高考数学精选选填题专项练习

合集下载

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

高考数学客观题训练【6套】选择、填空题

高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

高三数学选择题专题训练(17套)含答案

高三数学选择题专题训练(17套)含答案

(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。

那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三期末)若0,a b c R >>∈,则( )A .ac bc >B .32a bC .2233a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .22log log a b >【答案】D 【解析】【分析】取特殊值排除AB 选项,根据指数函数以及对数函数的单调性判断CD 选项. 【详解】当1c =-时,a b ac bc >⇒<,故A 错误;当3,1a b ==时,3212a b=<=,故B 错误; 由于函数23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则2233ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;由于函数2log yx =在0,上单调递增,0a b >>则22log log a b >,故D 正确;故选:D【点睛】本题主要考查了根据所给条件判断不等式是否成立以及利用函数单调性比较大小,属于基础题.2.(2020·江西省南城一中高三期末)三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D【解析】由题意得,120.20.4550.40log0.514433<<<==<== D.3.(2020·重庆高三)己知命题:0p x ∀>,lg ln x x <,:0q x ∃>,2x <则下列命题中真命题是( ) A .p q ∧ B .()p q ∧⌝C .p q ∨D .()p q ∨⌝【答案】C 【解析】【分析】分别判断命题,p q 的真假再利用或且非的关系逐个选项判断即可. 【详解】易得当1x =时, lg ln x x =,故p 为假命题.当14x =时, 2x <.故q 为真命题.故p q ∨为真命题.故选:C【点睛】本题主要考查了命题真假的判断,属于基础题型. 4.(2020·钦州市第三中学高三月考)设sin6a π=,2log 3b =,2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】 【分析】利用相关知识分析各值的范围,即可比较大小.【详解】1sin 62a π==,21log 32b <=<,12343111421202c ⎛⎫=<= ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数的单调性,对数函数的单调性,属于中档题. 5.(2020·福建高三)已知log e a π=,lneb π=,2e lnc π=,则( )A .a b c <<B .b c a <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<,故选:B . 【点睛】本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.(2020·天津二十五中高三月考)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7.(2020·榆林市第二中学高三月考)已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,320223<<=,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.8.(2020·内蒙古高三期末)已知π为圆周率,e 为自然对数的底数,则A .e π<3eB .π23e -<32e π-C .log e π>3log eD .π3log e >3log e π【答案】D 【解析】【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出.【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数 y=x e ﹣3是(0,+∞)上的减函数,B 错;对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确;故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题. 9.(2020·天津静海一中高三学业考试)已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数.设()8log 0.2a f =,()0.3log 4b f =,()1.12c f =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<【答案】A 【解析】 【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出 1.180.3log 0.2log 42、、的大小关系从而比较函数值的大小关系.【详解】由题意可知()f x 在(],0-∞上是增函数,在0,上是减函数.因为0.30.30.3100102log log 4log 193-=<<=-,3881log 0.125log 0.2log 10-=<<=, 1.122>, 所以 1.180.3log 0.2log 42<<,故c b a <<.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.10.(2020·湖南高三期末)已知 3x >,且357log log log ==x y z ,则下列不等式关系中正确的是( )A .357<<x y zB .753<<z y xC .735<<z x yD .537<<y x z【答案】B 【解析】【分析】令357log log log x y z k ===,求得1313k x -=,1515k y -=,1717k z -=,再根据幂函数的单调性即可得出结论.【详解】令357log log log x y z k ===()1k >,∴3k x =,5ky =,7k z =,∴133133k k x -==,155155k k y -==,177177k k z -==,∵3x >,∴1k >,∴10k ->,∴幂函数1k y x -=在()0,∞+上单调递增,∴1110357k k k ---<<<,∴111111753k k k ---<<,即753<<z y x ,故选:B . 【点睛】本题主要考查指数式与对数式的互化,考查根据幂函数的单调性比较大小,属于中档题.11.(2020·福建高三月考)函数()f x 的定义域为R ,其导函数为()f x ',()01f x x '>+,且(1)=-y f x 为偶函数,则( )A .(2)(1)f f -<B .(2)(1)f f -=C .(2)(1)f f ->D .|(2)||(1)|f f ->【答案】A 【解析】 【分析】根据()01f x x '>+以及(1)=-y f x 为偶函数判断出函数()f x 的单调性和对称性,由此判断出()2f -和()1f 的大小关系.【详解】由于(1)=-y f x 为偶函数,所以函数()f x 关于1x =-对称.由于()01f x x '>+,所以当1,10x x <-+<时()'0f x <,()f x 递减,当1,10x x >-+>时,()'0f x >,()f x 递增.所以(2)(1)f f -<.故选:A【点睛】本小题主要考查利用导数研究函数的单调性,考查函数的奇偶性,考查函数的图像变换,考查函数的对称性,属于中档题.12.(2020·福建高三月考)已知25log 5log 2a =+,25log 5log 2b =⋅,25log 5log 2c =,则( ) A .b a c << B .a b c <<C .b c a <<D . c b a <<【答案】A 【解析】【分析】根据2225552log log 5log 83,0log log 24log 511=<<==<=<,得24a <<,25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=,再比较. 【详解】因为2225552log log 5log 83,0log log 24log 511=<<==<=<,所以252log 5log 24<+<, 所以24a <<,又因为25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=, 所以b a c <<.故选:A 【点睛】本题主要考查对数的换底公式和对数比较大小,还考查了运算求解的能力,属于中档题.13.(2020·江西省南城一中高三期末)若23a ⎛= ⎪⎝⎭,log 3b π=,2log ec π=,则a 、b 、c 的大小关系为( )A .c a b >>B .b c a >>C .a b c >>D .b a c >>【答案】D 【解析】 【分析】利用指数函数与对数函数比较a 、b 、c 三个数与0和23的大小关系,进而可得出这三个数的大小关系. 【详解】指数函数23xy ⎛⎫= ⎪⎝⎭为R上的减函数,则22033⎛<<⎪⎝⎭,即023a <<;对数函数log y x π=为()0,∞+上的增函数,()322333ππ⎡⎤=<⎢⎥⎣⎦,233π∴<,所以,232log log 33πππ=<,即23b >;对数函数2log y x =为()0,∞+上的增函数,则22log log 10ec π=<=.因此,b a c >>.故选:D.【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数的单调性结合中间值法来得出各数的大小关系,考查推理能力,属于基础题.14.(2020·山西高三月考)若()10,,2nm m n a b e e c >>==+=,则( )A .b a c >>B .a c b >>C .c b a >>D .b c a >>【答案】A 【解析】 【分析】由基本不等式得出2m nm n ++>>,再根据函数的单调性即可比较大小.【详解】当0m n >>时,2m n m n ++>>,且xy e =是定义域R 上的单调增函数,2m n a e+==,所以2m ne+>a c >;又22m n m n e e e++>=,所以21()2m nm ne e e ++>,即b a >;所以b a c >>.故选:A .【点睛】本题主要考查了根据基本不等式和函数的单调性比较大小的问题,意在考查学生对这些知识的理解掌握水平.15.(2020·广西师大附属外国语学校高三)已知函数()1y f x =+是偶函数,且函数()y f x =在区间[)1,∞+上是增函数,则下列大小关系中正确的是( )A .()211log 323f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()211log 323f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()211log 332f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()211log 332f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】根据函数()1y f x =+是偶函数,关于x =0对称,则()y f x =的图象关于直线x =1对称,结合单调性比较大小.【详解】函数()1y f x =+是偶函数,关于x =0对称,()y f x =的图象关于直线x =1对称,且在区间[)1,∞+上是增函数,则在(0,1)上为减函数,1123>,2211322303327log log --=>, ()22119230228log log --=>, 所以()2211112332323log f f log f ⎛⎫⎛⎫>-><< ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】此题考查函数奇偶性的辨析,根据对称性和单调性比较函数值的大小关系,关键在于准确识别函数的单调区间.16.(2020·山西高三月考)已知()f x 是定义在(0,)+∞上的可导函数,满足(1)1f =,2()()xf x f x x '-<,则不等式①(2)2f <,②(2)4f <,③1122⎛⎫> ⎪⎝⎭f ,④1124f ⎛⎫< ⎪⎝⎭中一定成立的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】【分析】根据题意构造函数()()f x g x x=-x ,并判断其在(0,+∞)上单调递减,然后分别算出g (1)、g (2)和g (12),并利用单调性比较大小,即可判断每个选项. 【详解】令()()f x g x x=-x ,则()()()2''xf x f x g x x -=-1()()22'xf x f x x x --=,∵xf '(x )﹣f (x )<x 2,∴g '(x )<0在(0,+∞)上恒成立,即g (x )在(0,+∞)上单调递减, ∵f (1)=1,∴()()1111101f g =-=-=,对于()()()222102f g g =-=<,即f (2)<4,∴①错误,②正确;对于()1112101222f g g ⎛⎫ ⎪⎛⎫⎝⎭=-= ⎪⎝⎭>,即1124f ⎛⎫ ⎪⎝⎭>,∴③和④均错误;因此一定成立的只有②,故选:A .【点睛】本题主要考查导数的综合应用,构造新函数是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。

高考数学选填压轴题练习与答案

高考数学选填压轴题练习与答案

高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。

高中数学选填题一

高中数学选填题一

选填题一一、选择题(每小题5分,共50分) 1. 已知i 是虚数单位,则=+6)11(i( )A. 8B. i 8C. i 8-D. -8 2. 将函数)32sin()(π+=x x f 的图像向左平移12π个单位,得到)(x g 的图像,则)(x g 的解析式为 ( )A. x x g 2cos )(=B. x x g 2cos )(-=C. x x g 2sin )(=D. )1252sin()(π+=x x g 3. 在正项等比数列}{n a 中,3lg lg lg 963=++a a a ,则111a a 的值是 ( )A. 10000B. 1000C. 100D. 10 4.设x 、y 、z 是空间的不同直线或不同平面,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是 ( )A. x 为直线,y 、z 为平面B. x 、y 、z 为平面C. x 、y 为直线,z 为平面D. x 、y 、z 为直线 5.设}11|{≥∈=xR x P ,}0)1ln(|{≤-∈=x R x Q ,则“P x ∈”是“Q x ∈”的 ( ) A. 必要不充分条件 B. 充分不必要条件 C. 必要条件 D. 既不充分也不必要条件 6.已知直线l 的参数方程为:⎩⎨⎧+==t y t x 434(t 为参数),圆C 的极坐标方程为θρsin 22=,那么,直线l 与圆C 的位置关系是 ( )A. 直线l 平分圆CB. 相离C. 相切D. 相交7.已知点F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上的一点,且021=⋅PF PF ,则21F PF ∆面积为 ( )A. abB. 12ab C. b 2 D. a 28.对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义:设)(x f '是函数)(x f y =的导数,)(x f ''是函数)(x f '的导数,若方程)(x f ''=0有实数解x 0,则称点(x 0,f (x 0))为函数)(x f y =的“拐点”。

高考数学选择、填空题专项训练(共40套)[附答案] (1)

高考数学选择、填空题专项训练(共40套)[附答案] (1)

高考数学选择、填空题专项训练(共40套)[附答案] (1)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β5. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21 三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种EF DOC BA9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高考数学选择填空小题训练56套(含答案)

高考数学选择填空小题训练56套(含答案)
1.若 sin( 3.已知α,β 0, ,且 cosα=
高三数学小题训练(3)

2
3 12 ,cosβ= ,则 cos(α-β)=__________。 5 13 个单位长度,再把所得图象上所有点的横坐标缩短到原 3
4.把函数 y sin x ( x R) 的图象上所有的点向左平行移动
D.(-5,-10)
2.已知四边形 ABCD 的三个顶点 A(0, 2) , B (1, 2) , C (3, 1) ,且 BC 2 AD ,则顶点 D 的坐标为( A. 2,




7 2
B. 2,

1 2
C. (3, 2)
D. (1, 3)
第 1 页 共 32 页
来的
1 倍(纵坐标不变) ,得到的图象所表示的函数是( 2 ,x R 3 ,x R 3
B. y sin

A. y sin 2 x
x ,x R 2 6 ,x R 3
5 . 已 知 函 数 f(x)=Asin(x+ )(A>0,0< < ),x R 的 最 大 值 是 1 , 其 图 像 经 过 点 M ___________________;
3 ) ,则 cos 2 _________。 2 5 2. f ( x ) cos(x ) 最小正周期为 ,其中 0 ,则 6 5
,则 a b 3 4.已知平面向量 a (2, 4) , b (1, 2) ,若 c a (a b ) b ,则 c b 2 且 a 与 b 的夹角为 3.若向量 a , b 满足 a 1,

高三数学练习题及答案

高三数学练习题及答案

高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。

A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。

A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。

A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。

A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。

A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。

2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。

3. 不等式2x 3 > x + 1的解集为______。

4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。

5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。

三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。

2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。

3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。

4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。

5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。

6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。

7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。

高考数学选择、填空题专项训练(共40套)[附答案]

高考数学选择、填空题专项训练(共40套)[附答案]

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高考数学解三角形选择填空专题练习(含答案)

高考数学解三角形选择填空专题练习(含答案)

高考数学解三角形选择填空专题练习一、选择题1.在ABC △中,内角A ,B ,C 所对的边为a ,b ,c ,60B =︒,4a =,其面积S =则c =( )A .15B .16C .20D .2.在ABC △中,1a =,π6A ∠=,π4B ∠=,则c =( )A B C D 3.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若1cos 2b a Cc =+,则角A 为( )A .60︒B .120︒C .45︒D .135︒4.ABC △中A ,B ,C 的对边分别是a ,b ,c 其面积2224a b c S +-=,则中C 的大小是( )A .30︒B .90︒C .45︒D .135︒5.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C ,cos cos 2b A a B +=,则ABC △的外接圆面积为( ) A .4πB .8πC .9πD .36π6.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为( )A .B .mC .mD .m 27.在ABC △中,a ,b ,c 分别是A ,B ,C 所对的边,若cos 4cos a C c A =-,π3B =,a =,则cosC =( )A .14B C D8.在ABC △中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2cos cos cos b B a C c A =+,若b 则a c +的最大值为( )A .B .3C .32D .99.在ABC △中,若22tan tan A a B b =,则ABC △的形状是( ) A .等腰或直角三角形 B .直角三角形 C .不能确定D .等腰三角形10.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,且4442222a b c c a b++=+,若C 为锐角,则sin B A +的最大值为( )AB 1C D11.已知锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2B A =,则sin a Ab的取值范围是( )A .⎝⎭B .⎝⎭C .12⎛ ⎝⎭D .12⎫⎪⎪⎝⎭12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 是B 和C 的等差中项,0AB BC ⋅>,a =,则ABC △周长的取值范围是( )A .⎝⎭B .⎭C .⎝⎭D .⎝⎭二、填空题13.在ABC △中,3AB =,4AC =,3BC =,D 为BC 的中点,则AD =__________.14.在ABC △中,三个内角A ∠,B ∠,C ∠所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且a =ABC △面积的最大值是________.15在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 、B 、C 成等差数列,b ABC △面积的取值范围是__________.参考答案 1.【答案】C【解析】由三角形面积公式可得11sin 4sin 6022ABC S ac B c ==⨯⨯⨯︒=△据此可得20c =.本题选择C 选项. 2.【答案】A【解析】由正弦定理sin sin a bA B =可得π1sinsin 4πsin sin 6a Bb A ⨯===,且()()cos cos cos cos sin sin C A B A B A B =-+=--=由余弦定理可得c =,故选A . 3.【答案】A【解析】1cos 2b a C C =+,1sin sin cos sin 2B A C C ∴=+,()1sin sin cos cos sin sin cos sin 2A C A C A C A C C +=+=+,1cos sin sin 2A C C =,1cos 2A =,60A =︒,故选A .4.【答案】C【解析】∵ABC △中,1sin 2S ab C =,2222cos a b c ab C +=-,且2224a b c S +-=,∴11sin cos 22ab C ab C =,即tan 1C =,则45C =︒.故选C . 5.【答案】D【解析】由cos cos 22sin sin sin b A a B a b cR A B C+====⎧⎪⎨⎪⎩,可得1sin cos sin cos B A A B R +=, 所以()1sin A B R +=,即1sin C R=,又cos C ,所以1sin 3C =,所以3R =,所以ABC △的外接圆面积为24π36πs R ==.故选D . 6.【答案】A【解析】在ABC △中,50m AC =,45ACB ∠=︒,105CAB ∠=︒,即30ABC ∠=︒,则由正弦定理sin sin AB ACACB ABC=∠∠,得50sin 2m 1sin 2AC ACB AB ABC ∠===∠,故选A .【解析】由余弦定理知,222222422b a c b c a a c ab bc +-+-⋅=-⋅,即4b =,由正弦定理知43πsin sin 3A =,解得sin A =,因为a b <,所以π4A =,()cos cos cos cos sin sin C A B A B A B =-+=-+=,故选D . 8.【答案】A【解析】2cos cos cos b B a C c A =+,则2sin cos sin cos sin cos B B A C C A =+, 所以()2sin cos sin sin B B A C B =+=,1cos 2B =,π3B =.又有2222231cos 222a cb ac B ac ac +-+-===,将式子化简得223a c ac +=+,则()()2233334a c a c ac ++=+≤+,所以()2134a c +≤,a c +≤A . 9.【答案】A【解析】由正弦定理有2222tan 4sin tan 4sin A R AB R B=,因sin 0A >,故化简可得 sin cos sin cos A A B B =,即sin2sin2A B =,所以222πA B k =+或者22π2πA B k +=+,k ∈Z .因A ,()0,πB ∈,()0,πA B +∈,故A B =或者π2A B +=,所以ABC △的形状是等腰三角形或直角三角形.故选A . 10.【答案】A 【解析】4442222a b c c a b++=+ 444222222222222a b c a c b c a b a b ∴++--+=,即()2222222a b c a b +-=,由余弦定理2222cos c a b ab C =+-,得2222cos a b c ab C +-=,代入上式,222224cos 2a b C a b ∴=,解得cos C ∴= C 为锐角,πA B C ++=,π4C ∴=,3π4B A =-,3π0,4A ⎛⎫∈ ⎪⎝⎭, ()3πsin sin 4B A A A A ϕ⎛⎫∴=-=+≤ ⎪⎝⎭1tan 3ϕ=,故选A .【解析】∵2B A =,∴sin sin22sin cos B A A A ==, 由正弦定理得2cos b a A =,∴12cos a b A =,∴sin sin 1tan 2cos 2a A A Ab A ==.∵ABC △是锐角三角形,∴π02π022π0π32A B A C A <⎧⎪⎪⎪⎨<<=<<=-<⎪⎪⎪⎩,解得ππ64A <<,tan 1A <<11tan 22A <<.即sin a A b的值范围是12⎫⎪⎪⎝⎭,故选D . 12.【答案】B【解析】∵A 是B 和C 的等差中项,∴2A B C =+,∴π3A =, 又0AB BC ⋅>,则()cos π0B ->,从而π2B >,∴π2π23B <<,∵21sin sin s s 3πin in a b c A B C ====,∴sin b B =,2πsin sin 3c C B ⎛⎫==-⎪⎝⎭, 所以ABC △的周长为2πsin sin 3π6l a b c B B B ⎛⎫⎛⎫=++=++-++ ⎪ ⎪⎝⎭⎝⎭, 又π2π23B <<,π2π5π366B <+<,1sin 26πB ⎛⎫<+< ⎪⎝⎭l <<.故选B . 13.【答案】2【解析】在ABC △中,根据余弦定理,可得2223341cos 2339B +-==⨯⨯,在ABD △中,根据余弦定理,可得222331413232294AD ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,所以AD =. 14.【解析】()2sin cos 2sin cos b C A A C +=-,()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B ∴=-+=-+=-, 则2sin cos b B A -=,结合正弦定理得2cos sin a A A -=,即tan A =,2π3A ∠=,由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥,故4bc ≤,11sin 422ABC S bc A =≤⨯=△15.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin601sin60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=, 因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当23c a ==时取等号,则4a c +的最小值为9. 16.【答案】⎝⎦【解析】∵ABC △中A ,B ,C 成等差数列,∴π3B =.由正弦定理得2sin sin sin sin 3a cb A C B ===,∴2sin a A =,2sinc C =,∴12πsin sin sin 23ABC S ac B A C A A ⎛⎫===- ⎪⎝⎭△21331cos2sin sin cos sin22242AA A A A A A A ⎫-=+==+⎪⎪⎝⎭3πsin2246A A A ⎛⎫==-+ ⎪⎝⎭, ∵ABC △为锐角三角形,∴π022ππ032A A <<<-<⎧⎪⎪⎨⎪⎪⎩,解得ππ62A <<.∴ππ5π2666A <-<,∴1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭π26A ⎛⎫-≤ ⎪⎝⎭,故ABC △面积的取值范围是⎝⎦.。

2023年新高考数学选择填空专项练习题(附答案解析)

2023年新高考数学选择填空专项练习题(附答案解析)

则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.

2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6

x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5

华师一附中2024届高三数学选填专项训练(16)答案

华师一附中2024届高三数学选填专项训练(16)答案

2024届高三数学选填专项训练16时限:40分钟满分:80分命题人:徐聪一、单项选择题:本题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.<1,条件q:x2+x−6>0,则p是q的()1.已知条件p:1xA.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【分析】解不等式,解集分别为A,B,根据集合的包含关系即可求解.<1⇒x>1或x<0,不妨设A=(−∞,0)∪(1,+∞),【详解】由1xx2+x−6>0⇒(x+3)(x−2)>0⇒x>2或x<−3,不妨设B=(−∞,−3)∪(2,+∞),因为B真包含于A,所以p推不出q,q能推出p,所以p是q的必要不充分条件.故选:C2.已知复数z满足|z+3i|=|z−i|,则|z+1+2i|的最小值为()A.1 B.3 C.√3D.√5【答案】A【分析】设复数z在复平面内对应的点为Z,由复数的几何意义可知点Z的轨迹为y=−1,则问题转化为y=−1上的动点Z到定点(−1,−2)距离的最小值,从而即可求解.【详解】设复数z在复平面内对应的点为Z,因为复数z满足|z+3i|=|z−i|,所以由复数的几何意义可知,点Z到点(0,−3)和(0,1)的距离相等,所以在复平面内点Z的轨迹为y=−1,又|z+1+2i|表示点Z到点(−1,−2)的距离,所以问题转化为y=−1上的动点Z到定点(−1,−2)距离的最小值,当Z为(−1,−1)时,到定点(−1,−2)的距离最小,最小值为1,所以|z+1+2i|的最小值为1,故选:A./=()3.已知α∈(0,π),若√3(sinα+sin2α)+cosα−cos2α=0,则sin.α−π12二、多项选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5 分,有选错的得0 分,部分选对的得......2.分. 9.关于下列命题中,说法正确的是( )A .已知X ∼B (n,p ),若E (X )=30,D (X )=20,则p =23B .数据91,72,75,85,64,92,76,78,86,79的45%分位数为77C .已知ξ∼N (0,1),若P(ξ>1)=p ,则P (−1≤ξ≤0)=12−pD .某校三个年级,高一有400人,高二有360人.现按年级分层,用分层随机抽样的方法从全校抽取57人,已知从高一抽取了20人,则应从高三抽取19人 【答案】CD【分析】对各个选项进行分析判断即可得出结论. 【详解】对于A,∵X ∼B (n,p ), ∴{E (X )=np =30, D (X )=np (1−p )=20,,∴1−p =23,解得p =13,故A 错误;对于B ,将数据从小到大排序为64,72,75,76,78,79,85,86,91,92,∵10×45%=4.5,∴45%分位数为第5个数,即78,故B 错误; 对于C,∵ξ∼N (0,1),∴P (−1≤ξ≤0)=12,1−P(ξ>1)−P(ξ<−1)-=12,1−2P(ξ>1)-,故C 正确;对于D ,∵抽样比为20400=120, ∴高二应抽取360×120=18人,则高三应抽取57−20−18=19人,故D 正确.故选:CD.10.如图,在正方体ABCD −A 1B 1C 1D 1中,AB =1,点M 在正方体内部及表面上运动,下列说法正确的是( )A .若M 为棱CC 1的中点,则直线AC 1∥平面BDMB .若M 在线段BC 1上运动,则CM +MD 1的最小值为2+√2C .当M 与D 1重合时,以M 为球心,√52为半径的球与侧面BB 1C 1C 的交线长为π4D .若M 在线段BD 1上运动,则M 到直线CC 1的最短距离为1 【答案】AC【分析】对于A :作AC ,BD 交点O ,连接OM ,可证AC 1 ∥ OM ,进而得到AC 1∥平面BDM ;对于B :展开△BC 1D 1与△BCC 1到同一平面上,由两点间直线段最短,结合余弦定理运算求解;对于C :D 1在侧面BB 1C 1C 上的射影为C 1,确定交线为以C 1为圆心的圆弧,结合弧长公式即可求解;对于D :根据垂直关系分析可知直线BD 1与直线CC 1的距离为OC ,当M 为BD 1中点,E 为CC 1中点时,可得ME =OC ,即能找出此点恰在BD 1上. 【详解】对于选项A :作AC ,BD 交点O ,连接OM , 因为O 为AC 中点,M 为棱CC 1的中点,则AC 1∥OM ,且OM ⊂平面BDM ,AC 1⊄平面BDM ,所以AC 1∥平面BDM ,故A 正确;C.f(x)图象上任意两点连线的斜率恒大于1D.若对∀x∈(0,+∞),f(e x−alnx)>f(alna)+e x−aln(ax),则0<a<e【答案】AC【分析】由f′(x)=x+1−sinx>0知函数单调递增判断A;根据f′(x)−x=1−sinx≥0,并构造y=f(x)−12x2并确定单调性判断B;由f′(x)−1=x−sinx,构造g(x)=x−sinx(x>0)并研究其单调性判断f′(x)−1符号,得到y=f(x)−x的单调性,结合斜率公式判断C;由f(e x−alnx)−(e x−alnx)> f(alna)−alna,根据分析有e x−alnx>alna>0,即e x;lna+x−lna>e lnx+lnx且a>1,再构造y=e x+x、 (x)=x−lnx依次研究单调性判断D.【详解】f(x)定义域为(0,+∞),且f′(x)=x+1−sinx>0,f(x)在(0,+∞)上单调递增,A正确;因为f′(x)−x=1−sinx≥0,所以y=f(x)−12x2在(0,+∞)上单调递增,所以f(√3)−32>f(√2)−1,即f(√3)−f(√2)>12,B错误;设A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,而f′(x)−1=x−sinx,设g(x)=x−sinx(x>0),则g′(x)=1−cosx≥0,g(x)在(0,+∞)上单调递增,所以g(x)>g(0)=0,f′(x)−1>0,所以y=f(x)−x在(0,+∞)上单调递增,所以f(x1);x1;(f(x2);x2)x1;x2>0,即f(x1);f(x2)x1;x2>1,f(x1);f(x2)x1;x2表示A,B两点连线的斜率,C正确;由f(e x−alnx)>f(alna)+e x−aln(ax)得f(e x−alnx)−(e x−alnx)>f(alna)−alna,又y=f(x)−x在(0,+∞)上单调递增,则e x−alnx>alna>0,即e x;lna+x−lna>e lnx+lnx,且a>1,因为y=e x+x在(0,+∞)上单调递增,所以x−lna>lnx,即lna<x−lnx,设 (x)=x−lnx,则 ′(x)=x;1x,在(0,1)上 ′(x)<0, (x)单调递减,在(1,+∞)上 ′(x)>0, (x)单调递增,所以 (x)≥ (1)=1,即x−lnx≥1,所以lna<1,所以1<a<e,D错误.故选:AC【点睛】关键点点睛:根据已知条件,结合各项描述构造对应函数,并应用导数研究单调性比较大小、求参数范围即可.三、填空题:本题共4 小题,每小题5 分,满分20 分13.在(x−2)5(1+y)4的展开式中,x3y2的系数为 .【答案】240【分析】求出(x−2)5展开式中x3的系数,再求得(1+y)4展开式中y2的系数,相乘即得结论.【详解】(x−2)5=(−2+x)5,其展开式中含x3的项为C53(−2)2x3=40x3,(1+y)4展开式中含y2的项为C42y2=6y2,所以x3y2的系数为40×6=240.故答案为:240.14.甲、乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.7,被甲或乙解出的概率为0.94,则该题被乙独立解出的概率为.【答案】0.8/45【分析】记“该题被甲独立解出”为事件A,“该题被乙独立解出”为事件B,根据已知得出P(AB)=P(A)P(B),P(A∪B)=P(A)+P(B)−P(AB),代入数据即可得出答案.【详解】记“该题被甲独立解出”为事件A,“该题被乙独立解出”为事件B,由题意可知,P(A)=0.7,P(A∪B)=0.94.因为事件A,B相互独立,所以P(AB)=P(A)P(B)=0.7P(B).又P(A∪B)=P(A)+P(B)−P(AB)=0.3P(B)+0.7=0.94,所以P(B)=0.8.故答案为:0.8.15.已知四棱锥P−ABCD的底面是边长为2的正方形,PB=PD=3√22,二面角P−BD−C的余弦值为−2√55,则四棱锥P−ABCD的外接球的表面积为.【答案】17π2【分析】分别作出过平面ABCD和平面PBD外接圆圆心且垂直于平面ABCD和平面PBD的垂线,两垂线交点为外接球的球心,利用正余弦定理以及勾股定理即可求解.【详解】如图,在四棱锥P−ABCD中,连接BD,取BD中点为O1,连接PO1,CO1,因为底面是边长为2的正方形,所以BD=2√2,在等腰三角形PBD中,cos∠BPD=PB 2:PD2;BD22PB⋅PD=19,。

高考数学选择填空精选模拟真题(附解析)

高考数学选择填空精选模拟真题(附解析)

高考数学选择填空精选模拟真题(附解析)一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( )A.A=BB.A ∩B={0}C.A ∪B=AD.A ⊆B 2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫佛发现棣莫佛定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼具体有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.现有某大学建筑系学生要重点对这七种主要类型的土楼依次进行调查研究.要求调查顺序中,圆形要排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为边BC 上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y|D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( )A.f (x )的展开式中的常数项是56B.f (x )的展开式中的各项系数之和为0C.f (x )的展开式中的二项式系数最大值是70D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电,若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .参考解答1.B 解析 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1},又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}. 3.B 解析 ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2.∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x ·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系.设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12). 设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意;对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x)r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f (1)=0,即f (x )展开式的各项系数之和为0,B 正确;对于C,f (x )展开式中二项式系数最大值为C 84=70,C 正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析 (x+1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7rx 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ , 所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35. 易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。

2023年新高考数学选择填空专项练习题六(附答案解析)

2023年新高考数学选择填空专项练习题六(附答案解析)

∴1= an
1- 1 an an-1

1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,

高考数学选择填空题精编1(学生版)

高考数学选择填空题精编1(学生版)

2013届高三(15)班选填题训练3一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。

其中正确命题的个数为( )A .0B .1C .2D .32.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( )12527.12536.12554.12581.D C B A 3.一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .364.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-55.已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =6.过)0(2>=a ax y 的焦点F 作直线交抛物线与Q 、P 两点,若PF 与FQ 的长分别是q 、p ,则=+qp 11 ( ) A 、a 2 B 、a 21 C 、a 4 D 、 a4 7.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy 的最大值是( ) A .21 B .33 C .23 D .3 8.双曲线b 2x 2-a 2y 2=a 2b 2 (a>b>0)的渐近线夹角为α,离心率为e,则cos2α等于( ) A .e B .e 2 C .e 1 D .21e 9.计算机常用的十六进制是逢16进1的计数制,采用数字0—9和字母A —F 共16个计数符号,A.6EB.72C.5FD.BO10.农民收入由工资性收入和其它收入两部分构成。

高三数学必考试卷

高三数学必考试卷

一、选择题(每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且f(1) = 3,f(2) = 7,则a 的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 02. 已知等差数列{an}的前n项和为Sn,若a1 = 3,S5 = 50,则第10项a10的值为()A. 19B. 20C. 21D. 223. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,cosA=1/3,则sinB的值为()A. 2√2/3B. √2/3C. √6/3D. √2/64. 若复数z满足|z-1| + |z+1| = 4,则复数z的几何意义是()A. 复平面内到点(1,0)和(-1,0)的距离之和为4B. 复平面内到点(1,0)和(-1,0)的距离之差为4C. 复平面内到点(1,0)和(-1,0)的距离之积为4D. 复平面内到点(1,0)和(-1,0)的距离之比为45. 下列函数中,在其定义域内单调递减的是()A. y = x^2B. y = 2^xC. y = log2xD. y = -x^36. 若向量a = (1, -2),向量b = (2, 3),则向量a与向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/57. 已知函数f(x) = x^3 - 3x + 2,若f(x)在x=1处的切线斜率为k,则k的值为()A. 2B. -2C. 1D. -18. 若等比数列{an}的首项a1 = 2,公比q = 1/2,则该数列的前10项和S10等于()A. 1024B. 512C. 256D. 1289. 在等差数列{an}中,若a1 = 3,d = 2,则第n项an的值为()A. 2n + 1B. 2n + 3C. 2n - 1D. 2n - 310. 若复数z满足|z-1| = |z+1|,则复数z的实部等于()A. 0B. 1C. -1D. 无法确定二、填空题(每小题5分,共25分)11. 已知函数f(x) = 2x - 3,若f(x)在x=2处的导数值为f'(2)= ,则f'(2)的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学二模选填题专项练习1.若,,,a b c R +∈且()1a b c +=,则1a b c ++的最大值为 ( )1..1.2.32A B C D2.如果()f x 为偶函数,且导数()f x 存在,则'(0)f 的值为 ( )A.2B.1C.0D.-13. 直线015)12()23(=++--+m y m x m 必过定点 ( ) A.)1,1(--B. )1,1(C. )1,1(-D. )1,1(-4. 设函数))((R x x f ∈为奇函数,21)1(=f ,)2()()2(f x f x f +=+,则)5(f =( ) A. 0 B. 1 C.25D. 5 5. 半径为R 的球内接正四面体的全面积为 ( ) A 、28327RB 、216327R C 、2338R D 、2334R 6. 已知不等式,9)1)((≥++ya x y x 对任意正实数x ,y 恒成立,则正实数a 的最小值是( )A .2B .4C .6D .87.定点N (1,0),动点A 、B 分别在图中抛物线24y x =及椭圆22143x y += 的实线部分上运动,且AB ∥x 轴,则△NAB 的周长l 取值范围是( ) A.(2,23) B.(10,43) C.(51,416) D.(2,4)9. 10.已知函数221()(,0)af x x ax b x R x x x=++++∈≠且.若实数a b 、使 得()0f x =有实根,则22a b +的最小值为 ( ) (A)45 (B )34(C ) 1 (D )2 11. 若定义在R 上的不恒为零的函数)(x f ,满足)()()(y f x f y x f ⋅=+,当0>x 时,1)(>x f ,则,当0<x 时,必有( )A. 1)(-<x fB. 0)(1<<-x fC. 1)(0<<x fD. 1)(>x f12. 设M 是其中定义且内一点),,,()(,30,32,p n m M f BAC AC AB ABC =︒=∠=⋅∆m 、n 、p 分别是yx y x P f MAB MCA MBC 41),,21()(,,,+=∆∆∆则若的面积的最小值是( )A .8B .9C .16D .1813. 若数列{}n a 的前8项的值互异,且8n n a a +=对任意的*N n ∈都成立,则下列数列中可取遍{}n a 的前8项值的数列为( )A. {}12+k aB. {}13+k aC. {}14+k aD. {}16+k a14. 定义一种运算“*”,对正整数n 满足以下等式:①1*1=1;②(n +1)*1=3(n *1),则n *1=( ) A .3nB .3n-1C .213-nD .2131--n15. 如图,B A O ,,是平面上三点,向量=,=.在平面AOB 上,P 是线段AB 垂直平分线上任意一点, 向量=,且2||,3||==|则 )(-⋅的值是: A.5 B.25 C.3 D.23 16. 当x 、y 满足条件||||1x y +<时,变量3xu y =-的取值范围是( ) A .(3,3)- B .11(,)33-C .11(,)23-D .11(,)32-17.编辑一个运算程序:1&1 = 2 , m & n = k , m & (n + 1) = k + 2,则 1 & 2006 的输出 结果为A .4006B .4008C .4010D .401218. 过双曲线22221(0,0)x y a b a b-=>>的左焦点1F ,作圆222x y a +=的切线交双曲线右支于点P ,切点为T ,PF 1的中点M 在第一象限,则以下正确的是( ) A .||||b a MO MT -=- B .||||b a MO MT ->- C .||||b a MO MT -<- D .||||b a MO MT --与大小不定19.如果 (sin x ) ′=cos x , (cos x ) ′=-sin x ,设 f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n+1(x )=f n ′(x ),n ∈N ,则f 2006(x )= ( ) A .sin x B .-sin x C .cos x D .-cos x20. 若函数mx xm y +-=2)2(的图象如图所示,则m 的取值范围为A .)1,(--∞B .)2,1(C . )2,1(-D .)2,0(21. 定义在R 上的函数()f x 满足(2)3()f x f x +=,当[]0,2x ∈时2()2f x x x =-,则当[]4,2x ∈--时,()f x 的最小值是 ( ) A . -1 B .31- C .91 D .91-22. 在数列{}n a 中,如果存在非零常数T ,使得m T m a a +=对于任意的非零自然数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫数列{}n a 的周期。

已知数列{}n x 满足()112,n n n x x x n n N +-=-≥∈,如果()121,,0x x a a R a ==∈≠ ,当数列{}n x 的周期最小时,该数列前2005项的和是 ( )A .668B .669C .1336D .133723. 已知点Q (22,0)及抛物线y =42x 上一动点P (x ,y ),则y +|PQ |的最小值是( )A 、2B 、3C 、4D 、22 24. 正方体的八个顶点中任取四个顶点构成三棱锥的概率为( )A 、3529B 、3527 C 、3531 D 、353325. 若a >3, 则方程x 3-ax 2+1=0在(0, 2)上恰有( )A 、0个根B 、1个根C 、2个根D 、3个根26. 使关于x 的不等式x k x <++1有解的实数k 的取值范围是 ( ):A .)1,(--∞B .)1,(-∞C .),1(+∞-D .),1(+∞27. 设函数()x f y =的定义哉为实数集R ,如果存在实数0x ,使得()00x f x =,那么0x 为函数()x f y =的不动点,下列图像中表示有且只有两个不动点的函数图像是( )28.当a 为任意实数时,直线012)1(=++--a y x a 恒过定点P ,则过点P 的抛物线的标准方程是 ( )A .y x x y 342922=-=或 B .y x x y 342922==或 C .y x x y 342922-==或D . y x x y 342922-=-=或29. 如果以原点为圆心的圆经过双曲线)0,0(12222>>=-b a b y a x 的焦点,并且被直线c ca x (2=为双曲线的半焦距)分为弧长为2:1的两段弧,则该双曲线的离心率等于( )A .2B .3C .25 D .26 30.函数)(x f y =是定义在R 上的增函数,)(x f y =的图象经过(0,-1)和下面哪一个点时,能使不等式1(1)1f x -<+<的解集是{|13}x x -<<( )A .(3,2)B .(4,0)C .(3,1)D .(4,1)31.已知2||2||0, ||0a b x x a x a b =≠++⋅=且关于的方程有实根,则a 与b 夹角的取值范围是( )A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ32.在直角三角形ABC 中,∠C =90°,那么sinA·cos 2(45°-22cos 2sin )2A B -为 ( )A .有最大值41和最小值0 B .有最大值41,但无最小值 C .既无最大值也无最小值D .有最大值21,但无最小值33. 12.2002年8月,在北京召开了国际数学家大会,大会会标为右图所示,它是由四个相同的直角三角形与中间的一个小正方形拼成一个大正方形,若直角三角形中较大的锐角为θ,大正方形的面积为1,小正方形的面积为251,则sin 2θ-cos 2θ的值等于 ( )A .1B .2524 C .257 D .-25734.设56)(2+-=x x x f ,实数x 、y 满足条件⎩⎨⎧≤≤≥-;51,0)()(x y f x f 则x y的最大值是( ) A .549-B .3C .4D .535.对于直角坐标系内任意两点),(111y x P 、),(222y x P ,定议运算,(),(22121x y x P P ⊗=⊗),()122121212y x y x y y x x y +-=,若M 是与原点相异的点,且,)1,1(N M =⊗则MON ∠等于 ( )A .π43B .4π C .2π D .3π 36. 7一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )A .6种B .8种C .36种D .48种37.已知函数①x x f ln 3)(=;②x e x f cos 3)(=;③x e x f 3)(=;④x x f cos 3)(=.其中对于)(x f 定义域内的任意一个自变量1x 都存在唯一个个自变量)()(,212x f x f x 使=3成立的函数是( )A .①②④B .②③C .③D .④38.已知函数12||4)(-+=x x f 的定义域是[]b a ,),(z b a ∈值域是[]1,0,则满足条件的整数数对),(b a 共有 ( ) A .2个 B .5个 C .6个 D .无数个 39.已知函数()Rxx f πsin3=的图像上,相邻的一个最大值点与一个最小值点恰好都在圆222R y x =+上,则()x f 的最小正周期为 ( )A .4B .3C .2D .140.已知以y x ,为自变量的目标函数)0(>+=k y kx ω的可行域 如图阴影部分(含边界),若使ω取最大值时的最优解有无穷 多个,则k 的值为 【 】A .1B .23C .2D .441.已知实数x 、y 满足,14922=+y x |1232|--y x 则的最大值为---- ----------------( )A .2612+B .2612-C .6D .1242.3.分别写有1,2,3,4,5,6,7,8,9的九张卡片中,任意抽取两张,当两张卡片上的字之和能被3整除时,就说这次试验成功,则一次试验成功的概率为 ( ) 1A.2 1B.3 1C.4 1D.1243.12.如图,过抛物线)0(22>=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若3,2==AF BF BC 且,则此抛物线的方程为 ( ) A .x y 92= B .x y 62= C .x y 32=D .x y 32=1.已知的最小22,(1)()0,(1)(1)x y x y x y x y --+≤+++满足则值是 . 2.过抛物线0)0(22=+->=m my x p px y 的焦点的直线与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为46,22m m +则=3.已知函数f (x )满足:)3()4()2()1()2()1(,3)1(),()()(22f f f f f f f q f p f q p f +++==+则+ =+++++)9()10()5()7()8()4()5()6()3(222f f f f f f f f f .4.已知点P (x,y )的坐标满足AOP OP A x y x y x ∠⎪⎩⎪⎨⎧≥-≤+≤+-cos ||),0,2(,012553034则设(O 为坐标原点)的最大值为 .5.已知F 1、F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,P 为双曲线左支上任意一点,若||||122PF PF 的最小值为8a ,则该双曲离心率e 的取值范围是 .6.如图是个由三根细铁杆P A 、PB 、PC 组成的支架,三根杆的两两 夹角都是60°,一个半径为1的球放在支架上,则球心O 到P 的 距离是 .7.函数)(x a f y -=的图象和函数)(b x f y -=的图象关于直线l 对称,则直线l 的方程是 。

相关文档
最新文档