长率为x ,根据题意,得7 500(1+x )2=10 800, 即(1+x )2=1.44,解得x 1=0.2=20%,x 2=-2.2(舍去).因此该社区从2015年至2017年图书借阅总量的年平均增长率为20%. (2)10 800×(1+0.2)=12 960(本),10 800÷1 350=8(本),12 960÷1 440=9(本). (9-8)÷8×100%=12.5%. 故a 的值至少是12.5.26.解:(1)设P ,Q 两点出发x s 后,四边形PBCQ 的面积是33 cm 2,则由题意得(16-3x +2x )×6×12=33,解得x =5.即P ,Q 两点出发5 s 后,四边形PBCQ 的面积是33 cm 2.(2)设P ,Q 两点出发t s 后,点P 与点Q 之间的距离是10 cm ,过点Q 作QH ⊥AB 于点H .在Rt △PQH 中,有(16-5t)2+62=102,解得t 1=1.6,t 2=4.8.即P ,Q 两点出发1.6 s 或4.8 s 后,点P 与点Q 之间的距离是10 cm.。

广东省广州中学2019-2020学年九年级上学期期中数学试卷 (含答案解析)

广东省广州中学2019-2020学年九年级上学期期中数学试卷 (含答案解析)

广东省广州中学 2019-2020 学年九年级上学期期中数学试卷一、选择题(本大题共 10 小题,共 30.0 分)1. 下列方程中,是关于 的一元二次方程的是( )x B. D. A.C. 1 2 1 + 1)2 = + 1) + − 2 = 0 = 1 + + = 02 2. 已知一元二次方程 − + = 0有实数根,则 的取值范围是( ) a2 B. C. D. A. 13 1 3 1 3 1 3≤ < ≤ − ≥ 3. 对于抛物线 = + 1)+ 3,下列结论正确的是( ) 2 A. B. 抛物线的开口向上≤ 0时, 随 的增大而减小 y x C. D. 顶点坐标为(−1,3)对称轴为直线 = 1 4. 关于 的一元二次方程+ + 6 = 0的解为 = 2, = 3,则二次函数 = + 2 + 6与x 2 1 2 轴的交点坐标为( ) x B. C. D. D.A. 5 , 0)(2,0)、(3,0) (0,6)(5 , 0) (6,0) ( 、 2 2 5. 如图所示,图中不是轴对称图形的是() 垂直于点 ,且 = 8,= 5,则C D D A. B. C. D. 13 2.5 2 是⊙ 的内接三角形, 是直径,点 在⊙ 上 ,且 AB= C 等于( )A. B. C. D. 32° 34° 56° 66°8.如图,点是半径为2的⊙上一点,是⊙的弦,⊥A=60°,则的长是(O DC. D.A. B.2√31√329.如图,将△的度数为()绕点逆时针旋转100°,得到△,若点在线段的延长线上,则B CA11111A. B. C. D.86°70°80°84°10.如图,将一张直角三角形纸片沿平行于直角边的虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A. C.B.D.甲>乙,乙>丙甲<乙,乙>丙甲>乙,乙<丙甲<乙,乙<丙二、填空题(本大题共6小题,共18.0分)−2=0的两个实数根,则+=_____.1111.已知,是方程+a b212.一块四周镶有宽度相等的花边的地毯如下图,它的长为8,宽为5,地毯中央长方形图案的面积为182,那么花边有多宽?设花边的宽为,则可得方程为________.B的位置,点在上,与AB15.抛物线=++5的对称轴是直线______.216.将抛物线=+−6绕点旋转180所得抛物线______.2O三、计算题(本大题共 1 小题,共 10.0 分)17.解方程:−−5=0.2−1)=2−.四、解答题(本大题共8小题,共92.0分)18.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度单位:与飞行时间单位:之间具有函数关系=2+,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?A点坐标为(−4,2);(2)在第二象限内的格点上画一点,使点与线段C C AB个以为底的等腰三角形,且腰长是无理数,则点坐标是CAB______,△(3)画出△的周长是______(结果保留根号);以点为旋转中心,旋转180°后的△C,连接和,试说出四边形是何特殊四边形,并说明理由.= 60°, 交⊙ 于点 , , AE B E且= , 求: 的度数;度数.21. 某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从 年底的 万个增长到 22016 年底的2.88万个.2018 (1)求该市这两年养老床位数的年平均增长率:(2)该市 年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位 2018 的单人间、两个养老床位的双人间、三个养老床位的三人间)共 间,若按规划需要建造的单 100 人间的房间数为 可提供养老床位多少个?最少提供养老床位多少个?≤ ≤ 15),双人间的房间数是单人间的 倍,求该养老中心建成后最多 2x222.关于的一元二次方程−−++1=0.2m m(1)若是方程的一个实数根,求的值;(2)若为负数,判断方程根的情况.m23.内接于⊙,是⊙的直径,是弧AB C DA D C的延长线相交于⊙外的一点求证:=.24.已知三个全等的等边三角形如图1所示放置,其中点、、在同一直线上.B C E(1)写出两个不同类型的结论;(2)连接,为B D P B D 上的动点(点除外),绕点逆时针旋转60º到DQ,如图2,连接PC,D PD DQ E,①判断与C P Q E的大小关系,并说明理由;②若等边三角形的边长为2,连接AP,在BD上是否存在点P,使++的值最小,并求最小值.25.如图,已知抛物线与轴交于x ,两点,与轴交于点y,抛物线的顶点为,P连接AC.(1)求此抛物线的解析式;(2)抛物线对称轴上是否存在一点,使得M =?若存在,求出点坐标;若不存在,M请说明理由.-------- 答案与解析 --------1.答案:A解析:解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误;C、方程二次项系数可能为0,故错误;D、方程未知数的次数为1次,故不是一元二次方程,故错误.故选A.根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数进行分析即可.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.答案:A解析:解:∵一元二次方程2−+=0有实数根,∴△≥0,即2−4×3×≥0,21解得≤.3故选:A.a的取值范围.根据△的意义得到△≥0,即22−4×3×≥0,解不等式即可得本题考查了一元二次方程2++=≠0)的根的判别式△=2−:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.答案:C解析:本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.根据二次函数的性质对各选项分析判断即可得解.解:二次函数=+1)2+3中,=−1<0,开口向下,对称轴为直线 = −1,顶点坐标为(−1,3),< −1时,y 随 x 的增大而增大.故选 C .4.答案:B解析:本题考查了抛物线与 x 轴的交点,也考查了一元二次方程 2 + 交点的横坐标是二次函数的函数值为 0 时所对应的自变量.+ = 0的根的含义.关键是掌握 令 = 0,得到关于 x 的方程,求出方程的解得到 x 的值,确定出二次函数图象与 x 轴的交点坐标. x 轴的交点坐标的纵坐标是 0,即 + 6 = 0的两根是该函 解:∵二次函数 = 数与 x 轴交点的横坐标,2 + + 6与 2 + ∴二次函数 =+ + 6与 x 轴的交点坐标是(3,0)、(2,0).2 故选 B . 5.答案:C解析:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据 轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图 形叫做轴对称图形.据此对图中的图形进行判断.解: 有四条对称轴,是轴对称图形,故本选项不符合题意;B.有三条对称轴,是轴对称图形,故本选项不符合题意;C.不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能 够重合,即不满足轴对称图形的定义,故本选项符合题意;D.有两条对称轴,是轴对称图形,故本选项不符合题意.故选 C .6.答案:C解析:本题考查垂径定理有关知识,根据垂径定理以及勾股定理即可求答案.解:连接 OA ,=∴∵,∴由垂径定理可知:=12=4,由勾股定理可知:52=42+(5−2,∴=2,∴=2,故选C.7.答案:B解析:解:∵是直径,∴∴∴=90°,=90°−==90°−56°=34°,=34°.故选:B.根据圆周角定理得到数.=90°,利用互余计算出=34°,然后根据圆周角定理得到的度本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.8.答案:C解析:由于=60°,根据圆周角定理可求=120°,又⊥,根据垂径定理可知=60°,在△中,利用特殊三角函数值易求O D.本题考查了圆周角定理、垂径定理、特殊角三角函数计算,解题的关键是熟记特殊角三角函数.解:∵=60°,=120°,∴∵⊥,∴=90°,=12=60°,在△中,=90°−60°=30°,∴=1=1,2故选:C.9.答案:B解析:本题主要考查的是旋转的性质,由旋转的性质得到△1为等腰三角形是解题的关键.由旋转的性质可知=11,=1,由等腰三角形的性质和三角形的内角和定理可求得==1=40°,从而可求得=80°.1111解:由旋转的性质可知:=11,=1,=100°.1∵∴∴∴==1,=100°,1=40°.1=40°.11=+=40°+40°=80°.11111故选B.10.答案:D解析:本题考查了相似三角形的判定与性质,掌握相似三角形的判定与性质的方法是解决问题的关键.首先=1⋅,可求得GF,过点B作⊥于点H,则,易证得△,△乙2D B,D E,D F的长,继而求得答案.解:如图:= 1 · 过点 作 B ⊥ 于点 ,则 H ,乙 2 ∵ // ,∴△ ∽ △ = ,∴ ∵ ∴ = ,= 7, = 3,= 10 = 10 , ,7 7 ∴ = − = 3 ,7 ∴ 丙= 1 + · =51 ·,2 98 ∵ ∴ // // , ⊥ , ⊥ ,,∴四边形 是矩形,B D F H = , = = 10,7 ∴△ ∽ △ = ,∴ ∵ ∴ = ,= 2, = 7,= 2 = 2 , , + ,7 7 ∴ = 2 = + = 12 , 7 71 2 = 22 ·甲= S 49 ∴甲<乙,乙<丙.故选 .D 11. 答案:1解析:本题考查了根与系数的关系,牢记两根之和等于− ,两根之积等于 是解题的关键.根据根与系数的关系可得出 + = −2、 = −2,将其代入 + = 1 1 中即可求出结论. 解:∵ , 是方程 2 +− 2 = 0的两个实数根, b ∴ + = −2,= −2, ∴ 1 + 1 = = −2 = 1, −2故答案为:1.12.答案:(8 − − = 18解析:本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关 键.根据等量关系:(8 − 2 ×花边的宽) × (5 − 2 ×花边的宽) = 18列出方程解答即可.解:设花边的宽为根据题意得,(8 −故答案为(8 − , − = 18. − = 18.13.答案:5解析:解:在 △中, = 30°, = 10, ∴ = 1 = 5.2 根据旋转的性质可知,所以 = 5.故答案为 5.根据 30 度直角三角形的性质求出 = , 长度,根据旋转的性质可知 = ,从而可求解问题.B C本题主要考查旋转的性质、30 度直角三角形的性质.14.答案:20°解析:解:连结 B D ,如图,∵∴∴ = = = = 50°, − = 70° − 50° = 20°,= 20°. 故答案为20°.先根据圆周角定理得到 等弧所对的圆周角相等求解.= = 50°,则 = − = 20°,然后再根据同弧或 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆 心角的一半.15.答案: = −1解析:解:抛物线 =故答案为 = −1.2 + + 5的对称轴是直线 = − = −1,即 = −1. 根据二次函数 = 2 + + ≠ 0)的对称轴是直线 = − 即可求解.本题考查了二次函数的性质,掌握二次函数 =2 + + ≠ 0)的对称轴是直线 = − 是解题的关键. 16.答案: = − 1)2 + 8解析:解:∵ = 2 + − 6 = + 1)2 − 8.∴原抛物线的顶点坐标为(−1, −8),∵抛物线 = − 6绕原点 旋转180°,∴旋转后的抛物线的顶点坐标为(1,8),∴旋转后的抛物线的解析式为 =− 1) + 8.故答案是: = − 1)2 + 8. + 2 O 2 求出原抛物线的顶点坐标,再根据关于原点对称的点的横坐标与纵坐标都互为相反数求出旋转后的 抛物线的顶点坐标,然后利用顶点式解析式写出即可.本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便. 17.答案:解: − 5 = 0,2 − △= (−4) − 4 ×3 × (−5) = 76,2 = 4±√76, 2×3= 2 √19, = 2−√19; 1 2 3 3− 1) = 2 −, − 1)− 1) = 0, 2) = 0, 2 = 0,−− 1 = 0, = 1, = − . 2 1 2 3解析:(1)先求出 2 − 的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.18.答案:解:(1)当 = 15时,15 = ,2 解得, = 1, = 3,1 2 答:在飞行过程中,当小球的飞行高度为 15 时,飞行时间是 1 或 3 ;m s s (2)当 = 0时,0 = ,2 解得, = 0, = 4,1 2 ∵ 4 − 0 = 4,∴在飞行过程中,小球从飞出到落地所用时间是4 ;s = = − 2)2 20,2 ∴当 = 2时, 取得最大值,此时, = 20,y 答:在飞行过程中,小球飞行高度第 2 时最大,最大高度是 20 .s m解析:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.(1)根据题目中的函数解析式,令=15即可解答本题;(2)令=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.19.答案:(1)图形如下:(2)(−1,1);22+210.√√(3)由旋转180°可知,=,=,∴四边形是平行四边形,又∵=,∴四边形是矩形.解析:【解答】解:(1)图形如下:,△的周长是22+210.√√(3)由旋转180°可知,=,=,∴四边形是平行四边形,又∵=,∴四边形是矩形.【分析】根据点的坐标,首先确定坐标系的位置,在第二象限内的格点上画一点,使点与线A C C段组成一个以为底的等腰三角形,则一定在C的中垂线上,通过作图即可确定的位置,AB CAB AB根据勾股定理即可求得三角形的周长,根据对角线的关系即可判定四边形的形状.本题考查了在格点上找等腰三角形的顶点,旋转变换作图,根据旋转中心画图,确定旋转后的点的坐标时,要抓住“动”与“不动”,看图是关键.20.答案:解:(1)连接OB,∵∵==,====,,∴==,∵+,∴,∵=+,∴=60°,∴=20°;(2)∵∴===,=40°,∵=,∴==40°.解析:(1)首先连接OB,由=,可得△与△是等腰三角形,继而可得=,则可求得答案;(2)根据等腰三角形的性质即可得到结论.此题考查了圆周角定理以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.21.答案:解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+2= 2.88,解得=0.2=20%,=−2.2(不合题意,舍去).12答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为三人间的房间数为100 − 设该养老中心建成后能提供养老床位 个,≤ ≤ 15),则建造双人间的房间数为 2 , m, y 由题意得: = + + 3(100 − = + 300∵ 随 的增大而减小 m∴当 = 12时, 的最大值为 252.y 当 = 15时, 的最小值为 240.y 答:该养老中心建成后最多提供养老床位 252 个,最少提供养老床位 240 个.解析:(1)设该市这两年(从 2013 年度到 2015 年底)拥有的养老床位数的平均年增长率为 ,根据 x “2015 年的床位数= 2013年的床位数× (1 +增长率)的平方”可列出关于 的一元二次方程,解方程 x 即可得出结论;(2)设规划建造单人间的房间数为 ≤ ≤ 15),则建造双人间的房间数为 2 ,根据“可提供的 m床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出 关于 的函数关系式,根据一次函 y m 数的性质结合 的取值范围,即可得出结论. t本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于 的 x 一元二次方程;(2)根据数量关系找出 关于 的函数关系式.本题属于中档题,难度不大,解决该 y t 题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.22. 答案:解:(1) ∵ 是方程的一个实数根,∴ − ( − 3) ++ 1 = 0.2 2 ∴ = − 1 ; 3(2) ∵ =− = [−( − 3)] − 4 × 1 × ( + 1) = 2 + 5, 2 2 又∵< 0, ∴> 0, ∴ = + 5 > 0,∴此方程有两个不相等的实数根.解析:本题考查一元二次方程的根的概念,一元二次方程的根的判别式.一元二次方程2++=≠0)的根的判别式△=−:当△>0,方程有两个不相等的实数根;当△=0,方程有两个2相等的实数根;当△<0,方程没有实数根.(1)将=代入原方程求出值;m(2)根据方程根的判别式△=−=+5,又因<0,即可得>0,从而得出△=2+5>0,由此即可得出结论.23.答案:证明:连接AC.∵是⊙的直径,∴=90°=.∵四边形内接于⊙,AB C D∴∴+=180°,又.+=180°,=∵是弧的中点,B D∴∠1=∠2,∴∠1+=∠2+=90°,∴∴∴=,=,=.解析:本题主要考查了圆周角定理、圆内接四边形的性质和圆、等腰三角形的判定有关知识.根据圆内接四边形的性质和等弧所对的圆周角相等得到是解题的关键.=连接 AC ,先根据直径所对的角是直角,圆内接四边形的性质和等弧所对的圆周角相等得到,从而根据等角对等边可证 答案:解:(1)答案不唯一,合理即可,,四边形 是菱形;= ,= = . 24. 、 AB C D A CE D 四边形 是等腰梯形;四边形 是轴对称图形;ABE D ABE D 理由:∵△、△ 和△ 是等边三角形, ∴= = 60°,∴. ∵△∴ 、△ 和△ 是等边三角形, = = = = = , ∴四边形 、 是菱形,四边形 是等腰梯形; ABE DAB C D A CE D ;理由:是等边三角形, = 60°, 绕点 逆时针旋转60°到 D Q , = ∵△∴= , ∵D ∴= , = 60°,∴= , ∴△∴ = . ②如图 1,连接 AP ,由①可知= , ∵绕点 逆时针旋转60°到 D Q , D ∴△ 是等边三角形,∴= + , 要使+ + 的值最小, 的值最小,∴ + 即点 、 、 、 在同一直线上 A P Q E ,构建两点之间,线段最短,= 1, = 3, = 3, 过点 作 A ⊥ 于点 ,可得 M√ 所以 故在 √ 2 .= 3 + (√3) = 2√3 2 上存在点 ,故 P + + 的值最小,最小值是2 3.√B D A 解析:此题是几何变换综合题,主要考查了等边三角形的性质和判定,菱形的判定,等腰梯形的性 质,全等三角形的判定和性质,解(2)①的关键是判断出,解(2)②的关键是判断出 = 点 、 、 、 在同一直线上 A P Q E 时, + + 的值最小,是一道基础题目.(1)直接由等边三角形的性质即可得出即可;(2)①先判断②先判断出△= , = 60°,进而判断出△ 即可得出结论; 是等边三角形,进而得出 的值最小.= ,再判断出点 、 、 、 在同一直线上 A P Q E 时, + + 25. 答案:解:(1) ∵抛物线与 轴交于, 两点, x ∴设抛物线的解析式为 =+ − 1), ∵点, ∴ = 3,解得 = −1,∴抛物线的解析式为 = +− 1),即 = − + 3; − + 3;2 (2) ∵抛物线的解析式为 = 2∴其对称轴=−1,顶点的坐标为(−1,4)P∵点在抛物线的对称轴上,M∴设,∵,,∴设过点、的直线解析式为=A P+≠0),+=0 +=4=−2 =2∴{,解得{,∴直线的解析式为=+2,AP∴,∴∵=+=1⋅1+1⋅1=1×1×1+1×1×1=1,2222=,∴1×2=2,解得=2,2当点在点上方时,−4=2,解得=6,M P∴此时;当点在点下方时,4−=2,解得=2,M P∴此时,综上所述,(−1,6),(−1,2).12解析:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式、三角形的面积公式等知识,难度不大.(1)设抛物线的解析式为=+−1),再把代入求出的值即可;a(2)根据(1)中抛物线的解析式求出求出抛物线的对称轴方程及顶点坐标,设出点的坐标,利用待MAP E定系数法求出直线的解析式,求出点坐标,故可得出△的面积,进而可得出点的坐标.M∴其对称轴=−1,顶点的坐标为(−1,4)P∵点在抛物线的对称轴上,M∴设,∵,,∴设过点、的直线解析式为=A P+≠0),+=0 +=4=−2 =2∴{,解得{,∴直线的解析式为=+2,AP∴,∴∵=+=1⋅1+1⋅1=1×1×1+1×1×1=1,2222=,∴1×2=2,解得=2,2当点在点上方时,−4=2,解得=6,M P∴此时;当点在点下方时,4−=2,解得=2,M P∴此时,综上所述,(−1,6),(−1,2).12解析:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式、三角形的面积公式等知识,难度不大.(1)设抛物线的解析式为=+−1),再把代入求出的值即可;a(2)根据(1)中抛物线的解析式求出求出抛物线的对称轴方程及顶点坐标,设出点的坐标,利用待MAP E定系数法求出直线的解析式,求出点坐标,故可得出△的面积,进而可得出点的坐标.M。

宝安区2019-2020学年九年级(上)期末数学试卷(答案)

宝安区2019-2020学年九年级(上)期末数学试卷(答案)

2019-2020学年广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)方程(x﹣3)(x+4)=0的解是()A.x=3B.x=﹣4C.x1=3,x2=﹣4D.x1=﹣3,x2=4【分析】利用因式分解法解方程.【解答】解:x﹣3=0或x+4=0,所以x1=3,x2=﹣4.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2.(3分)下面四个几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从正面看所得到的平面图形,分别写出四个选项的主视图即可选出答案.【解答】解:A、圆柱的主视图是长方形,故此选项错误;B、立方体的主视图是正方形,故此选项错误;C、四棱锥的主视图是三角形,故此选项正确;D、三棱柱的主视图是长方形,故此选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)已知,则下列结论一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】根据比例的性质即两内项之积等于两外项之积分别对每一项进行分析即可得出答案.【解答】解:∵,∴3x=2y,∴A、B选项错误;∵,∴y=x∴==,∴C选项错误;∵,∴=+1=+1=,∴D选项正确;故选:D.【点评】此题考查了比例的性质,熟练掌握两内项之积等于两外项之积是解题的关键,较简单.4.(3分)如图,点F在平行四边形ABCD的边AB上,CF的延长线交DA的延长线于点E,则图中相似的三角形有()对.A.4B.3C.2D.1【分析】根据平行四边形的性质以及相似三角形的判定方法即可判断.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,由AF∥CD,可以推出△EAF∽△EDC,由AE∥BC,可以推出△AEF∽△BCF,则△EDC∽△CBF,故图中相似的三角形有3对.故选:B.【点评】本题考查相似三角形的判定、平行四边形的性质等知识,熟练掌握相似三角形的判定方法是解题的关键,属于基础题.5.(3分)某人从一袋黄豆中取出20粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒【分析】100粒黄豆中有5粒黄豆染成蓝色,说明在样本中有色的占到20%.而在总体中,蓝色的共有20粒,据此比例可求出黄豆总数.【解答】解:依题意可得估计这袋黄豆:20÷=400(粒)故选:B.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.6.(3分)已知反比例函数y=,当x<0时,y随x的增大而增大,则a的值可能是()A.3B.2C.1D.﹣1【分析】直接利用反比例函数的性质得出2﹣a<0,进而得出答案.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而增大,∴2﹣a<0,解得:a>2.故选:A.【点评】此题主要考查了反比例函数的性质,正确得出2﹣a的符号是解题关键.7.(3分)天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x,求此平均增长率可列方程为()A.200(1+x)2=662B.200+200(1+x)2=662C.200+200(1+x)+200(1+x)2=662D.200+200x+200(1+x)2=662【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润平均每月的增长率为x,根据“第2季度的总销售额为662万元”,可得出方程.【解答】解:设利润平均每月的增长率为x,又知:第2季度的总销售额为662万元,其中4月份的销售额是200万元,所以,可列方程为:200+200(1+x)+200(1+x)2=662;故选:C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).8.(3分)如图,已知O是矩形ABCD的对角线的交点,∠AOB=60°,作DE∥AC,CE ∥BD,DE、CE相交于点E.四边形OCED的周长是20,则BC=()A.5B.5C.10D.10【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形,再利用已知得出菱形的边长,即可得出答案.【解答】解:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AC=BD,∴OC=OD,∴四边形OCED是菱形;∵四边形OCED的周长是20,∴CO=DO=5,∴BD=10,∵四边形ABCD是矩形,∴OA=OB,又∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=OC=AB=5,∴BC==5.故选:B.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.9.(3分)下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等【分析】根据黄金分割、中心对称图形、位似变换、菱形的性质判断即可.【解答】解:A、若点C是线段AB的黄金分割点,AB=2,当AC>BC时,AC=﹣1,当AC<BC时,AC=3﹣,本选项说法错误;B、平面内,经过矩形对角线交点的直线,一定能平分它的面积,本选项说法正确;C、两个正六边形不一定位似,本选项说法错误;D、菱形的两条对角线互相垂直,但不一定相等,本选项说法错误;故选:B.【点评】本题考查的是黄金分割、中心对称图形、位似变换、菱形的性质,掌握相关的概念和性质定理是解题的关键.10.(3分)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD =48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米【分析】因同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【解答】解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.11.(3分)如图,直线a∥b∥c,△ABC的边AB被这组平行线截成四等份,△ABC的面积为32,则图中阴影部分四边形DFIG的面积是()A.12B.16C.20D.24【分析】先由两边对应成比例且夹角相等的两三角形相似证明△ADG∽△ABC,△AFI ∽△ABC,再根据相似三角形面积比等于相似比的平方,得出S△ADG=S△ABC,S△AFI =S△ABC,然后根据图中阴影部分的面积=S△AFI﹣S△ADG即可求解.【解答】解:∵直线a∥b∥c,△ABC的边AB被这组平行线截成四等份,∵=,=,又∵∠A=∠A,∴△ADG∽△ABC,△AFI∽△ABC,∴=()2=,=()2=,∵△ABC的面积为32,∴S△ADG=S△ABC=2,S△AFI=S△ABC=18∴S阴影=S△AFI﹣S△ADG=18﹣2=16,故选:B.【点评】本题考查了相似三角形判定和性质,根据相似三角形的面积比等于相似比的平方,得出S△ADG=S△ABC=4,S△AFI=S△ABC=18是解题的关键.12.(3分)如图,正方形ABCD中,AB=4,点E是BA延长线上的一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有()个①MC⊥ND;②sin∠MFC=;③(BM+DG)2=AM2+AG2;④S△HMF=;A.1B.2C.3D.4【分析】设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF 于T.①正确.可以证明△CBM≌△DCN,利用全等三角形的性质解决问题即可.②正确.可以证明△AMF≌△KCM(ASA),推出△FMC是等腰直角三角形即可.③正确.解直角三角形求出AG,DG,通过计算证明即可.④正确.求出MT,FH,利用三角形的面积公式计算即可【解答】解:设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF于T.∵四边形ABCD是正方形,∴AB=CB=DC,∠CBM=∠CBM=∠DCN=90°,∵AM=BN=1,∴BM=CN=3,∴△CBM≌△DCN(SAS),∴∠MCB=∠CDN,∵∠MCB+∠DCM=90°,∴∠DCM+∠CDN=90°,∴∠COD=90°,∴CM⊥DN,故①正确,∵MF∥DN,∴MF⊥CM,∴∠FMC=90°,∴∠AMF+∠CMB=90°,∵∠CMB+∠MCB=90°,∴∠AMF=∠MCK,∵BM=BK,∠MBK=90°,∴∠BKM=45°,∵AF平分∠EAD,∴∠EAF=∠EAD=45°,∴∠MAF=∠CKM=135°,∵AM=CK,∴△AMF≌△KCM(ASA),∴MF=MC==5,∵∠FMC=90°,∴∠MFC=45°,∴sin∠MFC=,故②正确,∵OH∥MF,∴∠OHC=∠MFC=45°,∴OH=OC==,∴CH=OC=,∵CF=CM=5,∴FH=FC﹣CH=,∵MT⊥CF,MF=MC,∴TF=TC,∴MT=FC=,∴S△FMH=•FH•MT=××=,故④正确,∵△NCO∽△NDC,∴CN2=NO•ND,∴ON=,∴DH=DN﹣ON﹣OH=5﹣﹣=,∵DG∥CN,∴=,∴=,∴DG=,∴AG=4﹣=,∴(BM+DG)2=(3+)2=AM2+AG2=1+()2=,∴(BM+DG)2=AM2+AG2,故③正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(每小题3分,共12分)13.(3分)已知x﹣3y=2,则代数式3x﹣9y﹣5=1.【分析】首先把3x﹣9y﹣5化成3(x﹣3y)﹣5,然后把x﹣3y=2代入,求出算式的值是多少即可.【解答】解:∵x﹣3y=2,∴3x﹣9y﹣5=3(x﹣3y)﹣5=3×2﹣5=6﹣5=1故答案为:1.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.(3分)如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为(25+25)米.(结果保留根号)【分析】由题意知AD⊥BC于点D,且∠BAD=30°,∠DAC=∠ACD=45°,根据AB =50米可求得BD=AB sin∠BAD=25(米),AD=AB cos∠BAD=25(米),再由AC =CD=25米可得答案.【解答】解:如图所示,由题意知AD⊥BC于点D,且∠BAD=30°,∠DAC=∠ACD=45°,∵AB=50米,∴BD=AB sin∠BAD=50×=25(米),AD=AB cos∠BAD=50×=25(米),在Rt△ACD中,∵∠DAC=∠ACD=45°,∴AC=CD=25(米),则BC=BD+CD=25+25(米),故答案为:(25+25).【点评】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.15.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m 为常数,且k≠0)的图象如图所示,交于点M(﹣,2)、N(2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是﹣<x<2.【分析】根据函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.【解答】解:当﹣<x<2时,ax2+bx+c<kx+m,所以不等式ax2+(b﹣k)x+c﹣m<0的解集为﹣<x<2.故答案为﹣<x<2.【点评】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.16.(3分)如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N的坐标为(,).【分析】根据双曲线的图象过点A(1,3),可求出反比例函数的关系式,点A、M、N 三点在一条直线上,且M、N在双曲线上,设出点M、N的坐标,利用双曲线的对称性可求出S△MON=S△BMN,这样可得到关于两点坐标的关系式,联立可求出答案.【解答】解:连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y=;由双曲线的对称性可知:OA=OB,∴S△MBO=S△MAO,S△NBO=S△NAO,∴S△MON=S△BMN=,设点M(0,m),N(n,),∴mn=,即,mn=,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,=(3﹣m)×n+m,②由①和②解得,n=,当n=时,=,∴N(,),故答案为:(,).【点评】考查反比例函数、一次函数、二次函数的图象和性质,利用点的坐标,表示线段的长,进而表示三角形的面积是常用的方法.三、解答题(本题共7小题,共52分)17.(5分)计算:﹣()﹣1+tan45°+|1﹣|【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()﹣1+tan45°+|1﹣|=2﹣2+1+﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(5分)解方程:x2﹣4x﹣3=0.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣4x=3,配方得x2﹣4x+4=3+4,即(x﹣2)2=,开方得x﹣2=±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(8分)一个盒子中装有1个红球、1个白球和2个蓝球,这些球除颜色外都相同.(1)从盒子中任意摸出一个球,恰好是白球的概率是;(2)从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,试用树状图或表格列出所以可能的结果,并求两次摸到的球的颜色能配成紫色的概率.(红色和蓝色在一起可配成紫色)(3)往盒子里面再放入一个白球,如果从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,那么两次摸到的球的颜色能配成紫色的概率是.【分析】(1)根据各种颜色球的个数,直接求出概率;(2)无放回摸球,用列表法列举出所有等可能出现的情况,从中找出一红一蓝的情况,进而求出概率.(3)两次放回摸球,用列表法列举出所有等可能出现的情况,从中找出一红一蓝的情况,进而求出概率.【解答】解:(1)P白球==,故答案为:;(2)用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中一红一蓝的有4种,∴P配紫==;(3)再加1个白球,有放回摸两次,所有可能的情况如下:共有25种等可能的情况,其中一红一蓝的有4种,∴P配紫=;故答案为:.【点评】考查列表法或树状图法求等可能事件发生的概率,使用次方法一定注意每一种结果出现的可能性是均等的,即为等可能事件,同时注意“有放回”和“无放回”的区别.20.(8分)如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?【分析】(1)根据对角线垂直的平行四边形是菱形证明即可.(2)首先利用三角形中位线定理证明ON=BE,利用勾股定理求出BE即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.【点评】本题考查矩形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)光明农场准备修建一个矩形苗圃园,苗圃一边靠墙,其他三边用长为48米的篱笆围成.已知墙长为a米.设苗圃园垂直于墙的一边长为x米.(1)求当x为多少米时,苗圃园面积为280平方米;(2)若a=22米,当x取何值时,苗圃园的面积最大,并求最大面积.【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(48﹣2x)=﹣2x2+48x,根据二次函数的性质求解即可.【解答】(1)解:根据题意得:(48﹣2x)x=280,解得:x=10或x=14,∴当x为10米或14米时,苗圃园面积为280平方米;(2)解:设苗圃园的面积为y平方米,则y=x(48﹣2x)=﹣2x2+48x=﹣2(x﹣12)2+288∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=12时,即平行于墙的一边长是24米,24>22,不符题意舍去;∴当x=13时,y最大=286平方米;答:当x=13米时,这个苗圃园的面积最大,最大值为286平方米.【点评】此题考查了二次函数、一元二次方程、一元二次不等式的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22.(8分)如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.【点评】此题是相似形综合题,主要考查了菱形的性质,平行四边形的判定和性质,相似三角形的判定和性质,含30度角的直角三角形的性质,等边三角形的判定和性质,判断出点N的运动轨迹是线段CP是解本题的关键.23.(10分)如图1,在平面直角坐标系中,已知直线l1:y=﹣x+6与直线l2相交于点A,与x轴相交于点B,与y轴相交于点C,抛物线y=ax2+bx+c(a≠0)经过点O、点A和点B,已知点A到x轴的距离等于2.(1)求抛物线的解析式;(2)点H为直线l2上方抛物线上一动点,当点H到l2的距离最大时,求点H的坐标;(3)如图2,P为射线OA的一个动点,点P从点O出发,沿着OA方向以每秒个单位长度的速度移动,以OP为边在OA的上方作正方形OPMN,设正方形OPMN与△OAC 重叠的面积为S,设移动时间为t秒,直接写出S与t之间的函数关系式.【分析】(1)由已知可得点A的纵坐标为2,则可求A(4,2),令y=0,﹣x+6=0,求出B(6,0),把A(4,2),B(6,0),O(0,0)代入y=ax2+bx+c得抛物线的解析式为y=﹣x2+x;(2)由已知可求直线l2的解析式为y=x,设点H的坐标为(m,﹣m2+m),过H 作HG∥y轴交直线l2于G,则G(m,m),所以HG=﹣m2+m﹣m=﹣m2+m =﹣(m﹣2)+1,当m=2时,HG有最大值,点H的坐标为(2,2);(3)当0<t时,如图2,过A作AE⊥OB于E,OA==2,tan∠AOE =,由tan∠NOH=tan∠AOE==,OP=ON=NM=PM=t,则NH=NM=t,S=×(t+t)t=t2;当<t≤2时,过点P作PF⊥x轴于F,由∠POH =∠QON,OP=t,求出NQ=t,则P(2t,t),直线MP的解析式为y=﹣2x+5t,所以G(5t﹣6,﹣5t+12),分别求出GP=3(2﹣t),AP=2﹣t,MG=6﹣3t,证明△GP A∽△GKM则有MK=t﹣2,S=﹣×t×t﹣×(t﹣2)×(6﹣3t)=﹣t2+40t﹣30;当2<t≤时,可求N (﹣t,2t),则直线MN的解析式为y=x+t,K(4﹣t,t+2),NQ=t,Q(0,t),求出MK=t﹣2,S=﹣﹣×t×t﹣×(t﹣2+ t﹣2)×t=﹣t2+10t;当t>时,S=S△OAC=×4×6=12.【解答】解:(1)∵点A到x轴的距离等于2,∴点A的纵坐标为2,∴2=﹣x+6,∴x=4,∴A(4,2),当y=0时,﹣x+6=0,∴x=6,∴B(6,0),把A(4,2),B(6,0),O(0,0)代入y=ax2+bx+c得,解得:,∴抛物线的解析式为y=﹣x2+x;(2)设直线l2的解析式为y=kx,∴2=4k,∴k=,∴直线l2的解析式为y=x,设点H的坐标为(m,﹣m2+m),如图1,过H作HG∥y轴交直线l2于G,过点H作HK⊥l2于K,∴∠HGK=∠AOC,∵sin∠KGH=,∴KH=HG•sin∠KGH,∵sin∠KGH是定值,∴当GH的值最大时,点H到直线l2的距离最大.∴G(m,m),∴HG=﹣m2+m﹣m=﹣m2+m=﹣(m﹣2)2+1,当m=2时,HG有最大值,此时点H到直线l2的距离最大,∴点H的坐标为(2,2);(3)当0<t时,如图2,过A作AE⊥OB于E.∴OA==2,tan∠AOE=,∵∠NOP=∠BOC=90°,∴∠HON=∠AOE,∴tan∠NOH=tan∠AOE==,∵OP=ON=NM=PM=t,∴NH=HM=t,S=×(t+t)t=t2;当<t≤2时,过点P作PF⊥x轴于F,∵∠POF=∠QON,OP=t,∴OP=ON=NM=PM=t,∴NQ=t,可求P(2t,t),直线MP的解析式为y=﹣2x+5t∴G(5t﹣6,﹣5t+12),∴GP=3(2﹣t),AP=2﹣t,∴MG=6﹣3t,∵∠MGK=∠AGP,∴△GP A∽△GKM,∴MK=t﹣2,∴S=﹣×t×t﹣×(t﹣2)×(4t﹣6)=﹣t2+40t ﹣30;当2<t≤时,可求N(﹣t,2t),则直线MN的解析式为y=x+t,∴K(4﹣t,t+2),∵NQ=t,∴Q(0,t),∴MK=t﹣2,∴S=﹣﹣×t×t﹣×(t﹣2+t﹣2)×t=﹣t2+10t;当t>时,S=S△OAC=×4×6=12;综上所述,S=.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,结合正方形的性质解题是关键.。

人教版2019-2020学年九年级数学上册第二次月考试题(含答案)

人教版2019-2020学年九年级数学上册第二次月考试题(含答案)

2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。

2019-2020学年广东省广州市天河区九年级(上)期末数学试卷解析版

2019-2020学年广东省广州市天河区九年级(上)期末数学试卷解析版

2019-2020学年广东省广州市天河区九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.“明天是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列选项的图形是中心对称图形的是()A.B.C.D.3.若函数y=的图象在第一、三象限内,则m的取值范围是()A.m>﹣3B.m<﹣3C.m>3D.m<34.已知⊙O的半径为6,点A与点O的距离为5,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆内C.点A在圆上D.不确定5.已知x=﹣1是一元二次方程x2+mx+3=0的一个解,则m的值是()A.4B.﹣4C.﹣3D.36.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下B.抛物线过点(0,8)C.抛物线与x轴有两个交点D.对称轴是直线x=37.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A.8B.6C.4D.38.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定9.设a,b是方程x2+2x﹣20=0的两个实数根,则a2+3a+b的值为()A.﹣18B.21C.﹣20D.1810.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4B.1:5C.2:D.1:二、填空题(共6小题,每小题3分,满分18分)11.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.12.若扇形的半径为3,圆心角120°,为则此扇形的弧长是.13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.14.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为.15.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=.16.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为.三、解答题(共9小题,满分0分)17.解方程:x+3=x(x+3)18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF =∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.19.正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为4.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.20.根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.21.已知在△ABC中,∠A=∠B=30°.(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;(2)在(1)中所作的图中,求证:BC是⊙O的切线.22.2019年非洲猪瘟疫情暴发后,猪肉价格不断走高,据统计:2019年9月20日猪肉价格比年初上涨了60%,上涨后购买1千克猪肉需要80元.(1)填空:年初的猪肉价格是每千克元;(2)某超市将进货价为每千克65元的猪肉,按80元价格出售,平均一天能销售100千克;经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且让顾客尽可能得到实惠,猪肉的售价应该下降多少元?23.如图,已知抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,分别与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求b的值;(2)若将线段BC绕点C顺时针旋转90°得到线段CD,问:点D在该抛物线上吗?请说明理由.24.已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.25.已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.2019-2020学年广东省广州市天河区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:“明天是晴天”这个事件是随机事件,属于不确定事件,故选:D.2.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.3.【解答】解:根据题意得m﹣3>0,解得m>3.故选:C.4.【解答】解:∵OA<R,∴点A在圆内,故选:B.5.【解答】解:把x=﹣1代入x2+mx+3=0得1﹣m+3=0,解得m=4.故选:A.6.【解答】解:A、抛物线y=x2+6x﹣8中a=1>,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×8>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.7.【解答】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD===4,∴AB=2BD=8.故选:A.8.【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),∴y1>y2,故选:B.9.【解答】解:∵a,b是方程x2+2x﹣20=0的两个实数根,∴a2+2a=20,a+b=﹣2,∴a2+3a+b=a2+2a+a+b=20﹣2=18则a2+3a+b的值为18.故选:D.10.【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'==x,∴P'B=PB=x,∴P′A:P′B=2:,故选:C.二、填空题(共6小题,每小题3分,满分18分)11.【解答】解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).12.【解答】解:∵扇形的半径为3,圆心角为120°,∴此扇形的弧长==2π.故答案为:2π13.【解答】解:由题意可得,×100%=20%,解得,a=16.故答案为:16.14.【解答】解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.15.【解答】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.16.【解答】解:∵抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),∴﹣9=22﹣4×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴抛物线为y=x2﹣4x﹣5,直线y=2x﹣13,∴x2﹣4x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=4,故答案为:x1=2,x2=4.三、解答题(共9小题,满分0分)17.【解答】解:方程移项得:(x+3)﹣x(x+3)=0,分解因式得:(x+3)(1﹣x)=0,解得:x1=1,x2=﹣3.18.【解答】证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF,∵将线段AC绕A点旋转到AF的位置,∴AC=AF,在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;19.【解答】解:(1)当y=4时,2x=4,解得x=2,则正比例函数y=2x与反比例函数y=的图象的一个交点坐标为(2,4),把(2,4)代入y=得m=2×4=8;(2)∵正比例函数y=2x与反比例函数y=的图象有一个交点坐标为(2,4),∴正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣4),如图,当x≤﹣2或0<x≤2时,2x≤,∴关于x的不等式2x≤的解集为x≤﹣2或0<x≤2.20.【解答】解:分别记厨余垃圾、可回收垃圾、有害垃圾、其它垃圾为A、B、C、D,画树状图如下:由树状图知,共有12种等可能结果,其中小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的结果有2种,所以小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率为=.21.【解答】(1)解:如图,⊙O即为所求.(2)证明:连接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相对AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切线.22.【解答】解:(1)设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=80,解得:x=50.答:今年年初猪肉的价格为每千克50元.故答案是:50;(2)设猪肉的售价应该下降y元,则每日可售出(100+10y)千克,依题意,得:(80﹣65﹣y)(100+10y)=1560,整理,得:y2﹣5y+6=0,解得:y1=2,y2=3.∵让顾客得到实惠,∴y=3.答:猪肉的售价应该下降3元.23.【解答】解:(1)∵抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=﹣2;(2)当x=0时,y=3,因此点C(0,3),即OC=3,当y=0时,即﹣x2+bx+3=0,解得x1=﹣3,x2=1,因此OB=1,OA=3,如图,过点D作DE⊥y轴,垂足为E,由旋转得,CB=CD,∠BCD=90°,∵∠OBC+∠BCO=90°=∠BCO+∠ECD,∴∠OBC=∠ECD,∴△BOC≌△CDE(AAS),∴OB=CE=1,OC=DE=3,∴D(﹣3,2)当x=﹣3时,y=﹣9+6+3=0≠2,∴点D不在该抛物线上.24.【解答】解:(1)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9所以抛物线的最小值为﹣9.(2)当a=2时,y=x2﹣4x+m=(x﹣2)2+m﹣4因为该抛物线与坐标轴有两个交点,所以△>0,即16﹣4m>0,解得m<4,m﹣4>﹣9,解得m>﹣5∴﹣5<m<4∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+m+k此时△<0,即16﹣4(m+k)<0解得m+k>4∴0<k<9.(3)当m=0时,y=x2﹣2ax抛物线开口向上,与x轴交点坐标为(0,0)(2a,0),a≠0.直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,①当a>0时,如图1所示,此时,当x=0时,0﹣a+1<0,解得a>1;②当a<0时,如图2所示,此时,当x=2a时,2a﹣a+1<0,解得a<﹣1.综上:a>1或a<﹣1.25.【解答】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC===.(3)∵∠ADB﹣∠CDB=∠ABD﹣∠CBD,∴∠ADB+∠CBD=∠ABD+∠CDB,∵∠CBD=∠CAD,∠ABD=∠ACD,∴∠ADB+∠CAD=∠ACD+∠CDB,∴180°﹣∠AED=180°﹣∠CED,∴∠AED=∠CED=90°,∴AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.。

2019-2020学年度第一学期九年级数学期末考试卷(附答案)

2019-2020学年度第一学期九年级数学期末考试卷(附答案)

2019-2020学年度第一学期九年级数学期末考试卷(附答案)一、单选题(共10题;共20分)1.下列事件是必然事件的是()A. 若a是实数,则|a|≥0B. 抛一枚硬币,正面朝上C. 明天会下雨D. 打开电视,正在播放新闻2.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. 45°B. 50°C. 60°D. 75°3.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°4.一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离PA=75cm.若钢管的厚度忽略不计,则劣弧的长为()A. πcmB. 50πcmC. πcmD. 50πcm5.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是()A. B. C. D.6.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A. 正三角形B. 正方形C. 正五边形D. 正六边形7.已知Rt△ABC中,∠C=90°,sinA=,BC=8,则AC等于()A. 6B.C. 10D. 128.如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A. 100πB. 20πC. 15πD. 5π9.如图,等边三角形ABC中,将边AC逐渐变成以BA为半径的,其他两边的长度不变,则∠ABC的度数大小由60变为()A. B. C. D.10.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A. 12π+18B. 12π+36C. 6D. 6二、填空题(共6题;共20分)11.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).12.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA= ,则∠D的度数是________.13.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为________.14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积为________15.在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为________.16.如图,点O为矩形ABCD对角线交点,AB=10cm,BC=12cm,点E、F、G分别从D,C,B三点同时出发,沿矩形的边DC、CB、BA匀速运动,点E的运动速度为2cm/s,点F的运动速度为6cm/s,点G的运动速度为3cm/s,当点F到达点B(点F与点B重合)时,三个点随之停止运动.在运动过程中,△EFC关于直线EF的对称图形是△EFC′.设点E、F、G运动的时间为t(单位:s)(1)当t=________s时,四边形ECFC′为正方形;(2)若以点E、C、F为顶点的三角形与以点F、B、G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点C′与点O重合?若存在,直接写出t的值;若不存在,请说明理由.三、解答题(共8题;共79分)17.已知:如图,在△ABC中,D是边BC上一点,以点D为圆心,CD为半径作半圆,分别与边AC、BC相交于点E和点F.如果AB=AC=5,cosB=,AE=1.求:(1)线段CD的长度;(2)点A和点F之间的距离.18.如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)19.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83 乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.(用列表或画树状图的方法)20.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.21.如图,已知△abc的三个顶点的坐标分别为A(﹣6,4),B(﹣4,0),C(﹣2,2).(1)将△ABC向右平移5个单位得,得△A1B1C1,画出图形,并直接写出点A1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,得△A2B2C2,画出图形,并直接写出点B2的坐标.22.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D (1)求证:PC是⊙O的切线;(2)求证:;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=,CF=5,求BE的长.23.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA= ,求BH的长.24.已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是O的两条弦,AB⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若0A⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,若HK:ME=2:3,BC= ,求RG的长.答案一、单选题1.A2.C3.D4.A5.A6.A7.A8. C9.A 10.C二、填空题11.②⑤ 12.30° 13.2 14.8π 15.10cm 16. (1)1.25(2)解:分两种情况,讨论如下:①若△ECF∽△FBG,则有,即,解得:t=1.4;②若△ECF∽△GBF,则有,即,解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .当t=1.4s或t=(﹣7+ )s时,以点E、C、F为顶点的三角形与以点F,B,G为顶点的三角形相似(3)解:假设存在实数t,使得点C′与点O重合.如图1,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=6t,FM=BC﹣CF=6﹣6t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣6t)2=(6t)2解得:t=;过点O作ON⊥CD于点N,则在Rt△OEN中,OE=CE=10﹣2t,EN=CE﹣CN=10﹣2t﹣5=5﹣2t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣2t)2=(10﹣2t)2解得:t=1.85.∵≠1.85,∴不存在实数t,使得点C′与点O重合三、解答题17.解:(1)连接EF,∵由题意可得FC是⊙D的直径,∴∠FEC=90°,∵AB=AC,∴∠B=∠ACB,∵AB=AC=5,cosB=,AE=1,∴EC=4,cosB=cos∠ACB===,解得:FC=5,则DC=2.5;(2)连接AF,过点A作AN⊥BC于点N,∵AB=5,cosB=,∴BN=4,∴AN=3,∵cosC=cosB=,∴NC=4,∴FN=1,∴AF=.18.解:设AB=x,在Rt△ACB和Rt△ADB中,∵∠C=30°,∠ADB=45°,CD=80∴DB=x,AC=2x,BC= = x,∵CD=BC﹣BD=80,x﹣x=80,∴x=40(+1)≈109.3米.答:该大厦的高度是109.3米.19. (1)83;82(2)解:列表如下由表格可知,所有等可能结果共25种,其中两人成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为.或树状图如下由树状图可知,所有等可能结果共25种,其中两人成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为.20.(1)解:设该直线解析式为y=kx+b(k≠0).则,解得.故该一次函数解析式为:y=2x+1(2)解:把x=﹣3代入(1)中的函数解析y=2x+1,得y=2×(﹣3)+1=﹣6+1=﹣5.即:y的值为﹣521.(1)解:如图所示,△A1B1C1即为所求作的三角形,A1(﹣1,4);(2)解:如图所示,△A2B2C2即为所求作的三角形,B2(0,﹣4).22. (1)证明:连接OC,∵ AB为⊙O的直径∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,即OC⊥PC,∴PC是⊙O的切线;(2)证明∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴PA∶PC=AC∶CB,∵CG⊥AB,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴AC∴CB=AD∶CD,∴PA∶PC=AD∶CD;(3)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P= ,∴sin∠FAD= ,在Rt△AFD中,AF=5,sin∠FAD= ,∴FD=3,AD=4,∴CD=8,在Rt△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在Rt△ABE中,∵sin∠EAD= ,∴,∵AB=20,∴BE=12.23.(1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线(2)证明:连接AC,如图2所示:∵OF⊥BC,∴= ,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴= ,∴CE2=EH•EA(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE= ,∴AB=5,BE=AB•sin∠BAE=5× =3,∴EA= =4,∵= ,∴BE=CE=3,∵CE2=EH•EA,∴EH= ,∴在Rt△BEH中,BH= = =24. (1)解:∵∴∠EON=2∠EHN∵在四边形ODFK中∠EON+∠OKF+∠ODF+∠KFP=360°∵MN⊥CH,AB⊥OE∴∠OKF=90°,∠ODF=90°∴∠EON+∠KFP=180°∵∠KFD+∠KFB=180°∴∠EON=∠KFB∴∠KFB=2∠EHN。

2020-2021学年广东省九年级上册数学(人教版)期末考试复习:第24章《圆》解答题精选

2020-2021学年广东省九年级上册数学(人教版)期末考试复习:第24章《圆》解答题精选

第24章《圆》解答题精选1.(2019秋•白云区期末)如图,在△ABC中,边BC与⊙A相切于点D,∠BAD=∠CAD.求证:AB=AC.2.(2019秋•怀集县期末)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.3.(2019秋•金平区期末)如图,⊙O的直径AB=10,点C为⊙O上一点,连接AC、BC.(1)作∠ACB的角平分线,交⊙O于点D;(2)在(1)的条件下,连接AD.求AD的长.4.(2019秋•龙湖区期末)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.5.(2019秋•新会区期末)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP =∠A.(1)求证:直线PC是⊙O的切线;(2)若CA=CP,⊙O的半径为2,求CP的长.6.(2019秋•阳江期末)如图,AB是⊙O的直径,弦EF⊥AB,垂足为C,∠A=30°,连结BE,M为BE 的中点,连结MF,过点F作直线FD∥AE,交AB的延长线于点D.(1)求证:FD是⊙O的切线;(2)若MF=√7,求⊙O的半径.7.(2019秋•端州区期末)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.8.(2019秋•番禺区期末)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB =13,BC=12.(1)求BF的长;(2)求⊙O的半径r.9.(2019秋•香洲区期末)如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC,作CD平分∠ACB交AB于点E,交⊙O于点D.连结PC,BD.(1)求证:PC为⊙O的切线;(2)求证:BD=√2P A;(3)若PC=6√3,求AE的长.10.(2019秋•南沙区期末)如图,在Rt△ABC中,∠C=90°,点E在边AB上,点D在边BC上,且AE 是⊙O的直径,∠CAB的平分线于⊙O相交于点D.(1)证明:直线BC是⊙O的切线;(2)连接ED,若ED=4,∠B=30°,求边AB的长.11.(2019秋•斗门区期末)如图,已知点D在⊙O的直径AB延长线上,点C为⊙O上,过D作ED⊥AD,与AC的延长线相交于E,CD为⊙O的切线,AB=2,AE=3.(1)求证:CD=DE;(2)求BD的长;(3)若∠ACB的平分线与⊙O交于点F,P为△ABC的内心,求PF的长.12.(2019秋•中山市期末)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.13.(2019秋•黄埔区期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=10cm,CD=16cm,求AE 的长.14.(2019秋•潮南区期末)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG的长.15.(2019秋•东莞市期末)如图,AE是⊙O的直径,半径OC⊥弦AB,点D为垂足,连接BE、EC.(1)若∠BEC =26°,求∠AOC 的度数;(2)若∠CEA =∠A ,EC =6,求⊙O 的半径.16.(2019秋•雷州市期末)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AD 平分∠CAB ,过点D 作AC的垂线,与AC 的延长线相交于E ,与AB 的延长线相交于点F ,G 为AB 的下半圆弧的中点,DG 交AB 于H ,连接DB 、GB .(1)证明EF 是⊙O 的切线;(2)求证:∠DGB =∠BDF ;(3)已知圆的半径R =5,BH =3,求GH 的长.17.(2019秋•惠城区期末)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A 、B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,若AC =FC .(1)求证:AC 是⊙O 的切线:(2)若BF =8,DF =√40,求⊙O 的半径;(3)若∠ADB =60°,BD =1,求阴影部分的面积.(结果保留根号)18.(2018秋•增城区期末)如图,⊙O 的直径为AB ,点C 在圆周上(异于点A ,B ),AD ⊥CD ,∠CAD =∠CAB .求证:直线CD 是⊙O 的切线.19.(2018秋•黄埔区期末)如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且满足BB̂=BB ̂,过点C 作⊙O 的切线交AB 的延长线于D 点,交AF 的延长线于E 点.(1)求证:AE ⊥DE ;(2)若∠CBA =60°,AE =3,求AF 的长.20.(2018秋•天河区期末)如图,⊙O 中,OA ⊥BC ,∠AOB =50°,求∠ADC 的度数.21.(2018秋•番禺区期末)如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交边AB 与点D ,以A 为圆心,AD 长为半径画弧,交边AC 于点E ,连接CD .(1)若∠A =28°,求∠ACD 的度数;(2)设BC =a ,AC =b .⊙线段AD 的长是方程x 2+2ax ﹣b 2=0的一个根吗?为什么?⊙若AD =EC ,求B B 的值. 22.(2018秋•海珠区期末)如图,已知:AB 为⊙O 直径,PQ 与⊙O 交于点C ,AD ⊥PQ 于点D ,且AC 为∠DAB 的平分线,BE ⊥PQ 于点E .(1)求证:PQ 与⊙O 相切;(2)求证:点C 是DE 的中点.23.(2018秋•白云区期末)已知如图1,在△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于D ,过点D 作⊙O 的切线交BC 于点E .(1)求证:∠B =∠ACD ,DE =12BC ; (2)已知如图2,BG 是△BDE 的中线,延长ED 至点F ,使ED =FD ,求证:BF =2BG .24.(2018秋•饶平县期末)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.25.(2018秋•惠城区期末)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.26.(2018秋•白云区期末)⊙O的直径为10cm,AB、CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,求AB和CD之间的距离.27.(2018秋•惠城区期末)如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=2√3,求阴影部分的面积.28.(2018秋•徐闻县期末)如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;̂的长度.(2)若∠CAB=30°,BC=4,求劣弧BB29.(2018秋•江海区期末)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.30.(2018秋•江海区期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.第24章《圆》解答题精选参考答案与试题解析一.解答题(共30小题)1.【解答】解:∵BC与⊙A相切于点D,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.2.【解答】证明:连接OD,∵AB是⊙O的直径,∴OA=OB=OD,∵BC是⊙O的切线,∴∠OBC=90°,∵OC∥AD,∴∠A=∠COB,∠ODA=∠COD,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠COB,在△COD和△COB中,{BB=BBBBBB=BBBB BB=BB,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴OD⊥CD,∴DC是⊙O的切线.3.【解答】解:(1)如图,射线CD为所求.(2)连接OD,∵⊙O的直径AB=10,∴∠ACB=90°,AO=DO=5.∵CD平分∠ACB,∴∠BBB=12BBBB=45°.∴∠AOD=2∠ACD=90°.在Rt△AOD中,BB=√BB2+BB2=√52+52=5√2.4.【解答】证明:(1)如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为10,∴OF=2x﹣10,在Rt△OEF中,OE2=OF2+EF2,即102=x2+(2x﹣10)2,解得x=8,∴EF=8,∴BE=2EF=16.5.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC =√42−22=2√3.6.【解答】(1)证明:连接OE ,OF ,如图1, ∵EF ⊥AB ,AB 是⊙O 的直径,∴∠DOF =∠DOE ,∵∠DOE =2∠A ,∠A =30°,∴∠DOF =60°,∵∠D =30°,∴∠OFD =90°.∴OF ⊥FD .∴FD 为⊙O 的切线;(2)解:连接OM .如图2所示:∵AB 为⊙O 的直径,∴O 为AB 中点,∠AEB =90°.∵M 为BE 的中点,∴OM ∥AE ,OM =12AE ,∵∠A =30°,∴∠MOB =∠A =30°.∵∠DOF =2∠A =60°,∴∠MOF =90°,∴OM 2+OF 2=MF 2.设⊙O 的半径为r .∵∠AEB =90°,∠A =30°,∴BE =12AB =r ,AE =√3BE =√3r ,∴OM =12AE =√32r , ∵FM =√7,∴(√32r )2+r 2=(√7)2. 解得r =2(舍去负根),∴⊙O 的半径为2.7.【解答】解:(1)连接OC ,在△OAD 和△OCD 中,{BB =BB BB =BB BB =BB ,∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,又AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)证明:∵AB =2BC ,∴设BC =a 、则AC =2a , ∴AD =AB =√BB 2+BB 2=√B 2+(2B )2=√5a ,∵OE ∥BC ,且AO =BO ,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE =√BB 2−BB 2=√5B 2−B 2=2a ,在△AOD 中,AO 2+AD 2=(√52B )2+(√5a )2=254a 2,OD 2=(OE +DE )2=(12a +2a )2=254a 2, ∴AO 2+AD 2=OD 2,∴∠OAD =90°,则DA 与⊙O 相切.8.【解答】解:(1)在Rt △ABC 中,∵∠C =90°,AB =13,BC =12, ∴AC =√BB 2−BB 2=√132−122=5,∵⊙O 为Rt △ABC 的内切圆,切点分别为D ,E ,F ,∴BD =BF ,AD =AE ,CF =CE ,设BF =BD =x ,则AD =AE =13﹣x ,CF =CE =12﹣x ,∵AE +EC =5,∴13﹣x +12﹣x =5,∴x =10,∴BF =10.(2)连接OE ,OF ,∵OE ⊥AC ,OF ⊥BC ,∴∠OEC =∠C =∠OFC =90°,∴四边形OECF 是矩形,∴OE =CF =BC ﹣BF =12﹣10=2.即r =2.9.【解答】解:(1)连接OC,∵∠BAC=60°,且OA=OC,∴∠OCA=∠OAC=60°.∵AP=AC,且∠P+∠PCA=∠BAC=60°,∴∠P=∠PCA=30°.∴∠PCO=∠PCA+∠ACO=90°.∴PC为切线;(2)连结AD.∵CD平分∠ACB,且∠ACB=90°,∴∠ACD=∠BCD=45°.∴AD=BD.∵在Rt△ADB中,AD2+BD2=AB2.∴AD=BD=√22 AB,又∵OA=OC,∠CAO=60°,∴△ACO为等边三角形,∴AC=CO=AO.∴P A=AC=AO=12 AB.∴BD=√2P A;(3)∵∠PCE=∠PCA+∠ACD=75°,∠P=30°,∴∠PEC=75°,∴PC=PE=6√3.又在Rt△PCO中,OP=OA+P A=2OC,PO2=PC2+CO2,∴CO=6,PO=12.∴OE=OP﹣PE=12﹣6√3,∴AE=OA﹣OE=OC﹣OE=6﹣(12﹣6√3)=6√3−6.10.【解答】解:(1)证明:连接OD∵AD平分∠CAB,∴∠CAD=∠BAD,∵在⊙O 中,OA =OD ,∴∠OAD =∠ADO ,∴∠CAD =∠ADO ,∴AC ∥OD ,∵Rt △ABC 中,∠C =90°∴OD ⊥BC ,∴直线BC 为圆O 的切线(2)如上图:连接DE ,∵Rt △ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°,∵由(1)可得:AC ∥OD ,∴∠DOB =60°,∴△DOE 为等边三角形,OD =OE =DE =4,∴OA =OD =4,∵由(1)可得∠ODB =90°,且∠B =30°, ∴在Rt △ODB 中,OB =2OD =8,∴AB =OA +OB =12.11.【解答】解:(1)证明:如图,连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠ACO +∠ECD =90°,∵ED ⊥AD ,∴∠A +∠E =90°,∵OA =OC ,∴∠A =∠ACO ,∴∠E =∠DCE ,∴CD =DE .(2)方法一:∵AB =2,∴OA =OB =OC =1,∵OC ⊥CD ,∴由勾股定理可得,CD 2=(1+BD )2﹣12,∵ED ⊥AD ,∴由勾股定理可得,DE 2=32﹣(2+BD )2,∵CD =DE ,∴(1+BD )2﹣12=32﹣(2+BD )2,∴BB =−3+√192或−3−√192(舍去). 方法二:由弦切角定理得∠DCB =∠DAC ,∵∠CDB =∠ADC ,∴△CDB ∽△ADC ,∴BB BB =BB BB ,即CD 2=AD •BD =(2+BD )•BD ,∵ED ⊥AD ,∴由勾股定理可得,DE 2=32﹣(2+BD )2,∵CD =DE ,∴(2+BD )•BD =32﹣(2+BD )2,解得BB =−3+√192或−3−√192(舍去). (3)如图,连接BF ,PB ,AF ,∵CF 平分∠ACB ,∴BB̂=BB ̂, ∴AF =BF ,∵AB 为直径,AB =2,∴BB =BB =√2,∵P 为△ABC 的内心,∴∠1=∠2,∠CBP =∠ABP ,∵∠1=∠3,∴∠2=∠3,∴∠2+∠CBP =∠3+∠ABP ,∴∠FPB =∠FBP ,∴BB =BB =√2.方法二:如图,连接AF ,BF ,AP ,∵CF 平分∠ACB ,∴BB̂=BB ̂, ∴∠ACF =∠ABF =∠BAF ,∴AF =BF ,∵AB 为直径,AB =2,∴BB =BB =√2,∵P 为△ABC 的内心,∴AP 平分∠CAB ,∴∠CAP =∠BAP ,∵∠P AF =∠BAP +∠BAF ,∠APF =∠CAP +∠ACF , ∴∠P AF =∠APF ,∴BB =BB =√2.12.【解答】解:连接OC ,如图,∵AB 是⊙O 的直径,AB =10,∴OC =OA =5,∵CD ⊥AB ,∴CE =DE =12CD =12×8=4, 在Rt △OCE 中,OC =5,CE =4,∴OE =√BB 2−BB 2=3,∴AE =OA ﹣OE =5﹣3=2.13.【解答】解:∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴OE =√BB 2−BB 2=√102−82=6(cm ),∴AE =AO +OE =10+6=16(cm ).14.【解答】解:(1)BD 与⊙O 相切,理由:如图1,连接OB ,∵OB =OF ,∴∠OBF =∠OFB ,∵∠ABC =90°,AD =CD ,∴BD =CD ,∠EBF =90°,∴∠C =∠DBC ,EF 为直径,∴点O 在EF 上,∵∠C =∠BFE ,∴∠DBC =∠OBF ,∵∠CBO +∠OBF =90°,∴∠DBC +∠CBO =90°,∴∠DBO =90°,∴BD 与⊙O 相切;(2)如图2,连接CF ,HE ,∵∠CDE =90°,∠ABC =90°,∴∠DEC =∠A ,∵∠CED =∠FEB ,∴∠FEB =∠A .∵AB =BE ,∠ABC =∠CBF =90°,∴△ABC ≌△EBF (ASA ),∵BC =BF ,∴CF =√2BF ,∵DF 垂直平分AC ,∴AF =CF =AB +BF =1+BF =√2BF ,∴BF =√2+1,∴EF =√BB 2+BB 2=√4+2√2,∵∠CBF =90°,∴EF 是⊙O 的直径,∴⊙O 的面积=(12EF )2•π=4+2√24π=2+√22π;(3)∵AB =BE ,∠ABE =90°,∴∠AEB =45°,∵EA =EC ,∴∠C =22.5°,∴∠H =∠BEG =∠CED =90°﹣22.5°=67.5°, ∵BH 平分∠CBF ,∴∠EBG =∠HBF =45°,∴∠BGE =∠BFH =67.5°,∴BG =BE =1,BH =BF =1+√2,∴HG =BH ﹣BG =√2.15.【解答】解:(1)∵OC ⊥AB , ∴BB̂=BB ̂, ∴∠CEB =∠AEC =26°,由圆周角定理得,∠AOC =2∠AEC =52°;(2)连接AC∵AE 是⊙O 的直径,∴∠ABE =∠ACE =90°,∴∠AEB +∠A =90°,∵∠CEA =∠A ,∠CEB =∠AEC ,∴∠A =∠AEC =30°,∴AE =BB BBB30°=4√3, ∴⊙O 的半径为2√3.16.【解答】解:(1)证明:连接OD ,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(2)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=2.∴GH=√BB2+BB2=√2917.【解答】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=(√40)2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD 为等腰直角三角形,∴OB =√22BD =√22, ∴OA =√22, ∵∠AOB =2∠ADB =120°,∴∠AOE =60°,在Rt △OAC 中,AC =√3OA =√62, ∴阴影部分的面积=12•√22•√62−60⋅B ⋅(√22)2360=3√3−B 12.18.【解答】证明:连接OC ,∵OA =OC , ∴∠OAC =∠OCA ,∵∠CAD =∠CAB ,∴∠CAD =∠ACO ,∴OC ∥AD ,∵AD ⊥DC ,∴∠ADC =90°,∴∠OCD =90°,∴∠OCA +∠ACD =∠OCD =90°,∴CD 是⊙O 的切线.19.【解答】(1)证明:连接OC ,∵OC =OA ,∴∠BAC =∠OCA ,∵BB ̂=BB ̂,∴∠BAC =∠EAC ,∴∠EAC =∠OCA ,∴OC ∥AE ,∵DE 切⊙O 于点C ,∴OC ⊥DE ,∴AE ⊥DE ;(2)解:∵AB 是⊙O 的直径,∴△ABC 是直角三角形,∵∠CBA =60°,∴∠BAC =∠EAC =30°,∵△AEC 为直角三角形,AE =3,∴AC =2√3,连接OF ,∵OF =OA ,∠OAF =∠BAC +∠EAC =60°, ∴△OAF 为等边三角形,∴AF =OA =12AB ,在Rt △ACB 中,AC =2√3,∠CBA =60°,∴AB =BB BBB60°=√3√32=4, ∴AF =2.20.【解答】解:∵⊙O 中,OA ⊥BC , ∴BB̂=BB ̂, ∴∠ADC =12∠AOB =12×50°=25°. 21.【解答】解:(1)∵∠ACB =90°,∠A =28°, ∴∠B =62°,∵BD =BC ,∴∠BCD =∠BDC =59°,∴∠ACD =90°﹣∠BCD =31°;(2)⊙由勾股定理得,AB =√BB 2+BB 2=√B 2+B 2, ∴BB =√B 2+B 2−B ,解方程x 2+2ax ﹣b 2=0得,x =−2B ±√4B 2+4B 22=±√B 2+B 2−B , ∴线段AD 的长是方程x 2+2ax ﹣b 2=0的一个根; ⊙∵AD =AE ,∴AE =EC =B 2,由勾股定理得,a 2+b 2=(12B +B )2,整理得,BB =34. 22.【解答】证明:(1)连接OC ,∵AC 平分∠DAB∴∠DAC =∠CAO ,∵OA =OC ,∴∠OAC =∠OCA∴∠DAC =∠ACO∴AD ∥OC ,且AD ⊥PQ∴OC ⊥PQ ,且OC 为半径∴PQ 与⊙O 相切(2)∵OC ⊥PQ ,AD ⊥PQ ,BE ⊥PQ ∴OC ∥AD ∥BE∴BB BB =BB BB =1∴DC =CE∴点C 是DE 的中点.23.【解答】证明:(1)∵∠ACB =90, ∴∠ACD +∠BCD =90°,∵AC 为⊙O 的直径,∴∠ADC =∠BDC =90°,∴∠B +∠BDC =90°,∴∠B =∠ACD ,连接OD ,如图1,∵DE 为⊙O 的切线,∴∠ODE =∠ODC +∠CDE =90°, ∵∠CDE +∠BDE =90°,∵OC =OD ,∴∠ACD =∠ODC ,∴∠ODC =∠BDE =∠B ,∴DE =BE ,同理可得DE =CE ,∴CE =BE ,Rt △CDB 中,DE =12BC ;(2)如图2,由(1)知:BE =DE , ∵ED =FD , ∴BE =12EF ,∵BG 是△BDE 的中线,∴EG =DG =12DE ,∴BB BB=BB BB =12 ∵∠BEG =∠BEF ∴△BEG ∽△FEB ∴BB BB =BB BB =12∴BF =2BG .24.【解答】证明:过点O作OE⊥AB于点E,∵在⊙O中,OE⊥CD,∴CE=DE,∵OA=OB,OE⊥AB,∴AE=BE,∴AE﹣CE=BE﹣DE,∴AC=BD.25.【解答】(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=54⋅B⋅3180=910π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.26.【解答】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥CD,交CD于点E,交AB于点F,连接OC,OA,∵AB ∥CD ,∴OE ⊥AB ,∴E 、F 分别为CD 、AB 的中点,∴CE =DE =12CD =3cm ,AF =BF =12AB =4cm ,在Rt △AOF 中,OA =5cm ,AF =4cm ,根据勾股定理得:OF =3cm ,在Rt △COE 中,OC =5cm ,CE =3cm ,根据勾股定理得:OE ═4cm ,则EF =OE ﹣OF =4cm ﹣3cm =1cm ;当两条弦位于圆心O 两侧时,如图2所示,同理可得EF =4cm +3cm =7cm ,综上,弦AB 与CD 的距离为7cm 或1cm .27.【解答】解:连接OD .∵CD ⊥AB ,∴CE =DE =12CD =√3(垂径定理),故S △OCE =S △ODE ,∴S 阴=S 扇形OBD ,又∵∠CDB =30°,∴∠COB =60°(圆周角定理),∴OC =2, 故S 扇形OBD =60B ⋅22360=2B 3,即阴影部分的面积为2B 3. 28.【解答】(1)证明:∵AD 平分∠EAC ,∴∠EAD =∠CAD ,∵A ,D ,C ,B 四点共圆,∴∠EAD =∠DCB ,由圆周角定理得,∠CAD =∠CBD ,∴∠DCB =∠DBC ,∴DB =DC ;(2)解:由圆周角定理得,∠COB =2∠CAB =60°,∠CDB =∠CAB =30°, ∴△COB 为等边三角形,∴OC =BC =4,∵DC =DB ,∠CDB =30°,∴∠DCB =75°,∴∠DCO =15°,∴∠COD =150°,则劣弧BB ̂的长=150B ×4180=103π.29.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=12∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3√3cm,∴光盘的直径为6√3cm.30.【解答】证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.。

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

2019-2020学年广东省广州市越秀区九年级上学期期末考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;2. 用配方法解一元二次方程2450x x --=,此方程可变形为( )A. ()229x -=B. ()229x +=C. ()221x +=D. ()221x -= 【答案】A【解析】【分析】先把常数项移到等式右边,再两边同时加上4,等式左边可以凑成完全平方的形式.【详解】解:2450x x --=24454x x -+=+ ()229x -=.故选:A .【点睛】本题考查配方法,解题的关键是掌握配方法的方法.3. 若将抛物线y=5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x ﹣2)2+1B. y=5(x+2)2+1C. y=5(x ﹣2)2﹣1D. y=5(x+2)2﹣1【答案】A【解析】 试题解析:将抛物线25y x =向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是()252 1.y x =-+故选A . 点睛:二次函数图像的平移规律:左加右减,上加下减.4. 已知A 1122(,)(,)x y B x y 、为二次函数()21y x k =--+图象上两点,且1x <2x <1,则下列说法正确的是( ) A. 120y y +> B. 120y y +< C. 12 0y y -> D. 12 0y y -<【答案】D【解析】【分析】 根据二次函数解析式得到函数图象的性质,开口向下,在对称轴左边,y 随着x 的增大而增大,从而得到因变量的大小关系.【详解】解:二次函数()21y x k =--+的对称轴是直线1x =,且开口向下,在对称轴左边,y 随着x 的增大而增大,∵1x <2x <1,∴12y y <,即120y y -<.故选:D .【点睛】本题考查二次函数的图象和性质,解题的关键是根据顶点式得出函数图象的性质.5. 下列事件为必然事件的是( )A. 掷一枚硬币,正面朝上B. 弦是直径C. 等边三角形的中心角是120︒D. 位似的两个三角形的对应边互相平行【答案】C【解析】【分析】根据必然事件的定义判断出正确选项.【详解】A是随机事件,抛一枚硬币不一定正面朝上;B是随机事件,弦不一定是直径;C是必然事件;D是随机事件,位似三角形的对应边也可能重合.故选:C.【点睛】本题考查必然事件的定义,解题的关键是掌握必然事件的定义.6. 如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A. 7B. 7.5C. 8D. 8.5【答案】B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.7. 如图,在△ABC中,CD,BE分别是△ABC的边AB,AC上的中线,则DEFBCFSS=()A.25B.12C.13D.14【答案】D【解析】【分析】根据中位线定理得到//DE BC和12DE BC=,再利用DEF CBF△△的性质得到它们的面积比.【详解】解:∵CD,BE分别是边AB,AC上的中线,∴//DE BC,12DE BC=,∴DEF CBF△△,∴214DEFBCFS DES CB⎛⎫==⎪⎝⎭.故选:D.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.8. 如图,AB、AC为O的两条切线,50BAC∠=︒,点D是BC上一点,则BDC∠的大小是()A. 100︒B. 110︒C. 115︒D. 125︒【答案】C【解析】【分析】连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,首先求出∠BOC,再根据∠BD′C=12∠BOC,∠BDC+∠BD′C=180°,即可解决问题.【详解】解:连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,如图,∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠ABO=∠ACO=90°,∵∠BAC=50°,∴∠BOC=360°-90°-90°-50°=130°,∴∠BD′C=12∠BOC=65°,∴∠BDC=180°-65°=115°,故选:C.【点睛】本题考查切线的性质、圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线.9. 《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A. 13寸B. 20寸C. 26寸D. 28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题10. 如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到BC D'△,BC'与边AD交于点E.若AB=x1,BC=2x2,DE=3,其中x1、x2是关于x的方程x2﹣4x+m=0的两个实根,则m的值是()A. 165B.125C. 3D. 2【答案】A 【解析】分析】利用根与系数的关系得到x1+x2=4,x1x2=m,AB+12BC=4,m=AB×12BC,再利用折叠的性质和平行线的性质得到∠EBD=∠EDB,则EB=ED=3,所以AE=AD−DE=5−2AB,利用勾股定理得到AB2+(5−2AB)2=32,解得AB=10255-或AB=1055+,则BC=20455+,然后计算m的值.【详解】∵x1、x2是关于x的方程x2−4x+m=0的两个实根,∴x1+x2=4,x1x2=m,即AB+12BC=4,m=AB×12BC,∵△BCD沿BD翻折得到△BC′D,BC′与边AD交于点E,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC −3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题(本大题共6小题,每小题3分,共18分)11. 关于x 的方程()21210m x mx +++=是一元二次方程,则m 的取值范围是_____. 【答案】1m ≠-【解析】【分析】根据定义,一元二次方程的二次项系数不能是0,求出m 的取值范围.【详解】解:∵方程()21210m x mx +++=是一元二次方程, ∴10m +≠,即1m ≠-.故答案是:1m ≠-.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.12. 在平面直角坐标系中,有两点A (1,2),B (3,1),以原点O 为位似中心,将△OAB 放大为原来的3倍,得到OA B ''△,则点A 的对应点A '的坐标是_______.【答案】()3,6或()3,6--【解析】根据位似图形的定义,以原点O 为位似中心,将原三角形放大3倍,则对应点坐标也变为原来的3倍.【详解】解:以原点O 为位似中心,将△OAB 放大为原来的3倍,则点A 的横纵坐标都变为原来的3倍,对应的点A '()3,6或()3,6--.故答案是:()3,6或()3,6--.【点睛】本题考查位似图形,解题的关键是掌握位似图形的定义.13. 一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.【答案】m +n =10.【解析】【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同, ∴m 与n 的关系是:m +n =10.故答案为m +n =10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14. 若圆锥的底面半径是2,侧面展开图是一个圆心角为120︒的扇形,则该圆锥的母线长是________.【答案】6【解析】【分析】先根据圆锥的底面半径求出底面圆周长,也就是侧面图扇形的弧长,再利用弧长公式求出扇形半径,也就是圆锥的母线.【详解】解:∵圆锥的底面半径是2,∴底面圆周长是4π,即展开后的扇形弧长是4π, 根据弧长公式:180n r l =︒π, 得1204180r ππ︒=︒,解得6r =,即该圆锥的母线长是6. 故答案是:6.【点睛】本题考查扇形和圆锥的有关计算,解题的关键是掌握扇形的弧长公式,以及圆锥和侧面展开的扇15. 如图,已知点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (0a ≠)上两点,A 是抛物线的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标是_____.【答案】(2.4,0)【解析】【分析】根据点B (3,3)、C (0,6)是抛物线24y ax x c =-+(a≠0)上两点,可以求得该抛物线的解析式,从而可以求得顶点A 的坐标,然后即可得到点A 关于x 轴的对称点的坐标,则点A 关于x 轴的对称点的坐标与点B 所连直线与x 轴的交点即为所求的点P 的坐标.【详解】解:∵点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (a ≠0)上两点, ∴91236a c c -+=⎧⎨=⎩,得16a c =⎧⎨=⎩ , ∴抛物线解析式为2246(22)y x x x =-+=-+,∴点A 的坐标为(2,2),点A 关于x 轴的对称点的坐标为(2,−2),则点(2,−2)与点B (3,3)所连直线与x 轴的交点即为所求的点P ,此时P A +PB 最小,设过点(2,−2)与点B (3,3)的直线解析式为y =kx +b , 2233k b k b +=-⎧⎨+=⎩,得512k b =⎧⎨=-⎩ , 即过点(2,−2)与点B (3,3)的直线解析式为y =5x −12,当y =0时,0=5x −12,得x =2.4,∴点P 的坐标为(2.4,0),故答案为:(2.4,0).【点睛】本题考查了二次函数的性质、二次函数上点的坐标特征、对称轴最短路径问题,解本题的关键是明确题意,利用二次函数的性质和数形结合思想解答.16. 如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.【答案】16【解析】【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=, ∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8,∴222=64AB BC BC AB ++⨯,∴4464ABC ADC S S +=,∴=16ABC ADC ABCD S S S +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.三、解答题(本大题共9题,共102分,解答应写出文字说明、证明过程或演算步骤.)17. 解方程:22320x x --= 【答案】12x =,212x =- 【解析】 【分析】利用公式法求出24b ac =-△,继而求一元二次方程的解; 【详解】∵2a =,3b =-,2c =-, ∴()()224342225b ac -=--⨯⨯-=,∴32522x ±=⨯,∴12x =,212x =-. 【点睛】本题考查了解一元二次方程的方法,公式法:先求出24b ac =-△,继而用b x -±=△求出解即可,是基础性考点;18. 在平面直角坐标系中, OAB △的位置如图所示,且点A (-3,4),B (2,1),将 OAB △绕点O 顺时针旋转90︒后得到 OA B ''△. (1)在图中画出 OA B ''△;(2)求点A 在旋转过程中所走过的路线长.【答案】(1)见解析;(2)52π【解析】 【分析】(1)将点A 绕着点O 顺时针旋转90︒得到点A ',用同样的方法得到点B ',就可以画出OA B ''△; (2)先算出AO 的长度,再利用弧长公式求出路线长. 【详解】解:(1)如图所示:(2)22345AO =+=,90551802l ππ︒⨯==︒.【点睛】本题考查图形的旋转和弧长公式,解题的关键是掌握画旋转图形的方法和弧长公式的运用. 19. 已知抛物线2y x 2x 3=-++. (1)该抛物线的对称轴是_____;(2)选取适当的数据填入下表,并在如图的直角坐标系内描点画出该抛物线的图象:x…………y …… ……(3)根据函数的图象,直接写出不等式2230x x -++>的解.【答案】(1)1x =;(2)见解析;(2)13x【解析】 【分析】(1)利用对称轴公式求出抛物线的对称轴; (2)利用5点作图法列出表格并画出图象;(3)不等式的解表示:函数图象在x 轴上方时,x 的取值范围,根据图象得出解集. 【详解】解:(1)2122bx a , 对称轴是直线1x =, 故答案是:1x =;(2)令1x =-,则1230y =--+=, 令0x =,则3y =,令1x =,则1234y =-++=, 令2x =,则4433y =-++=, 令3x =,则9630y =-++=,x …… -1 0 1 2 3 …… y……343……图象如图所示:(3)不等式2230x x -++>的解表示:函数图象在x 轴上方时,x 的取值范围, 根据图象得不等式的解是:13x.【点睛】本题考查二次函数的图象和性质,解题的关键是掌握二次函数的图象的画法,以及利用函数图象去解不等式.20. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,ADE 60∠=︒. (1)求证:BAD CDE ∠=∠;(2)若BD=4,CE=2,求△ABC 的边长.【答案】(1)见解析;(2)8 【解析】 【分析】(1)根据等边三角形的性质得到60B ADE ∠=∠=︒,再根据外角和定理证明结论; (2)根据(1)的结论证明ABD DCE △△,利用相似三角形对应边成比例列式求出CD 的长,就可以得到三角形ABC 的边长.【详解】解:(1)∵ABC 是等边三角形, ∴60B ∠=︒, ∵60ADE ∠=︒, ∴B ADE ∠=∠,∵BAD B ADC ADE CDE ∠+∠=∠=∠+∠, ∴BAD CDE ∠=∠;(2)∵BAD CDE ∠=∠,60B C ∠=∠=︒, ∴ABD DCE △△,∴AB BDDC CE=, 设DC x =,则4AB BC x ==+, ∴442x x +=,解得4x =, ∴448BC =+=,即△ABC 的边长是8.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定定理. 21. 有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字-1,0,1,2;B 布袋中有二个除标号外完全相同的小球,小球上分别标有数字0,1.小明先从A 布袋中随机取出一个小球,用m 表示取出的球上标有的数字 ,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字. (1)若用(m n ,)表示小明取球时m n 与的对应值,请用树状图或列表法表示()m n ,的所有取值; (2)求关于x 的一元二次方程2102x mx n -+=有实数根的概率. 【答案】(1)见解析;(2)58【解析】 【分析】(1)用列表的方法或树状图去表示所有可能性;(2)利用根的判别式算出m 和n 的关系式,找到符合条件的组合. 【详解】解:(1)如图:(2)要使一元二次方程202x mx n -+=有实数根,则0∆≥,即220m n -≥, 满足条件的组合有:()1,0-,()0,0,()1,0,()2,0,()2,1,∴概率是58.【点睛】本题考查概率求解,解题的关键是掌握通过画树状图或列表求解概率的方法.22. 有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.在甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元,依此类推,即每多买一台,则所买各台单价均再减20元;乙公司一律按原售价75%促销.某单位需购买一批图形计算器:(1)若此单位需购买4台图形计算器,应去哪家公司购买花费较少?(2)若该单位计划购买m台图形计算器,经过对比发现,在两家公司购买相差480元,试求m的值.【答案】(1)去乙公司购买花费少;(2)4或6或12【解析】【分析】(1)把数量4分别代入甲乙两家公司的计算即可求出到哪家公司购买花费较少;(2)把数量m分别代入甲乙两家公司计算,费用用含m表示,然后讨论①当去甲公司花费比乙公司多480元时;②当去甲公司花费比乙公司少480元时,分别列等式求出m的值即可.【详解】(1)去甲公司购买花费:(800-4×20)×4=2880(元),去乙公司购买花费:800×4×75%=2400(元),∵2880>2400,∴去乙公司购买花费少(2)去甲公司购买花费:m(800-20m)=800m-20m2,去乙公司购买花费:800×75%m=600m,∴在两家公司购买相差480元,∴当去甲公司花费较多时,800m-20m2=600m+480 整理得:m2-10m+24=0 解得:m1=4,m2=6 当去甲公司花费较少时,800m-20m2=600m-480 整理得:m2-10m-24=0,解得:m1=12,m2=-2(舍去)综上m的值为4或6或12.【点睛】本题考查了利用方程思想解决生活中的数学问题.只要把握住总花费=单价×数量这一等量关系,注意分情况讨论“两家公司购买相差480元”是解答此题的易漏点 . 23. 如图,在△ABC 中,AB=AC=5,BC=6.(1)动手操作:利用尺规作以BC 为直径的圆O ,并标出圆O 与AB 的交点D ,与AC 的交点E ,连接DE (保留作图痕迹,不写作法); (2)综合应用:在你所作的圆中, ①求证:DE//BC ; ②求线段DE 的长.【答案】(1)见解析;(2)①见解析;②4225DE = 【解析】 【分析】(1)作BC 的垂直平分线得到BC 的中点O ,以O 为圆心,BO 的长为半径画圆,得到圆O ; (2)①根据等腰三角形的性质即可证明结论;②根据三角形的面积和勾股定理即可求出线段DE 的长. 【详解】解:(1)如图所示:(2)①在ABC 中,AB AC =, ∴A ABC CB =∠∠, ∴DEC EDB =, ∴EC DB =,∴DEB CBE ∠=∠, ∴//DE BC ; ②∵//DE BC , ∴ADE ABC ,∴AE DEAC BC=, ∵5AB AC ==,6BC =, ∴3OB OC OE ===, ∴4AO =, 连接BE , ∵BC 是O 的直径,∴90BEC ∠=︒, ∴1122ABCSBC AO AC BE =⋅=⋅, ∴245BE =, 在Rt AEB 中,根据勾股定理,得222AE EB AB +=,即2222455AE ⎛⎫+= ⎪⎝⎭,解得75AE =, ∴7556DE =,解得4225DE =.【点睛】本题考查了尺规作图,等腰三角形的性质,勾股定理,圆周角定理和相似三角形的性质和判定,解题的关键是掌握这些几何性质进行证明求解.24. 如图,抛物线y =ax 2+(4a ﹣1)x ﹣4与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB ,点D 为线段OB 上一动点(不与点B 重合),过点D 作矩形DEFH ,点H 、F 在抛物线上,点E 在x 轴上. (1)求抛物线解析式;(2)当矩形DEFH 的周长最大时,求矩形DEFH 的面积;(3)在(2)的条件下,矩形DEFH 不动,将抛物线沿着x 轴向左平移m 个单位,抛物线与矩形DEFH 的边交于点M 、N ,连接M 、N .若MN 恰好平分矩形DEFH 的面积,求m 的值.【答案】(1)y=12x2+x﹣4;(2)10;(3)m的值为52.【解析】【分析】(1)先求出点C的坐标,由OC=2OB,可推出点B坐标,将点B坐标代入y=ax2+(4a﹣1)x﹣4可求出a的值,即可写出抛物线的解析式;(2)设点D坐标为(x,0),用含x的代数式表示出矩形DEFH的周长,用函数的思想求出取其最大值时x 的值,即求出点D的坐标,进一步可求出矩形DEFH的面积;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,依次求出直线BH,MN的解析式,再求出点M的坐标,即可得出m的值.【详解】解:(1)在抛物线y=ax2+(4a﹣1)x﹣4中,当x=0时,y=﹣4,∴C(0,﹣4),∴OC=4.∵OC=2OB,∴OB=2,∴B(2,0),将B(2,0)代入y=ax2+(4a﹣1)x﹣4,得:a=12,∴抛物线的解析式为y=12x2+x﹣4;(2)设点D坐标为(x,0).∵四边形DEFH为矩形,∴H(x,12x2+x﹣4).∵y=12x2+x﹣4=12(x+1)2﹣92,∴抛物线对称轴为x=﹣1,∴点H到对称轴的距离为x+1,由对称性可知DE=FH=2x+2,∴矩形DEFH的周长C=2(2x+2)+2(﹣1 2 x2﹣x+4)=﹣x2+2x+12=﹣(x﹣1)2+13,∴当x=1时,矩形DEFH周长取最大值13,∴此时H(1,﹣52),∴HF=2x+2=4,DH=52,∴S矩形DEFH=HF•DH=4×52=10;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,由(2)知,抛物线对称轴为x=﹣1,H(1,﹣52),∴G(﹣1,﹣54),设直线BH的解析式为y=kx+b,将点B(2,0),H(1,﹣52)代入,得:2052k bk b+=⎧⎪⎨+=-⎪⎩,解得:525kb⎧=⎪⎨⎪=-⎩,∴直线BH的解析式为y=52x﹣5,∴可设直线MN解析式为y=52x+n,将点(﹣1,﹣54)代入,得n=54,∴直线MN的解析式为y=52x+54,当y=0时,x=﹣12,∴M(﹣12,0).∵B(2,0),∴将抛物线沿着x轴向左平移52个单位,抛物线与矩形DEFH的边交于点M、N,连接M、N,则MN恰好平分矩形DEFH的面积,∴m的值为52.【点睛】本题考查了待定系数法求解析式,矩形的性质,函数思想求最大值,平移规律等,解题关键是知道过矩形对角线交点的直线可将矩形的面积分成相等的两半.25. 如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C 作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,AFAE是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【答案】(1)∠ADC=120°;(2)EF=1919,(3)有最大值,最大值为:1392【解析】【分析】(1)由四边形ABCD是平行四边形,得AB∥CB,进而即可得到答案;(2)作AH⊥CD交CD的延长线于H,由在Rt△ADH中,∠H=90°,∠ADH=60°,得A 3DH=12,结合勾股定理得AE=192,易证△AEH∽△CEF,得EH AEEF EC,进而即可求解;(3)作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.易得P A的值最大时,AFAE的值最大,P A的值最大=AN的长,根据勾股定理和三角函数的定义得DN12-,从而得AN=AD+DN=132+,进而即可得到答案.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CB,∴∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)作AH⊥CD交CD的延长线于H,如图1,∵在Rt△ADH中,∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60DH=AD•cos60°=12,∵DE=EC=32,∴EH=DH+DE=2,∴AE2==,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴EH AEEF=,∴2232EF=,∴EF=19.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.∵DE∥PF,∴AF AP AE AD=,∵AD是定值,∴P A的值最大时,AFAE的值最大,观察图形可知,当点F与点M重合时,P A的值最大,最大值=AN的长,由(2)可知,AHCH=72,∠H=90°,∴AC==∴OM=12AC,∵OK∥AH,AO=OC,∴KH=KC,∴OK=12 AH∴MK=NQ=2﹣4,在Rt△NDQ中,DN=1 sin6022NQ==-︒,∴AN=AD+DN=132+,∴AFAE的最大值=ANAD=12【点睛】本题主要考查平行四边形的性质,解直角三角形,相似三角形的判定与性质定理,圆的性质,添加辅助线,构造圆与相似三角形,是解题的关键.。

2019-2020学年广东省东莞市联考九年级(上)期末数学试卷(解析版)

2019-2020学年广东省东莞市联考九年级(上)期末数学试卷(解析版)

2019-2020学年广东省东莞市联考九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件 C.确定事件 D.不可能事件2.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=03.(3分)当x<0时,函数y=的图象在()A.第四象限B.第三象限 C.第二象限 D.第一象限4.(3分)下列图形,既是中心对称图形,又是轴对称图形的是()A.等边三角形B.平行四边形C.正五边形 D.正六边形5.(3分)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是()A.B.C.D.6.(3分)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)7.(3分)如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4 B.5 C.6 D.88.(3分)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10πcm2D.5πcm29.(3分)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0 B.y1>y2>0 C.y2<y1<0 D.y2>y1>010.(3分)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2二、填空题(共6小题,每小题4分,共24分)11.方程x2﹣2x=0的两个根是:x1=,x2=.12.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.13.抛物线y=﹣x2向上平移2个单位后所得的抛物线表达式是.14.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B 的大小为.15.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O 是位似中心.若DE=7.5,则AB=.16.如图,等腰Rt△ABC的直角边长为4,以A为圆心,直角边AB为半径作弧BC1,交斜边AC于点C1,C1B1⊥AB于点B1,设弧BC1,C1B1,B1B围成的阴影部分的面积为S1,然后以A为圆心,AB1为半径作弧B1C2,交斜边AC于点C2,C2B2⊥AB于点B2,设弧B1C2,C2B2,B2B1围成的阴影部分的面积为S2,按此规律继续作下去,得到的阴影部分的面积S3=.三、解答题(-)(共3小题,每小题6分,共18分)17.计算:π0+﹣()﹣118.先化简,再求值:,当a=﹣3时,求代数式的值.19.如图在⊙O中,OA是半径,OA=4.(1)用直尺和圆规作OA的垂直平分线BC,BC交OA于点D,交⊙O于点B、C(保留作图痕迹,不要求写作法);(2)在第(1)问的基础上,求线段BC的长度.四.解答题(二)(共3小题每小题7分,共21分)20.2018年2月16日,由著名导演林超贤的电影《红海行动》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)分别求出小亮和小丽获胜的概率.21.从甲地到乙地的火车原来的平均速度是100千米每小时,经过两次提速后平均速度为121千米每小时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)若甲乙两地铁路长220千米,求第一次提速后从甲地到乙地所用的时间比提速前少用了多少小时.22.如图所示,∠DBC=90°,∠C=45°,AC=2,△ABC绕点B逆时针旋转60°得到△DBE,连接AE.(1)求证:△ABC≌△ABE;(2)连接AD,求AD的长.五.解答题(三)(共3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy 内,函数y =的图象与反比例函数y =(k ≠0)图象有公共点A ,点A 的坐标为(8,a ),AB ⊥x 轴,垂足为点B .(1)求反比例函数的解析式;(2)点P 在线段OB 上,若AP =BP +2,求线段OP 的长;(3)点D 为射线OA 上一点,在(2)的条件下,若S △ODP =S △ABO ,求点D 的坐标.24.如图1,圆内接四边形ABCD ,AD =BC ,AB 是⊙O 的直径.(1)求证:AB ∥CD ;(2)如图2,连接OD ,作∠CBE =2∠ABD ,BE 交DC 的延长线于点E ,若AB =6,AD =2,求CE 的长;(3)如图3,延长OB 使得BH =OB ,DF 是⊙O 的直径,连接FH ,若BD =FH ,求证:FH 是⊙O 的切线.25.如图,在正方形ABCD 中,点E 在对角线BD 上,EF ∥AB 交AD 于点F ,连接BF .(1)如图1,若AB=4,DE=,求BF的长;(2)如图2.连接AE,交BF于点H,若DF=HF=2,求线段AB的长;(3)如图3,连接BF,AB=3,设EF=x,△BEF的面积为S,请用x的表达式表示S,并求出S的最大值;当S取得最大值时,连接CE,线段DB绕点D顺时针旋转30°得到线段DJ,DJ与CE交于点K,连接CJ,求证:CJ⊥CE.2018-2019学年广东省东莞市联考九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件即可得出答案.【解答】解:抛一枚硬币,可能正面朝上,也可能反面朝上,∴“抛一枚硬币,正面朝上”这一事件是随机事件.故选:B.【点评】本题主要考查了必然事件、随机事件、不可能事件的概念,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】在反比例函数y=图象上的点的横坐标与纵坐标的乘积为6,即可判断;【解答】解:反在比例函数y=图象上的点的横坐标与纵坐标的乘积为6,∴(﹣3,﹣2)在y=上,故选:B.【点评】本题考查反比例函数图象上点的特征,解题的关键是熟练掌握反比例函数y=图象上的点的横坐标与纵坐标的乘积为定值k.5.【分析】由两个相似三角形,其相似比3:2,根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:因为两个三角形的相似比是3:2,则其面积之比是9:4;故选:C.【点评】此题考查了相似三角形的性质.此题比较简单,注意相似三角形面积的比等于相似比的平方.6.【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7.【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点P(4,﹣2)关于原点对称的点的坐标是:(﹣4,2).故选:A.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.8.【分析】直接利用二次函数最值求法得出答案.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.【点评】此题主要考查了二次函数的应用,正确理解二次函数顶点坐标的意义是解题关键.9.【分析】连接BC,AB为⊙O直径,∠ACB=90°,求出∠B的度数,然后根据圆内接四边形的性质求出∠ADC的度数.【解答】解:连接BC.∵AB为⊙O直径,∴∠ACB=90°,∵∠CAB=20°,∴∠B=90°﹣20°=70°,在圆内接四边形ABCD中,∠ADC=180°﹣70°=110°.故选:B.【点评】本题考查了圆周角定理,圆内接四边形的性质,作出辅助线是解题的关键.10.【分析】在半径AO上运动时,s=OP2=t2;在弧BA上运动时,s=OP2=4;在BO上运动时,s=OP2=(4π+4﹣t)2,s也是t是二次函数;即可得出答案.【解答】解:利用图象可得出:当点P在半径AO上运动时,s=OP2=t2;在弧AB上运动时,s=OP2=4;在OB上运动时,s=OP2=(2π+4﹣t)2.故选:C.【点评】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.二、填空题(共6小题,每小题4分,共24分)11.【分析】直接利用提取公因式法分解因式解方程即可.【解答】解:x2﹣2x=0x(x﹣2)=0,解得:x1=0,x2=2.故答案为:0,2.【点评】此题主要考查了因式分解法解方程,正确分解因式是解题关键.12.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在20%左右得到比例关系,列出方程求解即可.【解答】解:由题意可得,×100%=20%,解得a=12.经检验:a=12是原分式方程的解,所以a的值约为12,故答案为:12.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.【分析】求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.【解答】解:∵抛物线y=﹣x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=﹣x2+2.故答案为:y=﹣x2+2.【点评】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.14.【分析】根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°﹣100°)=40°.故答案为:40°.【点评】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.15.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k得到位似比为,然后根据相似的性质计算AB的长.【解答】解:∵A(1.5,0),D(4.5,0),∴==,∵△ABC与△DEF位似,原点O是位似中心,∴==∴AB=DE=×7.5=2.5.故答案为2.5.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.【分析】每一个阴影部分的面积都等于扇形的面积减去等腰直角三角形的面积.此题的关键是求得AB2、AB3的长.根据等腰直角三角形的性质即可求解.【解答】解:根据题意,得AC1=AB=4.所以AC2=AB1=2.所以AC3=AB2=2.所以AB3=.所以阴影部分的面积S3=﹣×2=﹣1.【点评】此题综合运用了等腰直角三角形的性质和扇形的面积公式.三、解答题(-)(共3小题,每小题6分,共18分)17.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:π0+﹣()﹣1=1+2﹣3=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.19.【分析】(1)根据线段中垂线的尺规作图即可得;(2)由中垂线知OD=2,利用勾股定理求得BD的长,根据垂径定理即可得出答案.【解答】解:(1)如图所示,直线BC即为所求.(2)∵BC垂直平分OA,且OA=4,∴OD=2,则BD===2,∴BC=2BD=4.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握线段中垂线的尺规作图和垂径定理.四.解答题(二)(共3小题每小题7分,共21分)20.【分析】(1)利用树状图展示所有16种等可能的等可能的结果数;(2)找出次数字之和大于5的结果数和两次数字之和小于5的结果数,然后根据概率公式计算即可.【解答】解:(1)画树状图为:共有16种等可能的结果数;(2)因为两次数字之和大于5的结果数为6,所以小亮获胜的概率==,因为两次数字之和小于5的结果数为6,所以小丽获胜的概率==,【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21.【分析】(1)设年平均增长率为x,根据:原来速度×(1+增长率)2=现在的速度,列出方程求解可得;(2)先求得第一次提速后的速度,然后分别求得原时间和现时间,二者相减即可求得少用时间.【解答】解:(1)设该火车每次提速的百分率为x,根据题意得:100(1+x)2=121,解得:x=0.1=10%或x=﹣2.1(舍去)答:该火车每次提速的百分比为10%;(2)∵第一次提速后火车的平均速度为100(1+10%)=110千米/小时,∴第一次提速后从甲地到乙地所用的时间比提速前少用的时间为:=2.2﹣2=0.2(小时).【点评】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【分析】(1)根据旋转的性质得到∠DBE=∠ABC,∠EBC=60°,BE=BC,根据全等三角形的判定定理即可得到结论;(2)连接AD,根据旋转的性质得到DE=AC,∠BED=∠C,DE=AC=2,根据全等三角形的性质得到∠BEA=∠C,AE=AC=2,根据等腰三角形的性质即可得到结论.【解答】(1)证明:∵△ABC绕点B逆时针旋转60°得到△DBE,∴∠DBE=∠ABC,∠EBC=60°,BE=BC,∵∠DBC=90°,∴∠DBE=∠ABC=30°,∴∠ABE=30°,在△ABC与△ABE中,,∴△ABC≌△ABE(SAS);(2)解:连接AD,∵△ABC绕点B逆时针旋转60°得到△DBE,∴DE=AC,∠BED=∠C,DE=AC=2,∵△ABC≌△ABE,∴∠BEA=∠C,AE=AC=2,∵∠C=45°,∴∠BED=∠BEA=∠C=45°,∴∠AED=90°,DE=AE,∴AD=AE=2.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握旋转的性质是解题的关键.五.解答题(三)(共3小题,每小题9分,共27分)23.【分析】(1)根据在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),可以求得点A的坐标,进而求得反比例函数的解析式;(2)根据题意和勾股定理可以求得OP的长;(3)根据题意可以求得点P的坐标,本题得以解决.【解答】解:(1)∵函数y=的图象过点A(8,a),∴a=×8=4,∴点A的坐标为(8,4),∵反比例函数y=(k≠0)图象过点A(8,4),∴4=,得k=32,∴反比例函数的解析式为y=;(2)设BP=b,则AP=b+2,∵点A(8,4),AB⊥x轴于点B,∴AB=4,∠ABP=90°,∴b2+42=(b+2)2,解得,b=3,∴OP=8﹣3=5,即线段OP的长是5;(3)设点D的坐标为(d,d),∵点A(8,4),点B(8,0),点P(5,0),S△ODP =S△ABO,∴,解得,d=,∴d=,∴点D的坐标为(,).【点评】本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.24.【分析】(1)由弧AD=弧BC,根据同弧让所对的圆周角相等得∠ABD=∠BDC得AB∥CD;(2)由∠BCE=∠CBA=∠DAO得∠CBE=2∠ABD且∠AOD=2∠ABD;从而得到△AOD∽△CBE,根据相似比得出结果;(3)要证FH是⊙O的切线,只须证出DF⊥FH即可,作出辅助线是本题的关键.【解答】解:(1)证明:圆内接四边形ABCD,AD=BC,∴弧AD=弧BC,∴∠ABD=∠BDC∴AB∥CD(2)由(1)知,∠BCE=∠CBA=∠DAO,∵∠CBE=2∠ABD且∠AOD=2∠ABD∴△AOD∽△CBE∴∴(3)作FM⊥AH于M,∵∠ADB=∠AFB=∠DAF=90°∴四边形AFBD是矩形,∴FH=BD=AF∴AM=HM,OM=BM∴OF=BF=OD∴∠FOH=60°,∠OHF=30°∠DFH=90°又∵DF是⊙O的直径,∴FH是⊙O的切线.【点评】此题主要考查了圆的综合应用以及相似三角形的性质和三角形的内角和定理等知识,在第三问中,作出辅助线是本题的关键.25.【分析】(1)由正方形的性质可得AB=AD=4,∠A=90°,∠BDA=45°=∠DBA,由平行线性质可得∠DFE=∠A=90°,∠DEF=∠DBA=∠EDF=45°,可得DF=1,AF=3,由勾股定理可求BF的长;(2)由题意可得DF=EF=FH=2,由平行线的性质和等腰三角形的性质可得∠BAE=∠FHE=∠BHA,可得AB=BH,由勾股定理可求AB的长;=EF×AF=x(3﹣x)=﹣(x﹣)2+,由二(3)由三角形面积公式可求S△BEF次函数性质可得x=时,S取得最大值,即点E是BD中点,由旋转的性质和直角三角形的性质可证四边形JCEN是矩形,可证CJ⊥CE.【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD=4,∠A=90°,∠BDA=45°=∠DBA,∵EF∥AB∴∠DFE=∠A=90°,∠DEF=∠DBA=∠EDF=45°∴DF=EF∴DE=DF=∴DF=1∴AF=AD﹣DF=3∴BF==5(2)∵DF=EF,DF=HF=2,∴EF=2=FH∴∠FEH=∠FHE∵EF∥AB∴∠FEH=∠BAE,∴∠BAE=∠FHE=∠BHA∴AB=BH∵在Rt△ABE中,BF2=AF2+AB2,∴(AB+2)2=(AB﹣2)2+AB2,∴AB=8,AB=0(不合题意舍去)∴AB=8(3)如图,过点J作JN⊥BD于,=EF×AF=x(3﹣x)=﹣(x﹣)2+∵S△BEF最大值为,∴当x=时,S△BEF∵x=,∴EF=∵EF∥AB∴∴BD=2DE,AD=2DF∵CB=CD,BD=2DE,∴CE⊥BD,BD=2CE,∵旋转∴JD=BD,∠JDB=30°,又∵JN⊥BD∴JD=2JN,∴BD=2JN,∴JN=CE,∵JN⊥BD,CE⊥BD∴JN∥CE,且CE=JN∴四边形JCEN是平行四边形,∵JN⊥BD∴四边形JCEN是矩形∴CJ⊥CE【点评】本题是四边形综合题,正方形的性质,勾股定理,矩形的判定和性质,旋转的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键.。

2019-2020学年度人教版数学九年级上册22.1 二次函数的图象和性质习题精选第三十三篇

2019-2020学年度人教版数学九年级上册22.1 二次函数的图象和性质习题精选第三十三篇

2019-2020学年度人教版数学九年级上册22.1 二次函数的图象和性质习题精选第三十三篇第1题【单选题】抛物线y=x^2+bx+c图像向右平移2个单位再向下平移3个单位,所得图像的关系式为y=x^2-2x -3,则b,c的值为( )A、b=2,c=2B、b=2,c=0C、b=-2,c=-1D、b=-3,c=2【答案】:【解析】:第2题【单选题】已知二次函数y=ax^2+bx+c的图象与x轴交于(x1 ,0),(x2 ,0)两点,且0<x1<1,1<x2<2,与y轴交于(0,﹣2).下列结论:①2a+b>1;②a+b>2;③a﹣b<2;④3a+b>0;⑤a<﹣1.其中正确结论的个数为( )A、2B、3C、4D、5【答案】:【解析】:第3题【单选题】由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax^2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数不一定具有的性质是( )A、过点(3,0)B、顶点是(﹣2,﹣2)C、在x轴上截得的线段的长度是2D、c=3a【答案】:【解析】:第4题【单选题】在平面直角坐标系中,如果抛物线y=2x^2+1不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A、y=2(x-2)^2+ 3B、y=2(x-2)^2-1C、y=2(x + 2)^2-1D、y=2(x + 2)^2 + 3【答案】:【解析】:对于二次函数y=x^2﹣2mx﹣3,下列结论错误的是( )A、它的图象与x轴有两个交点B、方程x^2﹣2mx=3的两根之积为﹣3C、它的图象的对称轴在y轴的右侧D、x<m时,y随x的增大而减小【答案】:【解析】:第6题【单选题】半径为3的圆,如果半径增加2x,则面积S与x之间的函数表达式为( )A、S=2π有误B、S=9π+xC、S=4πx^2+12x+9D、S=4πx^2+12πx+9π【答案】:【解析】:二次函数y=x^2+2x+3的图象的开口方向为( )A、向上B、向下C、向左D、向右【答案】:【解析】:第8题【单选题】已知二次函数y=ax^2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A、a>0B、当x>1时,y随x的增大而增大C、c<0D、3是方程ax^2+bx+c=0的一个根【答案】:【解析】:第9题【单选题】抛物线y=(x﹣1)^2﹣3的对称轴是( )A、y轴B、直线x=﹣1C、直线x=1D、直线x=﹣3【答案】:【解析】:第10题【填空题】已知抛物线y=ax^2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax^2﹣2ax+c=0的根为______A、﹣1,3【答案】:【解析】:第11题【填空题】数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax^2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为______【答案】:【解析】:第12题【填空题】二次函数y=(x﹣1)^2+2的顶点坐标为______.【答案】:【解析】:第13题【综合题】如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).求抛物线的解析式;设抛物线顶点为D,求四边形AEDB的面积;△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【答案】:【解析】:第14题【综合题】二次函数y=ax^2+bx+c的图象经过点(﹣1,4),且与直线y=﹣有误x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).求二次函数的表达式;点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【答案】:【解析】:第15题【综合题】已知二次函数y=ax^2+bx+c的图象如图所示:写出对称轴是______,顶点坐标______;当x取______时,函数有最______值是______;直接写出抛物线与坐标轴的交点坐标;利用图象直接回答当x为何值时,函数值y大于0?【答案】:无【解析】:。

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)1.如图,在四边形ABCD中,AB=BC=3,CD,DA=5,∠B=90°,求∠BCD的度数.2.如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD =6m,AD=8m,BC=24m,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?3.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?4.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB =90°,AC+AB=10,BC=3,求AC的长.6.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?7.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.8.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.9.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.10.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.11.已知某校有一块四边形空地ABCD如图,现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC =12m,CD=13m,DA=4m.若种每平方米草皮需100元,问需投入多少元?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)13.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,;这个三角形的面积为.14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.15.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.16.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?17.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?18.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?19.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.20.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.22.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C 处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)参考答案与试题解析一.解答题(共23小题)1.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.2.【答案】见试题解答内容【解答】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD•AC•BCAD•CD,10×248×6=96.所以需费用96×200=19200(元).3.【答案】见试题解答内容【解答】解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.4.【答案】见试题解答内容【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x,∴AB3.5.【答案】见试题解答内容【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.6.【答案】见试题解答内容【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD3×45×12=6+30=36.答:这块钢板的面积等于36.7.【答案】见试题解答内容【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15,DB=9,∴CD12;(2)在Rt△ACD中,∵AC=20,CD=12,∴AD16,则AB=AD+DB=16+9=25.8.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BEAB10=5.在Rt△CAE中,CE12.∴S四边形ABCD=S△DAC+S△ABC5×1210×12=30+60=90.9.【答案】见试题解答内容【解答】(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.10.【答案】见试题解答内容【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴ADBD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.11.【答案】见试题解答内容【解答】解:∵∠A=90°,AB=3m,DA=4m,∴DB5(m),∵BC=12m,CD=13m,∴BD2+BC2=DC2,∴△DBC是直角三角形,∴S△ABD+S△DBC3×45×12=36(m2),∴需投入总资金为:100×36=3600(元).12.【答案】见试题解答内容【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD(米),∴BD=AB﹣AD=12(米),答:船向岸边移动了(12)米.13.【答案】见试题解答内容【解答】解:(1)面积为10的正方形的边长为,∵,∴如图1所示的四边形即为所求;(2)∵,,∴如图2所示的三角形即为所求这个三角形的面积2×2=2;故答案为:2.14.【答案】见试题解答内容【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE4.8(cm)∴CE3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.15.【答案】见试题解答内容【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.16.【答案】见试题解答内容【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.17.【答案】见试题解答内容【解答】解:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC5(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC5×123×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.18.【答案】见试题解答内容【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.19.【答案】见试题解答内容【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABCAC×CDAB×BC5×124×3=30﹣6=24.故四边形ABCD的面积为24cm2.20.【答案】见试题解答内容【解答】解:(1)如图①所示:(2)如图②③所示.21.【答案】见试题解答内容【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).22.【答案】见试题解答内容【解答】解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒时,所以速度为72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.23.【答案】见试题解答内容【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

2019-2020学年广东省实验中学九年级(上)月考数学试卷(10月份)(解析版)

2019-2020学年广东省实验中学九年级(上)月考数学试卷(10月份)(解析版)

2019-2020学年广东省实验中学九年级(上)月考数学试卷(10月份)一、选择题1.(3分)抛物线的顶点坐标是 2(2)3y x =-+-()A .B .,3C . 2,3D .(2,3)-(2-)()(2,3)--2.(3分)下列说法正确的是 ()A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .的圆心角所对的弦是直径90︒C .平分弦的直径垂直于这条弦D .三点确定一个圆3.(3分)在同一坐标系中,其图象与的图象关于轴对称的函数为 22y x =x ()A .B .C .D .212y x =212y x =-22y x =-2y x =-4.(3分)已知二次函数的最小值是1,那么的值等于 26y x x m =-+m ()A .10B .4C .5D .65.(3分)如图,在中,,,则的度数是 O OC AB ⊥32ADC ∠=︒BOC ∠()A .B .C .D .64︒58︒32︒26︒6.(3分)如图,圆的直径,是圆上的一点,,则的长度是 O 6BC =A O 30C ∠=︒AB ()A .6B .3C .D .7.(3分)如图,已知圆心角,则圆周角 110AOB ∠=︒(ACB ∠=)A .B .C .D .55︒110︒120︒125︒8.(3分)如图,抛物线与轴交于点、,与轴交于点,四边形223y x x =--x A D y C 是平行四边形,则点的坐标是 ABCD B ()A .B .C .D .(4,3)--(3,3)--(3,4)--(4,4)--9.(3分)函数的解析式满足如右图,那么直线的图象不2(0)y ax bx c a =++≠y acx b =+经过 ()A .第一象限B .第二象限C .第三象限D .第四象限10.(3分)二次函数,自变量与函数的对应值如表:2y ax bx c =++x y x ⋯5-4-3-2-1-0⋯y ⋯402-2-04⋯下列说法正确的是 ()A .抛物线的开口向下B .当时,随的增大而增大3x >-y x C .二次函数的最小值是2-D .抛物线的对称轴是直线52x =-二、填空题11.(3分)已知函数,当满足 时,该函数是二次函数.2(2)31y m x x =--+m 12.(3分)将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线23y x =的解析式为 .13.(3分)设,,是抛物线上的三点,1(2,)A y -2(1,)B y 3(2,)C y 2(1)y x a =-++则,,的大小关系为 .1y 2y 3y 14.(3分)二次函数的图象如图所示,根据图象可知:当 时,2(0)y ax bx c a =++≠k 方程有两个不相等的实数根.2ax bx c k ++=15.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点,,,在O A B C 格点(两条网格线的交点叫格点)上,以点为原点建立直角坐标系,则过,,O A B 三点的圆的圆心坐标为 .C16.(3分)如图,是二次函数的图象的一部分,给出下列命题:2(0)y ax bx c a =++≠①,2b a >②的两根分别为和120ax bx c ++=3-③0a b c ++=④20a b c -+>其中正确的命题是 .三、解答题17.如图,在圆中,点是弧的中点,于,于,求证:O C AB CD OA ⊥D CE OB ⊥E .CD CE =18.一个函数与二次函数的图象交于和两点,且点23y x =+2y ax bx c =++(,5)A m (3,)B n 是抛物线的顶点.B (1)求二次函数的解析式;(2)请在给出的平面直角坐标系中画出一次函数和;二次函数的简图(无需列表),并根据简图写出:当满足 时,两个函数的值都随的增大而增大?x x 当满足 时,二次函数的函数值大于零?x 当满足 是,二次函数的值大于一次函数的值?x19.如图是的外接圆,圆心在这个三角形的高上,,,O ABC ∆O AD 10AB =12BC =求的半径.O20.如图是抛物线拱桥,已知水位在位置时,水面宽,水位上升,达到警戒AB 3m线,这时水面宽.若洪水到来时,水位以每小时的速度上升,求水过CD 0.25m 警戒线后几小时淹到拱桥顶?21.在直角坐标平面内,点为坐标原点,二次函数的图象交轴O 2(5)(4)y x k x k =+--+x 于点,、,,且1(A x 0)2(B x 0)12121x x x x ++=-(1)求二次函数的解析式;(2)将上述二次函数图象沿轴向右平移2个单位,设平移后的图象与轴的交点为,x y C 顶点为,求的面积.P POC ∆22.已知二次函数的图象过点21y x bx c =+++(2,1)P -(1)求证:;26c b =--(2)求证:此二次函数的图象与轴必有两个交点;x (3)若二次函数的图象与轴交于点,、,,,求的值.x 1(A x 0)2(B x 0)4AB =b 23.已知二次函数与轴交于点,顶点为,243y x x =-+y C D (1)请直接写出: , , , (C )(D )(2)轴上是否存在一点,使得最短?若点存在,求出点的坐标,若x P PC PD +P P 点不存在,请说明理由P (3)轴上是否存在一点,使得的值最小?若点存在,求出点的坐标;x Q 22QC QD +Q Q 若点不存在,请说明理由.Q24.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移224y x x =-+x A 个单位,所得抛物线与轴交于、两点,与原抛物线交于点.(0)m m >x C D P (1)求点的坐标,并判断存在时它的形状(不要求说理);A PCA ∆(2)在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用x含的式子表示);若不存在,请说明理由;m(3)设的面积为,求关于的关系式.∆S S mCDP25.如图,边长为8的正方形的两边在坐标轴上,以点为顶点的抛物线经过点,OABC C A 点是抛物线上点、间的一个动点(含端点),过点作的垂线,垂足为,P A C P BC F点、的坐标分别为,,连接、、.D E(0,6)(4,0)-PD PE DE(1)求出抛物线的解析式;(2)小明探究点的位置时发现;当点与点或点重合时,与的差为定值,P P A C PD PF 进而猜想:对于任意一点,与的差为定值.请你判定该猜想是否正确,并说P PD PF明理由;(3)请求出的周长最小时点的坐标;PDE∆P(4)若将“使的面积为整数”的点记作“好点”,则存在有多少个“好点”?请直∆PDE接写出“好点”的个数.2019-2020学年广东省实验中学九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题1.(3分)抛物线的顶点坐标是 2(2)3y x =-+-()A .B .,3C . 2,3D .(2,3)-(2-)()(2,3)--【分析】直接根据此二次函数的顶点式进行解答即可.【解答】解:抛物线的解析式为:,2(2)3y x =-+-此抛物线的顶点坐标为:.∴(2,3)--故选:.D 【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.(3分)下列说法正确的是 ()A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .的圆心角所对的弦是直径90︒C .平分弦的直径垂直于这条弦D .三点确定一个圆【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【解答】解:、弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们A 所对的圆心角也相等,故本选项正确;、的圆周角所对的弦是直径,故本选项错误;B 90︒、应强调这条弦不是直径,故本选项错误;C 、不在同一直线上的三点确定一个圆,故本选项错误.D 故选:.A 【点评】本题考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.3.(3分)在同一坐标系中,其图象与的图象关于轴对称的函数为 22y x =x ()A .B .C .D .212y x =212y x =-22y x =-2y x =-【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,因而用(,)P x y x (,)x y -代替,不变,代入解析式就得到与的图象关于轴对称的函数.y -y x 22y x =x 【解答】解:所求抛物线与已知抛物线的图象顶点相同,开口大小相同,只有开口22y x =方向相反,故它们的二次项系数互为相反数,即.22y x =-故选:.C 【点评】本题主要考查了直角坐标系中关于原点对称的点的坐标的关系.4.(3分)已知二次函数的最小值是1,那么的值等于 26y x x m =-+m ()A .10B .4C .5D .6【分析】将二次函数化为顶点式,即可建立关于的等式,解方程求出的值即可.m m 【解答】解:原式可化为:,2(3)9y x m =--+函数的最小值是1,,91m ∴-+=.10m =故选:.A 【点评】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.5.(3分)如图,在中,,,则的度数是 O OC AB ⊥32ADC ∠=︒BOC ∠()A .B .C .D .64︒58︒32︒26︒【分析】根据垂径定理,可得,,根据圆周角定理,可得. AC BC=32ADC ∠=︒BOC ∠【解答】解:在中,,O OC AB ⊥,∴AC BC =,32ADC ∠=︒ ,264BOC ADC ∴∠=∠=︒故选:.A 【点评】本题考查了圆周角定理,利用垂径定理得出是解题关键,又利用了圆周 AC BC=角定理.6.(3分)如图,圆的直径,是圆上的一点,,则的长度是 O 6BC =A O 30C ∠=︒AB ()A .6B .3C .D .【分析】根据圆周角定理得出,根据含角的直角三角形的性质求出即可.90CAB ∠=︒30︒【解答】解:是的直径,BC O ,90CAB ∴∠=︒,,30C ∠=︒ 6BC =,116322AB BC ∴==⨯=故选:.B 【点评】本题考查了圆周角定理和含角的直角三角形的性质,能根据圆周角定理得出30︒是解此题的关键.90CAB ∠=︒7.(3分)如图,已知圆心角,则圆周角 110AOB ∠=︒(ACB ∠=)A .B .C .D .55︒110︒120︒125︒【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得.11(360)25012522ACB AOB ∠=︒-∠=⨯︒=︒故选:.D 【点评】此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.8.(3分)如图,抛物线与轴交于点、,与轴交于点,四边形223y x x =--x A D y C 是平行四边形,则点的坐标是 ABCD B ()A .B .C .D .(4,3)--(3,3)--(3,4)--(4,4)--【分析】首先利用抛物线与坐标轴的交点坐标求出、、的坐标,再利用平行四边形A D C 的性质得出点坐标.B 【解答】解:令,可得或,0y =3x =1x =-点坐标为;点坐标为;A ∴(1,0)-D (3,0)令,则,0x =3y =-点坐标为,C ∴(0,3)-四边形是平行四边形,ABCD ,,AD BC ∴=//AD BC ,4AD BC ==点的坐标为,B ∴(4,3)--故选:.A 【点评】本题主要考查了抛物线与坐标轴的交点及平行四边形的性质,掌握坐标轴上点的特点是解答此题的关键.9.(3分)函数的解析式满足如右图,那么直线的图象不2(0)y ax bx c a =++≠y acx b =+经过 ()A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据二次函数图象的开口方向、对称轴判断出、和的正负情况,再由一次a b c 函数的性质解答.【解答】解:由图象开口向上可知,0a >对称轴,得.02b x a=->0b <又知当时,,0x =0y c =>所以一次函数的图象经过第一、三、四象限,不经过第二象限.y acx b =+故选:.B 【点评】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、和a b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.c 10.(3分)二次函数,自变量与函数的对应值如表:2y ax bx c =++x yx ⋯5-4-3-2-1-0⋯y ⋯402-2-04⋯下列说法正确的是 ()A .抛物线的开口向下B .当时,随的增大而增大3x >-y x C .二次函数的最小值是2-D .抛物线的对称轴是直线52x =-【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点、、代入到二次函数中,(4,0)-(1,0)-(0,4)2y ax bx c =++得:,解得:,016404a b c a b c c =-+⎧⎪=-+⎨⎪=⎩154a b c =⎧⎪=⎨⎪=⎩二次函数的解析式为.∴254y x x =++、,抛物线开口向上,不正确;A 10a =>A 、,当时,随的增大而增大,不正确;B 522b a -=-52x -…y x B 、,二次函数的最小值是,不正确;C 225954()24y x x x =++=+-94-C 、,抛物线的对称轴是直线,正确.D 522b a -=-52x =-D 故选:.D 【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.二、填空题11.(3分)已知函数,当满足 时,该函数是二次函数.2(2)31y m x x =--+m 2m ≠【分析】根据二次函数的意义,可得答案.【解答】解:由题意,得,20m -≠解得.2m ≠故答案为:.2m ≠【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意二次项的系数不等于零.12.(3分)将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线23y x =的解析式为 .23(2)3y x =++【分析】根据向上平移纵坐标加,向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:抛物线向上平移3个单位,向左平移2个单位,23y x =平移后的抛物线的顶点坐标是,∴(2,3)-平移后的抛物线解析式为.∴23(2)3y x =++故答案为:.23(2)3y x =++【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变换求解更加简便.13.(3分)设,,是抛物线上的三点,1(2,)A y -2(1,)B y 3(2,)C y 2(1)y x a =-++则,,的大小关系为 .1y 2y 3y 123y y y >>【分析】根据题意画出函数图象解直观解答.【解答】解:如图:.123y y y >>故答案为.123y y y >>【点评】本题考查了二次函数图象上点的坐标特征,画出函数图象是解题的关键.14.(3分)二次函数的图象如图所示,根据图象可知:当 2(0)y ax bx c a =++≠k 2<时,方程有两个不相等的实数根.2ax bx c k ++=【分析】先由图象得的最大值2即的最大值,由此可解.y k 【解答】解:由二次函数和一元二次方程的关系可知的最大值即为的最大值,y k 因此当时,方程有两个不相等的实数根.2k <2ax bx c k ++=【点评】考查二次函数和一元二次方程有的关系.15.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点,,,在O A B C 格点(两条网格线的交点叫格点)上,以点为原点建立直角坐标系,则过,,O A B 三点的圆的圆心坐标为 .C (1,2)--【分析】连接,作的垂直平分线,根据勾股定理和半径相等得出点的坐标即可.CB CB O 【解答】解:连接,作的垂直平分线,如图所示:CB CB在的垂直平分线上找到一点,CB DCD DB DA =====所以是过,,三点的圆的圆心,D A B C 即的坐标为,D (1,2)--故答案为:,(1,2)--【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.16.(3分)如图,是二次函数的图象的一部分,给出下列命题:2(0)y ax bx c a =++≠①,2b a >②的两根分别为和120ax bx c ++=3-③0a b c ++=④20a b c -+>其中正确的命题是 ②③ .【分析】利用时,可对③进行判断;利用抛物线的对称轴为直线则1x =0y =12b x a=-=-可对①进行判断;利用抛物线与轴有两个交点可对②进行判断;把代入x 2b a =得,所以,则可对④进行判断.0a b c ++=3c a =-26a b c a -+=-【解答】解:抛物线的对称轴为直线, 12b x a =-=-,所以①不符合题意;2b a ∴=抛物线的对称轴为直线,抛物线与轴的一个交点坐标为, 1x =-x (1,0)抛物线与轴的另一个交点坐标为,∴x (3,0)-的两根分别为和1所以②符合题意;20ax bx c ∴++=3-时,,1x = 0y =,所以③符合题意;0a b c ∴++=把代入得,则,2b a =0a b c ++=20a a c ++=3c a =-,2436a b c a a a a ∴-+=--=-而抛物线开口向上,,0a >,所以④不符合题意;260a b c a ∴-+=-<故答案为:②③.【点评】本题考查了二次函数的性质:二次项系数决定抛物线的开口方向和大小.当a 时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共0a >0a <b a 同决定对称轴的位置:当与同号时,对称轴在轴左; 当与异号时,对称轴在a b y a b 轴右.常数项决定抛物线与轴交点:抛物线与轴交于.y c y y (0,)c 三、解答题17.如图,在圆中,点是弧的中点,于,于,求证:O C AB CD OA ⊥D CE OB ⊥E .CD CE =【分析】相等的弧所对的圆心角相等得到,然后根据角平分线的性质得到AOC BOC ∠=∠结论.【解答】证明:点是弧的中点, C AB ,AOC BOC ∴∠=∠,,CD OA ⊥ CE OB ⊥.CD CE ∴=【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.18.一个函数与二次函数的图象交于和两点,且点23y x =+2y ax bx c =++(,5)A m (3,)B n 是抛物线的顶点.B (1)求二次函数的解析式;(2)请在给出的平面直角坐标系中画出一次函数和;二次函数的简图(无需列表),并根据简图写出:当满足 时,两个函数的值都随的增大而增大?x 3x <x 当满足 时,二次函数的函数值大于零?x 当满足 是,二次函数的值大于一次函数的值?x【分析】(1)把和分别代入中解得,,所以求得,(,5)A m (3,)B n 23y x =+1m =9n =(1,5)A ,用顶点式表示出来二次函数的解析式为,把代入上式得(3,9)B 2(3)9y a x =-+(1,5)A ,求出二次函数解析式;1a =-(2)根据描点的方法和函数图象的对称性作图即可;根据图形的和函数的单调性求得当时,当时,二次函数的函数值大于零;一次函数与二次函数的值都随的增3x <06x <<x 大而增大;当时,二次函数大于一次函数值.13x <<【解答】解:(1)把和分别代入中,(,5)A m (3,)B n 23y x =+解得,,1m =9n =,,(1,5)A ∴(3,9)B 点是抛物线的顶点,(3,9)B 设二次函数的解析式为,2(3)9y a x =-+,1a ∴=-二次函数解析式为;∴22(3)96y x x x =--+=-+(2)一次函数图象和二次函数图象如图所示;从图象上观察:当时,一次函数与二次函数的值都随的增大而增大;3x <x 当时,二次函数的函数值大于零;06x <<当时,二次函数大于一次函数值.13x <<故答案为:,,.3x <06x <<13x <<【点评】主要考查了待定系数法求函数的解析式和二次函数的性质及其作图.要注意:当时,图象开口向下,在对称轴的左侧随的增大而增大,在对称轴的右侧随的0a <y x y x 增大而减小.19.如图是的外接圆,圆心在这个三角形的高上,,,O ABC ∆O AD 10AB =12BC =求的半径.O【分析】连接,根据垂径定理首先求得的长,根据勾股定理求得的长,可以设OB BD AD 出圆的半径,在直角三角形中,利用勾股定理即可列方程求得半径.OBD 【解答】解:如图,连接.OB 是的高.AD ABC ∆162BD BC ∴==在中,.Rt ABD ∆8AD ===设圆的半径是.R则.8OD R =-在中,根据勾股定理可以得到:Rt OBD ∆2236(8)R R =+-解得:.254R =【点评】本题考查了垂径定理以及勾股定理,关键是根据勾股定理转化成方程问题.20.如图是抛物线拱桥,已知水位在位置时,水面宽,水位上升,达到警戒AB 3m线,这时水面宽.若洪水到来时,水位以每小时的速度上升,求水过CD 0.25m 警戒线后几小时淹到拱桥顶?【分析】已知、可得的解析式,从而求出的值.又因为,故可求B D y OE EF OE OF =-的值.t 【解答】解:根据题意设抛物线解析式为:2y ax h=+又,,B 0)D 3)∴2203a h a h ⎧⨯+=⎪⎨⨯+=⎪⎩解得:146a h ⎧=-⎪⎨⎪=⎩2164y x ∴=-+即(0,6)E ∴6OE m=,3EF OE OF ∴=-=则(小时).3120.250.25EF t ===答:水过警戒线后12小时淹到拱桥顶.【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.在直角坐标平面内,点为坐标原点,二次函数的图象交轴O 2(5)(4)y x k x k =+--+x 于点,、,,且1(A x 0)2(B x 0)12121x x x x ++=-(1)求二次函数的解析式;(2)将上述二次函数图象沿轴向右平移2个单位,设平移后的图象与轴的交点为,x y C 顶点为,求的面积.P POC ∆【分析】(1)根据二次函数的图象交轴于点,、,2(5)(4)y x k x k =+--+x 1(A x 0)2(B x ,且,可以求得的值,从而可以求得该函数的函数解析式;0)12121x x x x ++=-k (2)根据(1)中的函数解析式和题意,可以求得平移后的函数解析式,从而可以求得点和点的坐标,进而求得的面积.C P POC ∆【解答】解:(1)二次函数的图象交轴于点, 2(5)(4)y x k x k =+--+x 1(A x 、,,且,0)2(B x 0)12121x x x x ++=-,(5)[(4)]1k k ∴--+-+=-解得,,1k =,245y x x ∴=--即二次函数的解析式是;245y x x =--(2)由(1)知,2245(2)9y x x x =--=--则的图象沿轴向右平移2个单位后的解析式为,2(2)9y x =--x 2(4)9y x =--的图象与轴的交点为,顶点为,2(4)9y x =-- y C P 当时,,当时,,∴0x =7y =4x =9y =-点的坐标为,点的坐标为,∴C (0,7)P (4,9)-,点到的距离是4,7OC ∴=P OC 的面积是:.POC ∴∆74142⨯=【点评】本题考查抛物线与轴的交点坐标、二次函数的性质、二次函数图象与几何变换x 平移,解答本题的关键是明确题意,利用二次函数的性质和平移的性质解答.-22.已知二次函数的图象过点21y x bx c =+++(2,1)P -(1)求证:;26c b =--(2)求证:此二次函数的图象与轴必有两个交点;x (3)若二次函数的图象与轴交于点,、,,,求的值.x 1(A x 0)2(B x 0)4AB =b 【分析】(1)将点坐标代入抛物线的解析式中,即可证得所求的结论;P (2)用表示出△,将(1)所得的、的关系式代入△中,即可得到△b bc ,即可证得结论;2(4)40b =++>(3)用表示出的长,进而根据由根与系数关系得:,解方程b AB 2()4(25)16b b ----=从而求得的值.b 【解答】(1)证明:将点代,(2,1)P -21y x bx c =+++得:,21221b c -=+++整理得:;26c b =--(2)证明:令,则0y =210x bx c +++=△ 22224(1)4(261)820(4)40b c b b b b b =-+=---+=++=++>此二次函数的图象与轴必有两个交点;∴x (3)解:,21||4AB x x =-= 即,221||16x x -=亦即,21212()416x x x x +-=由根与系数关系得:,,12x x b +=-12126125x x c b b =+=--+=-- 代入,21212()416x x x x +-=得:,2()4(25)16b b ----=整理得:,282016b b ++=解得:,.14b =-+24b =--【点评】此题主要考查了二次函数图象上点的坐标意义、二次函数的图象与轴的交点、x根与系数的关系等知识的综合应用能力.23.已知二次函数与轴交于点,顶点为,243y x x =-+y C D (1)请直接写出: 0 , , , (C )(D )(2)轴上是否存在一点,使得最短?若点存在,求出点的坐标,若x P PC PD +P P 点不存在,请说明理由P (3)轴上是否存在一点,使得的值最小?若点存在,求出点的坐标;x Q 22QC QD +Q Q 若点不存在,请说明理由.Q【分析】(1)当时,,即点坐标为,配方,得,即点坐0x =3y =C (0,3)2(2)1y x =--D 标为,即可求解;(2,1)-(2)如图,连接交轴于点,则点为所求,即可求解;CD x P P (3)设点,则,即可求解.(,0)Q m 222229(2)12414QC QD m m m m +=++-+=-+【解答】解:(1)当时,,即点坐标为,0x =3y =C (0,3)配方,得,即点坐标为,2(2)1y x =--D (2,1)-故答案为:,;(0,3)(2,1)-(2)如图,连接交轴于点,则点为所求,CD x P P设的解析式为,CD y kx b =+将、点坐标代入得:,解得:,C D 213k b b +=-⎧⎨=⎩23k b =-⎧⎨=⎩则的解析此时为,CD 23y x =-+当时,,即,;0y =32x =3(2P 0)(3)设点,(,0)Q m 则,222229(2)12414QC QD m m m m +=++-+=-+故,有最小值,此时,,10> 22QC QD +=12b m a =-=故点.(1,0)Q 【点评】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,本题求最小值的方法比较新颖,难度不大.24.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移224y x x =-+x A 个单位,所得抛物线与轴交于、两点,与原抛物线交于点.(0)m m >x C D P (1)求点的坐标,并判断存在时它的形状(不要求说理);A PCA ∆(2)在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用x 含的式子表示);若不存在,请说明理由;m (3)设的面积为,求关于的关系式.CDP ∆S S m【分析】(1)令原抛物线的解析式中,即可求得点的坐标;0y =A 很显然点位于线段的垂直平分线上,由此可判定是等腰三角形;P AC PAC ∆(2)根据平移的性质知:,;2AO CD ==OC AD m ==(3)求的面积需要知道两个条件:底边及边上的高(过作轴CDP ∆CD CD PH P PH x ⊥于;因此本题要分两种情况讨论:①时,点在轴上方;②时,)H 02m <<P x 2m >点位于轴下方;可分别表示出两种情况的的长即点横坐标,根据抛物线的解P x CH P 析式即可得到点的纵坐标;以为底,点纵坐标的绝对值为高即可得到关于、P CD P S 的函数关系式.m 【解答】解:(1)令,2240x x -+=得,10x =22x =点的坐标为∴A (2,0)是等腰三角形.PCA ∆(2)存在.,.OC AD m ==2OA CD ==(3)如图,当时,作轴于,02m <<PH x ⊥H 设,(P P x )P y ,(2,0)A (,0)C m ,2AC m ∴=-222AC m CH -∴==2222P m m x OH m -+∴==+=把代入,22P m x +=224y x x =-+得2122P y m =-+2CD OA == 2211112(2)22222S CD HP m m ∴==-+=-+ 如图,当时,作轴于,2m >PH x ⊥H 设,(P P x )P y ,(2,0)A (,0)C m ,2AC m ∴=-22m AH -∴=22222P m m x OH -+∴==+=把代入,得22P m x +=224y x x =-+2122P y m =-+2CD OA == .21112()2222P S CD HP y m ∴==-=- 综上可得:.2212(02)212(2)2m m S m m ⎧-+<<⎪⎪=⎨⎪->⎪⎩【点评】此题考查了二次函数图象与坐标轴交点坐标的求法、平移的性质以及三角形面积的求法等知识,需注意的是(3)题要根据的取值范围分段讨论,以免造成漏解、错m 解.25.如图,边长为8的正方形的两边在坐标轴上,以点为顶点的抛物线经过点,OABC C A 点是抛物线上点、间的一个动点(含端点),过点作的垂线,垂足为,P A C P BC F 点、的坐标分别为,,连接、、.D E (0,6)(4,0)-PD PE DE (1)求出抛物线的解析式;(2)小明探究点的位置时发现;当点与点或点重合时,与的差为定值,P P A C PD PF 进而猜想:对于任意一点,与的差为定值.请你判定该猜想是否正确,并说P PD PF 明理由;(3)请求出的周长最小时点的坐标;PDE ∆P (4)若将“使的面积为整数”的点记作“好点”,则存在有多少个“好点”?请直PDE ∆接写出“好点”的个数.【分析】(1)利用待定系数法求出抛物线解析式即可;(2)首先表示出,点坐标,再利用两点之间距离公式得出,的长,进而求出P F PD PF 即可;(3)根据题意当、、三点共线时,最小,进而得出点坐标;P E F PE PF +P (4)利用的面积可以等于4到13所有整数,在面积为12时,的值有两个,进而PDE ∆a 得出答案.【解答】解:(1)边长为8的正方形的两边在坐标轴上,以点为顶点的抛物 OABC C 线经过点,A ,,(0,8)C ∴(8,0)A -设抛物线解析式为:,则,2y ax c =+8640c a c =⎧⎨+=⎩解得:188a c ⎧=-⎪⎨⎪=⎩故抛物线的解析式为:;2188y x =-+(2)正确,理由:设,则,21(,8)8P a a -+(,8)F a,(0,6)D.2128PD a ∴===+,22118(8)88PF a a =--+=;2PD PF ∴-=(3)在点运动时,大小不变,则与的和最小时,的周长最小,P DE PE PD PDE ∆,,2PD PF -= 2PD PF ∴=+,2PE PD PE PF ∴+=++当、、三点共线时,最小,∴P E F PE PF +此时点,的横坐标都为,P E 4-将代入,得,4x =-2188y x =-+6y =,此时的周长最小.(4,6)P ∴-PDE ∆(4)由(2)得:,21(,8)8P a a -+点、的坐标分别为,,D E (0,6)(4,0)-①当时,40a -<…;22211111(4)(8)[(86)46]34282824PDE a S a a a a a ∆=-+-+---+-+⨯⨯=--+ ,412PDE S ∆∴<…②当时,,0a =4PDE S ∆=③时,84a -<<-,222111111(86)()46(4)(8)34822824PDE S a a a a a a ∆=-++⨯-⨯-⨯⨯---⨯-+⨯=--+,1213PDE S ∆∴……④当时,,8a =-12PDE S ∆=的面积可以等于4到13所有整数,在面积为12时,的值有两个,PDE ∴∆a 所以面积为整数时好点有11个,即存在11个好点.【点评】此题主要考查了二次函数综合以及两点距离公式以及配方法求二次函数最值等知识,利用数形结合得出符合题意的答案是解题关键.。

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。

5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末综合测试
时间:90分钟总分:120分
班级____________座号________________姓名_______________成绩_______________
一、选择题(本大题10小题,每小题3分,共30分)
1. 下列标志,是中心对称图形的是( )
A. B. C. D.
2. “经过有交通信号灯的路口,遇到红灯”这一事件是( )
A. 必然事件
B. 不可能事件
C. 随机事件
D. 以上选项都不对
3. 如图,P是等边三角形ABC内部一点,把△ABP绕点A逆时针旋转,使点B与
点C重合,得到△ACQ,则旋转角的度数是(
)
A. 70°
B. 80°
C. 60°
D. 50°
4. 一元二次方程x2-16=0的解是( )
A. x1=2,x2=-2
B. x1=4,x2=-4
C. x1=8,x2=-8
D. x1=16,x2=-16
5. 已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是( )
A. 1
B. -1
C.
1
4D. -
1
4
6. 点P(-2,1)关于原点对称的点的坐标为( )
A. (2,1)
B. (1,-2)
C. (2,-1)
D. (-2,1)
7. 抛物线y=(x-2)2+3的顶点坐标是( )
A.(2,-3)
B.(-2,3)
C.(2,3)
D.(-2,-3)
8. 如图,⊙O为△ABC的外接圆,AB为直径,AC=BC,则∠A的度数为( )
A.30°
B.40°
C.45°
D.60°
9. 从英文单词“sunshine”中随机抽取一个字母,抽中字母“n”的概率为( )
A.
1
8B.
2
5C.
1
2D.
1
4
10. 在同一平面直角坐标系中,函数y=ax2与y=-ax+b的图象可能是( )
二、填空题(本大题6小题,每小题4分,共24分)
11. 方程x(x-1)=x的解为.
12.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边
减少了3 m,剩余一块面积为20 m2的矩形空地,若原正方形空地边长是x m,则可列
方程为.
13. 小红在一次班会中参与学科知识抢答活动,现有语文题5个、数学题5个、英语
题5个,她从中随机抽取1个,抽中数学题的概率是
14. 若正六边形的边长为2,则其外接圆的半径为
15. 函数y=-x2+2x-1的图象与x轴的交点坐标为
16.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=2,则图中阴
影部分的面积是
三、解答题(一)(本大题3小题,每小题6分,共18分)
17. 解方程x2-2x=5.
18. 已知二次函数y=x2-mx+n的图象与y轴的交点到原点的距离是2,且函数图象的对称轴为直线x=1.求该函数的解析式.
19. 如图,在正方形ABCD中,M为DC上一点,连接BM,将△BCM绕点C顺时针方向旋转90°得到△DCN,连接MN. 如果∠1=60°,求∠2的度数.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20. 假期里,小华和小亮到某影城看电影,影城同时在四个放映室(1,2,3,4室)播放四
部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同.
(1)小明选择“1室”的概率为;
(2)用画树状图或列表的方法求小华和小亮选择去同一间放映室看电影的概率.
21. 电动自行车已成为广大市民日常出行的首选工具,根据某“捷安特”电动自行车专卖店1至3月份的销售统计,1月份销售150辆,3月份销售216辆. 求该专卖店电动自行车销售量的月平均增长率.
22. 如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10 cm,AP∶PB=1∶5,求⊙O 的半径.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23. 如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
24. 如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为3,OP=1,求BC的长.
25. 如图,已知二次函数y=x2+bx+c的图象分别经过点A(1,0),B(0,3).
(1)求该函数的解析式;
(2)在抛物线上是否存在一点P,使△APO的面积等于4?若存在,求出点P的坐标;若不存在,说明理由
.
期末综合测试 ---参考答案
一、填空题
1.D 2.C 3. C 4. B 5.B 6.C 7.C 8.C 9.D 10.B
二、填空题
11 .x 1=0,x 2=2 12. (x -2)(x -3)=20 13. 13
14. 2 15. (1,0) 16. π
4
三、解答题
17.解:方程变形为x 2-2x -5=0. 解得x 1=1+6,x 2=1- 6. 18.解:由对称轴为直线x =1,得--m
2
=1,解得m =2.
二次函数y =x 2-mx +n 的图象与y 轴的交点到原点的距离是2,则与y 轴的交点坐标是(0,2)或 (0,-2).
当与y 轴的交点是(0,2)时,代入y =x 2-2x +n ,得n =2,则函数的解析式是y =x 2-2x +2;
当与y 轴的交点坐标是(0,-2)时,代入y =x 2-2x +n ,得n =-2,则函数的解析式是y =x 2-2x -2. 19.解:∵将△BCM 绕点C 顺时针方向旋转90°得到△DCN ,∴△BCM ≌△DCN. ∴CM =CN ,∠1=∠DNC =60°. ∵四边形ABCD 是正方形,
∴∠BCD =∠DCN =90°. ∴∠MNC =∠CMN =45°. ∴∠2=60°-45°=15°. 20.解:(1) 1
4 (2)记四个放映室分别为A ,B ,C ,D ,画出树状图如图.
两人选择的方案共有16种等可能的结果,其中选择去同一放映室的有4种, 所以小华和小亮选择去同一间放映室看电影的概率为416=1
4
.
21.解:设该专卖店电动自行车销售量的月平均增长率为x. 根据题意,得150(1+x)2=216.
解得x 1=-2.2(不合题意,舍去),x 2=0.2=20%. 答:该专卖店电动自行车销售量的月平均增长率为20%.
22 解:如图,连接CO.
设AP =x cm ,则PB =5x cm ,AO =1
2(x +5x)=3x(cm ), PO =3x -x =2x(cm ).
∵AB ⊥CD ,∴CP =1
2
×10=5(cm).
在△CPO 中,52+(2x)2=(3x)2,解得x 1=5,x 2=-5(不合题意,舍去). ∴AO =3 5 cm . 即⊙O 的半径为3 5 cm .
23.(1)证明:∵△ABC 是等边三角形, ∴∠BAC =60°,AB =AC. ∵线段AD 绕点A 顺时针旋转60°,得到线段AE ,
∴∠DAE =60°,AE =AD. ∴∠BAD +∠EAB =∠BAD +∠DAC. ∴∠EAB =∠DAC.
在△EAB 和△DAC 中,
∴△EAB ≌△DAC(SAS ). ∴∠AEB =∠ADC.
(2)解:如图,连接DE. ∵∠DAE =60°,AE =AD , ∴△EAD 为等边三角形. ∴∠AED =60°.
又∵∠AEB =∠ADC =105°, ∴∠BED =105°-60°=45°. 24.(1)证明:如图,连接OB . ∵OP ⊥OA , ∴∠AOP =90°. ∴∠A +∠APO =90°. ∵OA =OB , ∴∠A =∠OBA . ∵CP =CB ,∴∠CPB =∠CBP .
而∠CPB =∠APO , ∴∠APO =∠CBP . ∴∠OBC =∠CBP +∠OBA =∠APO +∠A =90°. ∴OB ⊥BC. ∴BC 是⊙O 的切线.
(2)解:设BC =x ,则PC =x. 在Rt △OBC 中,OB =3,OC =CP +OP =x +1. ∵OB 2+BC 2=OC 2,∴32+x 2=(x +1)2,解得x =4, 即BC 的长为4. 25.解:(1)把A(1,0),B(0,3)分别代入y =x 2+bx +c ,得
解得
∴该函数的解析式为y =x 2-4x +3.
(2)存在. 设点P 的坐标为P(x ,y),由题意,得 S △APO =1
2
OA ·||y =4.
∵OA =1,∴||y =8,即y =±8.
当y =8时, x 2-4x +3=8,解得x 1=5,x 2=-1; 当y =-8时, x 2-4x +3=-8,该方程无解. ∴存在点P 的坐标是(5,8)或(-1,8).。

相关文档
最新文档