七年级数学整式的乘除测试题及参考答案

合集下载

整式的乘除测试题练习8套(含答案)

整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题及答案)知识像烛光,能照亮一个人,也能照亮无数的人。

——XXX整式的乘除(题)例1:计算(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)。

操作步骤】1)观察结构划部分:(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)2)有序操作依法则:辨识运算类型,依据对应的法则运算。

第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算。

3)每步推进一点点。

过程书写】解:原式=4x^6y^2·(-2y)+(4x^6y^3-2)/(-2x^2)8x^6y^3+4x^6y^3-24x^6y^3-2巩固练1.①-5a^3b^2·(-ab^2)=5a^4b^4;②(-m)^3·(-2m^2n^2)=2m^4n^2;③(-2x^2)^3·(-3x^3y)^2=36x^7y^6;④3b^3·(-2ac)·(-2ab)^2=12a^2b^7c。

2.①3xy^2·(2xz^2+3x^2y)=6x^2y^3z^2+9x^3y^3;②-4xy·(y^3-2)/2=-2xy·(y^3-2);③(ab^2c-3a^2b)·abc/3=ab^3c^2-3a^3b^2c;④(2ab^2)^2·(2a^2-b)=8a^5b^4-8a^3b^2;⑤-a·(3a^3+2a^2-3a-1)=-3a^4-2a^3+3a^2+a。

3.①(x+3y)(x-3y)=x^2-9y^2;②(a-2b)(a+2b+1)=a^2-4b^2-1;③(-2m-3n)(2m-4n)=-4m^2+2mn+12n^2;④(x+2y)^2=x^2+4xy+4y^2;⑤(a-b+c)(a+b+c)=a^2-b^2+c^2.4.若长方形的长为(4a^2-2a+1),宽为(2a+1),则这个长方形的面积为8a^3-4a^2+2a-1.5.若圆形的半径为(2a+1),则这个圆形的面积为4πa^2+4πa+π。

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

初中数学整式的乘除法练习题(附答案)

初中数学整式的乘除法练习题(附答案)

初中数学整式的乘除法练习题一、单选题1.下列运算正确的是( )A.236a a a ⋅=B.22423a a a +=C.236(2)2a a -=- D.422()a a a ÷-= 2.计算结果为256x x --的是( )A .()(61)x x -+B .()(23)x x -+C .()(61)x x +-D .()(23)x x +-3.已知222610x y x y +--=-,那么20182x y 的值为( ) A.19 B.9 C.1 D.24.下列各式从左到右的变形中,是因式分解的为( )A.()a x y ax ay +=+B.()24444x x x x -+=-+C.()2105521x x x x -=-D.()()24416x x x +-=-5.若2()(3)x a x x x n +-=+-,则( )A.4,12a n =-=B.4,12a n =-=-C.4,12a n ==-D.4,12a n ==6.计算2201820192017-⨯的结果是( )A.-1B. 0C.1D. 4 0347.计算101100205⨯⋅的结果正确的是( )A. 1B. 2C. 0.5D. 108.下列计算正确的是( )A.22(3)(3)9x y x y x y -+=-B.2(9)(9)9x x x -+=-C.22()()x y x y x y --+=-D.2211()24x x -=-9.如果单项式23212a x y --和32713a b x y +--的和仍为单项式,那么他们的乘积为( ) A. 6423x y - B. 3216x y - C. 6416x y - D. 6416x y 二、解答题 10.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中12,2a b =-=. 11.甲、乙两人共同计算一道整式乘法:(2)(3)x a x b ++,由于甲抄错了第一个多项式中a 的符号,得到的结果为261110x x +-;由于乙漏抄了第二个多项式中x 的系数,得到的结果为22910x x -+.请你计算出,a b 的值,并写出这道整式乘法的正确结果.12.某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下:原式()2222a ab a b =+--(第一步)2222a ab a b =+--(第二步)22.ab b =-(第三步) (1)该同学解答过程从第_____________步开始出错,错误原因是____________;(2)写出此题正确的解答过程.13.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+ (1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 14.已知ABC 的三边长,,a b c 满足20a bc ab ac --+=.求证:ABC 是等腰三角形.三、计算题15.用简便方法计算:(1)298;(2)99101⨯.16.已知440,235m n m n +=-=,求()()2223m n m n +--的值.17.化简求值:2222111[()()](2)222x y x y x y ++--,其中3,4x y =-=.18.计算:()322322433431242x y xy x y x y ⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭. 四、填空题19.若长方形的面积是2327a ab a ++,宽为a ,则它的长为 .20.若22116a b -=-,14a b +=-,则a b -的值为 . 21.如果(221)(221)63a b a b +++-=,那么a b +的值为 .22.已知248(1)16x n x n +++是一个关于x 的完全平方式,则常数n 的值为 . 参考答案1.答案:D解析: A 选项,原式5a =,所以A 选项错误;B 选项,原式23a =,所以B 选项错误;C 选项,原式68a =-,所以C 选项错误;D 选项,原式422a a a =÷=,所以D 选项正确.故选D.2.答案:A解析:3.答案:B解析:222610x y x y +--=-,()()22130x y ∴-+-=,1,3x y ∴==,2018220182139x y =⨯=.4.答案:C解析:A 选项是整式乘法,错误;B 选项中右边的结果不是积的形式,错误;C 选项是因式分解,正确;D 选项中右边不是积的形式,错误.故选C.5.答案:D解析:2()(3)33x a x x x ax a +-=-+-22(3)3x a x a x x n =+--=+-,则31,3a a n -=-=-,解得4,12a n ==.故选D.6.答案:C解析:2201820192017-⨯22018(20181)(20181)=-+-()222018201811=--=.7.答案:B解析:原式10010010022052(205)2=⨯⨯⋅=⨯⨯⋅=. 8.答案:A解析: A 选项,原式229x y =-,正确;B 选项,原式281x =-,错误:C 选项,原式222x xy y =-+-,错误;D 选项,原式214x x =-+,错误.故选A. 9.答案:C解析:单项式23212a x y --和32713a b x y +--的和仍为单项式,∴ 2327=2a b a b -=⎧⎨+-⎩解得3=3a b =⎧⎨⎩故单项式23212a x y --和32713a b x y +--的乘积6416x y -. 10.答案:解:原式2222244484a b a ab b b ab =--+-+=,当12,2a b =-=时,原式4=-. 解析:11.答案:∵甲得到的算式: ()()()222362361110x a x b x b a x ab x x -+=+--=+-对应的系数相等, 2311b a -=,10ab =, 乙得到的算式: ()()()222222910x a x b x b a x ab x x ++=+++=-+对应的系数相等, 29b a +=-,10ab =,∴231129b a b a -=+=-⎧⎨⎩解得: 52a b =-⎧⎨=-⎩.∴正确的式子: ()()2253261910x x x x --=-+.解析:12.答案:(1)二;去括号时没有变号(2)(2)()()a a b a b a b +-+-()2222222222.a ab a b a ab a b ab b =+--=+-+=+解析:13.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:14.答案:因为20a bc ab ac --+=,所以20a ab bc ac --+=,所以()2()0,()()0a ab ac bc a a b c a b -+-=-+-=,则()()0a b a c -+=,因为0a c +≠,所以0a b -=,所以a b =,所以ABC 是等腰三角形.解析:15.答案:解:(1)原式222(1002)10024009604=-=+-=(2)原式2(1001)(1001)10011000019999=-⨯+=-=-=解析:16.答案:()()2223m n m n +-- ()()2323m n m n m n m n =++-+-+()()432m n n m =+-()()423m n m n =-+-.当440,235m n m n +=-=时,原式405200=-⨯=-.解析:17.答案:原式222211(2)(2)22x y x y =+-44144x y =-. 把3,4x y =-=代入得,原式260=.解析:18.答案:解:原式962486342714644x y x y x y x y =-⋅-⋅ 11101110271164x y x y =-- 11103116x y =-. 解析:19.答案:327a b ++解析:由题意可知长方形的长为2(3)27327ab a a a b a ++÷=++.故答案为327a b ++.20.答案:14解析:221()()16a b a b a b -=+-=-,14a b +=-,14a b ∴-=.21.答案:4±解析:(221)(221)63a b a b +++-=,22(22)163a b ∴+-=,2(22)64a b ∴+=,则228a b +=±.两边同时除以2,得4a b +=±.22.答案:1解析:()248116x n x n +++是一个关于x 的完全平方式11n n ∴+=±=。

(完整版)初一《整式的乘除》单元考试题及答案.doc

(完整版)初一《整式的乘除》单元考试题及答案.doc

整式的乘除复习姓名:得分:一、填空题:(每小题 3 分,共 30 分)1、 a 5 a 3 a 2=;x 2 3 x2 2 =。

2、 2 x2 y 3 8 x2 2 x 2 y 3=;3、 c 3 1abc 2 2ac=; 2x322x =;2 41 31 14、x2 y x 2 2xy =;2 5 31 15、 2 0 3=。

2 3.14 26、_______________ 4xy 12x 2 y 8xy =。

7、a2 10 a 2 7 =;若 x2 3x 1 0 ,则 x 1 =。

x8、若x2 n 2 ,则2x3n 2 =;若 64 2 83 2n,则 n =。

9、8 2004 0.125 2005=。

10、已知ab2 3,则ab a2 b5 ab 3 b =。

二、选择题:(每小题 3 分,共 30 分)11、下列各式计算正确的是()A、a2 4 a 4 2 B 、 2 x3 5x 2 10 x 6C、 c 8 c 6 c 2 D 、 ab3 2 ab612、下列各式计算正确的是()A、x 2 y 2x2 4 y 2B、x 5 x 2x 210初一数学试卷第 1页C 、x y 2 x y 2D、 x 2y x 2 y x 2 2y 213、用科学记数法表示的各数正确的是()A 、34500=3. 45× 102B、 0. 000043= 4. 3× 105 C 、- 0. 00048=- 4. 8×10-4D、- 340000= 3. 4×10514、当 a1时,代数式 a4 a 3 a1 a 3 的值为()3A 、34B、- 6 C、0D、 8315、已知 ab 2 , ab3 ,则 a 2 ab b 2的值为()A 、11B、 12 C、13D 、1416、已知 28a 2 b m 4a n b 2 7b 2 ,那么 m 、 n 的值为()A 、 m 4 , n 2B 、 m 4 , n 1C 、 m 1 n 2D、 m 2 , n 2,17、一个正方形边长增加 3cm ,它的面积就增加39cm 2,这个正方形边长是( )A 、8 cmB、 5 cmC、 6cmD、 10 cm18、若 x1 3 ,则 x 21 的值为()xx 2A 、9B、 7 C 、 11D 、 619、若 x 2mxy 9 y 2 是一个完全平方式,则 m 的值是()A 、8 B、 6C、 ±8D、 ± 620、520041.6 20051 2003 =()8A 、5B、5C、8D、88855三、计算题: (每小题 4 分,共 20 分)n 2521221、 0.4an bn 1 b2 n b2 aa4初一数学试卷 第 2页22、1a4x2 1 a3x3 3 a2x4 2 a2x2 2 3 4 323、3x2y 1 3x 2 y 124、x 2 y 2 x 2 y 22x y 2 2x y 2四、先化简,再求值:( 8 分)26、4 x2 y x 2 y 2x222 ,y5 。

(完整版)数学七年级下《整式的乘除》测验题(含答案)

(完整版)数学七年级下《整式的乘除》测验题(含答案)

一、选择(每题 2 分,共 24 分)1.以下计算正确的选项是( ).A . 2x 2· 3x 3 =6x 3B . 2x 2+3x 3=5x 5C .(- 3x 2)·(- 3x 2) =9x5D . 5x n ·2x m =1 x mn4 522.一个多项式加上3y 2- 2y - 5 获得多项式 5y 3- 4y -6,则本来的多项式为().A . 5y 3+3y 2+2y - 1B . 5y 3- 3y 2- 2y -6C . 5y 3+3y 2-2y - 1D . 5y 3- 3y 2- 2y -13.以下运算正确的选项是( ).A . a 2· a 3=a 5B .( a 2) 3=a 5C . a 6÷ a 2=a 3D . a 6- a 2=a 44.以下运算中正确的选项是( ).1 1 1 B . 3a 2+2a 3=5a 5 C . 3x 2y+4yx2 =7D .- mn+mn=0A .a+ a= a2355.以下说法中正确的选项是().A .-1 B . xy 2没有系数xy 2是单项式3C . x - 1 是单项式D . 0 不是单项式二、填空(每题 2 分,共 28 分)6.- xy 2 的系数是 ______,次数是 _______.7. ?一件夹克标价为 a?元, ?现按标价的 7?折销售,则实质售价用代数式表示为______. 8. x_______=x n+1;( m+n )( ______) =n 2 -m 2;( a 2) 3·( a 3)2=______ . 9.月球距离地球约为× 105 千米,一架飞机速度为8× 102 千米 /时, ?若坐飞机翱翔这么远的距离需 _________.10. a 2+b 2+________= ( a+b )2 a 2+b 2+_______= ( a - b ) 2( a - b ) 2+______=( a+b )211.若 x 2- 3x+a 是完整平方式,则a=_______.12. 12.多项式 5x 2- 7x - 3 是 ____次 _______项式.三、计算(每题 3 分,共 24 分)13.( 2x2y-3xy2)-( 6x 2y- 3xy 2)14.(-3ax4 y3)÷(-6ax2y2)· 8a2y 253-12122y- 6xy)·(115.( 45a6a b+3a)÷(-a)16.(x xy )33217.( x- 2)( x+2)-( x+1 )(x- 3)18.( 1- 3y)(1+3y )( 1+9y2)19.( ab+1)2-( ab- 1)2四、运用乘法公式简易计算(每题 2 分,共 4 分)20.( 998)221. 197× 203五、先化简,再求值(每题4分,共 8分)22.( x+4)( x- 2)(x- 4),此中 x= - 1.23. [( xy+2 )( xy - 2)- 2x2y2+4] ,此中 x=10 , y=-1.25六、解答题(每题 4 分,共 12 分)24.已知 2x+5y=3 ,求 4x· 32y的值.25.已知 a2+2a+b2-4b+5=0 ,求 a, b 的值.答案 :一、 1.C 2.D 3.A 4. D 5.A二、 6.- 1 3 7.0.7a 元 8. x n n- m a129.× 102小时912.二三10. 2ab -?2ab 4ab 11.41三、 13.- 4x 2y14. 10a2x2y215.- 135a2+ab- 91216.x2y2-3x2 y17. 2x-118.1- 81x 4 ?19.4ab 3四、 20. 99600421. 39991五、 22. x2-2x2-16x+32 452 23.- xy5六、24.8 25. a=- 1, b=2。

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。

]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。

整式乘除试题及答案

整式乘除试题及答案

整式乘除试题及答案一、选择题1. 下列哪个选项是整式乘法的运算法则?A. 同底数幂相乘,指数相加B. 同底数幂相除,指数相减C. 幂的乘方,指数相乘D. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘答案:A2. 计算 (2x^2)(3x^3) 的结果是:A. 6x^5B. 6x^6C. 6x^8D. 18x^5答案:A3. 已知 a^2 = 4,那么 a^3 的值是:A. 8B. 16C. 12D. 4答案:A二、填空题4. 计算 (3x^2 - 2x + 1)(2x^2 + 3x - 4) 的结果中,x^4 的系数是_______。

答案:65. 如果 (x+1)(x-1) = x^2 - _______,那么横线上的数字是_______。

答案:1三、解答题6. 计算 (2x^2 - 3x + 1)(3x^2 + 2x - 5) 的乘积,并展开。

答案:6x^4 + x^3 - 13x^3 - 9x^2 + 15x + 2x^2 - 3x - 5 = 6x^4- 11x^3 - 5x^2 + 12x - 57. 已知 (x^2 + 2x)^2 = x^4 + 4x^3 + 4x^2,求 (x^2 + 2x)^3 的值。

答案:(x^2 + 2x)^3 = (x^2 + 2x)(x^4 + 4x^3 + 4x^2) = x^6 +6x^4 + 12x^3 + 8x^2四、应用题8. 一个长方形的长是宽的两倍,如果宽是 x 米,那么面积是 (2x)(x) 平方米。

求当 x = 3 时,长方形的面积。

答案:当 x = 3 时,面积 = 2 * 3 * 3 = 18 平方米9. 一个数的平方是 25,求这个数的立方。

答案:这个数是 5 或 -5,所以立方分别是 125 或 -125。

七年级数学整式的乘除测试卷(带答案)

七年级数学整式的乘除测试卷(带答案)

七年级数学整式的乘除练习卷一.选择题1.化简(-x)³(-x)²¸结果正确的是-----------------------------------------------------( )A.-x6B. x6 C . -x5 D. x52.计算a²(a+1)-a(a²-2a-1)的结果是-------------------------------------------()A. -a²-aB. 2a²+a+1 C . 3a²+a D. 3a²-a3.在下列各式中,计算结果等于x²-5x-6的是--------------------------------- ( )A. (x-6)( x+1)B. (x-2)( x+3) C . (x+6)( x-1) D. (x-2)( x-3)4.下列计算正确的是----------------------------------------------------------------- ()A. a²·a³=a6B.(a+b)(a-b)=a²-b2C . (a+b)2=a²+b2 D. (a+b)(a-2b)=a²-2b25. 下列计算正确的是-----------------------------------------------------------------()A.(-4x)(2x2+3x-1)=- x3-12x2-4xB.(x+y) (x2+y2) =x3+y3C . (-4a-1) (4a-1)=1-16a2 D. (x-2y)2=x2-2xy+4y26. 下列计算正确的是-----------------------------------------------------------------()A. .(a+b)2=a²+b2B.(a-b)2=a²-b2C . (a+m)(b+n)=ab+ mn D. (m+ n)(-m +n)= -m2+n27.计算(-x-2y)²的结果是------------------------------------------------------------()A.x²-4xy+4y²B.- x²-4xy-4y² C . x²+4xy+4y²D. -x²+4xy-4y²8.计算代数式2xy-x²-y²正确的是-------------------------------------------()A. (x- y)2B. (-x- y)2 C . -(x+y)2 D. -(x- y)29.已知.(a+b)2=9,ab= -1½,则a²+b2的值等于--------------------------()A. 84B. 78 C .12 D.610.若36x²-mxy+49y²是完全平方式,则m的值为-----------------------()A. 1764B. 42 C .84 D. ±8411.计算(-3a³)²÷a²的结果是-----------------------------------------------------()A. -9 a4B. 6a4 C .9a3 D. 9a412.计算x6÷x3的结果是---------------------------------------------------------()A. x9B. x3 C .x2 D. 213.下列运算中,正确的是------------------------------------------------------()A. x10÷(x4÷x2)=x8B. (xy)5÷(xy)3=xy2C .2x2+n÷x n+1 =2x² D. (6x³-3x²+3x)÷3x=2x²-x14.在下列各式中,运算结果是-36y2+49 x²的是-------------------------------()A.(-6y+7x)(-6y-7x)B. (-6y+7x)(6y-7x)C .(7x-4y)(7x+9y) D. (-6y-7x)(6y-7x)15.下列四个代数式:(1) (x+y) (-x-y) (2) (x-y) (y-x) (3) (2a+3b)(3b-2a)(4) (2x-3y) (2y+3x).其中能用平方差公式计算的有-------------------------()A. 1个B.2个 C .3个 D. 4个二.填空题:1、3-2=__;2、有一单项式的系数是2,次数为3,这个单项式可能是___3、____÷a=a3;4、一种电子计算机每秒可做108次计算,用科学记数法表示它8分钟可做_______次运算;5.一个十位数字是a,个位数学是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,它是__,这两个数的差是__6、有一道计算题:(-a4)2,李老师发现全班有以下四种解法,①(-a4)2=(-a4)(-a4)=a4·a4=a8;②(-a4)2=-a4×2=-a8;③(-a4)2=(-a)4×2=(-a)8=a8;④(-a4)2=(-1×a4)2=(-1)2·(a4)2=a8;你认为其中完全正确的是(填序号)_______;7、我国北宋时期数学家贾宪在他的著作《开方作法本源》中的“开方作法本源图”如下图⑴所示,通过观察你认为图中a=_______;8、有二张长方形的纸片(如图⑵),把它们叠合成图⑶的形状,这时图形的面积是_______;9.小华把一张边长是a厘米的正方形纸片的边长减少1厘米后,重新得到一个正方形纸片,这时纸片的面积是_____厘米;10.如果x+y=6, xy=7, 那么x2+y2=,(x-y)2=。

(完整版)七年级数学整式的乘除测试题及参考答案

(完整版)七年级数学整式的乘除测试题及参考答案

第五章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )9543333你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定(2)(2)()()()()233232222x y x xy y x ÷-+-⋅(3)()()222223366m m n m n m -÷--18、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=13 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。

20、(本题8分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值。

22、(本题8分).说明代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。

初中数学《整式的乘除》常考题练习题及参考答案与解析(word版)

初中数学《整式的乘除》常考题练习题及参考答案与解析(word版)

《整式的乘除》常考题练习题及参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9 3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6 4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b35.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a66.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.27.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+2019210.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.2511.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x512.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.614.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣515.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a 17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6 18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy219.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=020.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9 21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b223.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣226.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x627.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+928.(2014秋•长清区期末)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2+b2C.(a+b)2=a2+b2D.(a+b)2=a2+2ab+b229.(2019春•港南区期末)已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0 B.1 C.5 D.1230.(2017•萧山区模拟)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,31.(2014秋•洪山区期末)某学习小组学习《整式的乘除》这一章后,共同研究课题,用4个能够完全重合的长方形,长、宽分别为a、b拼成不同的图形.在研究过程中,一位同学用这4个长方形摆成了一个大正方形.如图,利用面积不同表示方法验证了下面一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2﹣(a﹣b)2=4abC.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b232.(2019秋•海珠区期末)如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3 B.4 C.5 D.633.(2019秋•黄石期末)长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2B.b+3a+2a2C.2a2+3a﹣b D.3a2﹣b+2a34.(2019秋•曲沃县期末)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+135.(2019秋•越城区期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b36.(2019秋•忻州期末)计算27m6÷(﹣3m2)3的结果是()A.1 B.﹣1 C.3 D.﹣337.(2019秋•东城区期末)下列各式计算正确的是()A.3a2•a﹣1=3a B.(ab2)3=ab6C.(x﹣2)2=x2﹣4 D.6x8÷2x2=3x438.(2019秋•滦南县期末)若代数式[2x3(2x+1)]÷(2x2)与x(1﹣6x)的值互为相反数,则x 的值()A.0 B.C.4 D.39.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.3040.(2019秋•张掖期末)如图,正方体的每一个面上都有一个正整数,已知相对的两个面上两数之和都相等.如果13、9、3对面的数分别为a、b、c,则a2+b2+c2﹣ab﹣bc﹣ca的值等于()A.48 B.76 C.96 D.152二、填空题(共30小题)41.(2017秋•黄浦区期中)计算:(a﹣b)•(b﹣a)2=(结果用幂的形式表示).42.(2017•武侯区模拟)我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)43.(2018秋•新疆期末)若x+4y=3,则2x•16y的值为.44.(2015春•张家港市期末)如果等式(2a﹣1)a+2=1,则a的值为.45.(2018•殷都区三模)计算:()﹣2﹣(3.14﹣π)0=.46.(2018春•沂源县期中)5k﹣3=1,则k﹣2=.47.(2019秋•闵行区期末)将代数式2﹣1x﹣3y2化为只含有正整数指数幂的形式.48.(2015春•邗江区校级期中)已知a=﹣(0.2)2,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则比较a、b、c、d的大小结果是(按从小到大的顺序排列).49.(2013春•余姚市校级期中)已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是.50.(2019秋•邹城市期末)已知3a=m,81b=n,则32a﹣4b等于.51.(2019秋•莫旗期末)手机上使用14nm芯片,1nm=0.0000001cm,则14nm用科学记数法表示为cm.52.(2017•北辰区校级模拟)如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.53.(2018春•合浦县期中)﹣2a(3a﹣4b)=.54.(2014秋•渝北区期末)计算:2x2•(﹣3x3)=.55.(2018春•济南期末)已知(x+1)(x﹣2)=x2+mx+n,则m+n=.56.(2015春•昌邑市期末)已知(x+a)(x+b)=x2+5x+ab,则a+b=.57.(2018秋•福州期末)已知x2+3x﹣5=0,则x(x+1)(x+2)(x+3)的值是.58.(2015春•兴化市校级期末)在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.59.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=.60.(2019秋•黄石期末)计算2019×2017﹣20182=.61.(2017•江岸区模拟)一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为cm.62.(2015秋•安陆市期末)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是.63.(2019春•慈溪市期中)根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是.64.(2018•恩阳区模拟)已知a+b=3,ab=2,则a2+b2的值为.65.(2018秋•龙岩期末)若a﹣=4,则a2+=.66.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=.67.(2018秋•齐齐哈尔期末)若x2﹣6x+k是x的完全平方式,则k=.68.(2019春•三明期末)如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.69.(2016秋•肇源县期末)长方形面积是3a2﹣3ab+6a,一边长为3a,则它的另一边长是.70.(2012•菏泽)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.三、解答题(共30小题)71.(2014春•句容市期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.72.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.73.(2016秋•宜阳县校级月考)比较3555,4444,5333的大小.74.(2014春•姜堰市期中)已知3m=2,3n=5.(1)求3m+n的值;(2)求3×9m×27n的值.75.(2019春•沭阳县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)76.(2018秋•武冈市期末)阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.77.(2014春•乳山市期末)计算:[(xy﹣2)÷x0•y﹣3﹣x﹣3y3]÷x﹣1y5.78.(2017春•临淄区校级期中)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x﹣2)x+3=1,求x的值”,她解答出来的结果为x=﹣3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?79.(2014秋•射阳县期末)若a m=3,a n=5,求a2m+3n和a3m﹣2n的值.80.(2017春•江阴市期中)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.81.(2019秋•上蔡县期中)(1)若10a=2,10b=3,求102a+b的值;(2)若3m=6,9n=2,求32m﹣4n+1的值.82.(2019秋•崇川区校级月考)解决下列有关幂的问题(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3.求a3x﹣2y的值;(3)若x=×25n+×5n+,y=×25n+×5n+1,请比较x与y的大小.83.(2018春•吴兴区校级期中)计算(1)(﹣1)2017+()﹣2+(3.14﹣π)0(2)(﹣2x2)3+4x3•x3.84.(2014秋•德惠市期末)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.85.(2016春•龙口市期中)某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?86.(2019春•太原期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.87.(2018春•张店区期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.88.(2017秋•宝山区期末)(2x﹣y+1)(2x+y﹣1)(用公式计算)89.(2019春•赫山区期末)某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:.90.(2015秋•锦江区校级期末)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为S,则S=(用含a,b代数式表示).②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.91.(2019春•高邑县期末)乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式.(4)应用所得的公式计算:.92.(2019秋•偃师市期中)(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:;(4)利用你发现的结论,求:19652+1965×70+352的值.93.(2019春•邗江区期中)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.94.(2018春•吉州区期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:方法2:(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a>0,a﹣=1,求:a+的值.95.(2018春•文登区期末)有若干张如图1所示的A,B,C三种卡片,A表示边长为m的正方形,B表示边长为n的正方形,C表示长为m、宽为n的长方形(1)小明用1张A卡片,4张B卡片,4张C卡片拼成了一个大正方形,这个大正方形的面积为,边长为(2)小玲想用这三种卡片拼一个如图2所示的长为(2m+n),宽为(m+n)的长方形,需要A,B,C三种卡片各多少张?请说明理由,并在图2的长方形中画出一种拼法.(标上卡片名称)96.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.97.(2005•陕西)计算:(a2+3)(a﹣2)﹣a(a2﹣2a﹣2).98.(2011•益阳)观察下列算式:①1×3﹣22=3﹣4=﹣1②2×4﹣32=8﹣9=﹣1③3×5﹣42=15﹣16=﹣1④…(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.99.(2019秋•南召县期末)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.100.(2018秋•南召县期末)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.【知识考点】同底数幂的乘法.【思路分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答过程】解:a m+n=a m•a n=3×4=12,故选:A.【总结归纳】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9【知识考点】合并同类项;同底数幂的乘法.【思路分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,针对每一个选项进行计算即可.【解答过程】解:A、a7+a7=2a7,此选项正确,符合题意;B、a2•a3•a4•a5=a2+3+4+5=a14,此选项错误,不符合题意;C、(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5=(﹣a)14=a14,此选项错误,不符合题意;D、a5•a9=a14,此选项错误,不符合题意.故选:A.【总结归纳】此题主要考查了同底数幂的乘法,合并同类项,关键是熟练掌握计算法则,并能正确运用.3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则分别计算得出答案.【解答过程】解:A、b3•b3=b6,故此选项不符合题意;B、(ab2)3=a3b6,故此选项不符合题意;C、(a5)2=a10,故此选项符合题意;D、y3+y3=2y3,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了合并同类项以及幂的乘方运算和积的乘方运算,正确掌握相关运算法则是解题关键.4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.【解答过程】解:(﹣a2b)3=﹣a6b3.故选:A.【总结归纳】本题考查了幂运算的性质,注意结果的符号确定,比较简单,需要熟练掌握.5.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【思路分析】结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确选项.【解答过程】解:A、3x﹣2x=x,原式计算错误,故本选项不符合题意;B、﹣2x﹣2=﹣,原式计算错误,故本选项不符合题意;C、(﹣a)2•a3=a5,原式计算错误,故本选项不符合题意;D、(﹣a2)3=﹣a6,原式计算正确,故本选项符合题意.故选:D.【总结归纳】本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,解答本题的关键是掌握各知识点的运算法则.6.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.2【知识考点】有理数的乘方;零指数幂.【思路分析】分别根据零指数幂及幂的乘方运算法则进行计算即可.【解答过程】解:原式=1+(﹣×8)2008=1+1=2.故选:D.【总结归纳】本题考查了零指数幂及幂的乘方的运算,属于基础题,掌握各部分的运算法则是关键.7.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个【知识考点】有理数的乘方;零指数幂.【思路分析】根据等式(2a﹣1)a+2=1成立,可得,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),据此求出a的值可能有哪些即可.【解答过程】解:∵等式(2a﹣1)a+2=1成立,∴,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),(1)由,解得a=﹣2.(2)由2a﹣1=1,解得a=1.(3)由2a﹣1=﹣1,解得a=0,此时a+2=2,(﹣1)2=1.综上,可得a的值可能有3个:﹣2、1、0.故选:D.【总结归纳】此题主要考查了零指数幂的运算,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【知识考点】有理数大小比较;零指数幂;负整数指数幂.【思路分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【解答过程】解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.【总结归纳】本题主要考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+20192【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答过程】解:20195=20193×20192.故选:B.【总结归纳】此题主要考查了同底数幂的乘法运算,正确掌握相关法则是解题关键.10.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.25【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则将原式化简得出答案.【解答过程】解:∵3x=5,3y=4,9z=2=32z,∴32x﹣y+4z=(3x)2÷3y×(32z)2=25÷4×22=25.故选:D.【总结归纳】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.11.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答过程】解:A、x3﹣x2,无法计算,故此选项不符合题意;B、x3•x2=x5,故此选项不符合题意;C、x3÷x2=x,故此选项符合题意;D、(x3)2=x5,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了同底数幂的乘除法运算法则以及幂的乘方运算等知识,正确掌握相关法则是解题关键.12.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个【知识考点】同底数幂的乘法;同底数幂的除法.【思路分析】根据同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答过程】解:∵a5+a3≠a10,∴选项①不符合题意;∵(﹣a)6•(﹣a)3•a=﹣a10,∴选项②不符合题意;∵﹣a4•(﹣a)5=a9,∴选项③不符合题意;∵(﹣a)5÷a2=﹣a3,∴选项④符合题意,∴等式中正确的有1个:④.故选:A.【总结归纳】此题主要考查了同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.6【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣5【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.00016=1.6×10﹣4,故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【知识考点】科学记数法—表示较小的数.【思路分析】0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,在本题中a为5,n为5前面0的个数.【解答过程】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选:D.【总结归纳】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.注意应先把0.5纳米转化为用米表示的数.16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【知识考点】幂的乘方与积的乘方;单项式乘单项式;零指数幂;负整数指数幂.【思路分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答过程】解:(A)原式=1,故本选项不符合题意;(B)x3与x4不是同类项,不能进行合并,故本选项不符合题意;(C)原式=a4b6,故本选项不符合题意;(D)2a2•a﹣1=2a,故本选项符合题意.故选:D.【总结归纳】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;去括号与添括号;幂的乘方与积的乘方;单项式乘单项式.【思路分析】根据乘法分配律;合并同类项系数相加字母及指数不变;系数乘系数,同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积,可得答案.【解答过程】解:A、﹣5(a﹣1)=﹣5a+5,故本选项不符合题意;B、合并同类项系数相加字母及指数不变,故本选项不符合题意;C、系数乘系数,同底数幂的乘法底数不变指数相加,故本选项不符合题意;D、积的乘方等于乘方的积,故本选项符合题意;故选:D.【总结归纳】本题考查了单项式的乘法,熟记法则并根据法则计算是解题关键.18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy2【知识考点】单项式乘多项式.【思路分析】各项利用单项式乘多项式法则计算得到结果,即可做出判断.【解答过程】解:A、﹣3x(2﹣x)=﹣6x+3x2,计算正确,故本选项不符合题意;B、(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3,计算正确,故本选项不符合题意;C、xy(x2y﹣3xy2﹣1)=x3y2﹣3x2y3﹣xy,计算错误,故本选项符合题意;D、(x n+1﹣y)xy=x n+2y﹣xy2,计算正确,故本选项不符合题意.故选:C.【总结归纳】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.19.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【知识考点】多项式乘多项式.【思路分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答过程】解:(x2+px+q)(x﹣2)=x3﹣2x2+px2﹣2px+qx﹣2q=x3+(p﹣2)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【总结归纳】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.20.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9【知识考点】多项式乘多项式.【思路分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答过程】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.【总结归纳】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)【知识考点】平方差公式.【思路分析】分别将四个选项变形,找到符合a2﹣b2=(a﹣b)(a+b)的即可解答.【解答过程】解:A、(﹣a﹣b)(a+b)=﹣(a+b)(a+b),不符合平方差公式,故本选项不符合题意;B、(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,符合平方差公式,故本选项符合题意;C、(﹣a﹣b+c)(﹣a﹣b+c)=[c﹣(a+b)]2,不符合平方差公式,故本选项不符合题意;D、(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不符合平方差公式,故本选项不符合题意.故选:B.【总结归纳】本题考查了平方差公式,将算式适当变形是解题的关键.22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【知识考点】平方差公式.【思路分析】根据平方差公式的逆用找出这两个数写出即可.【解答过程】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.【总结归纳】本题主要考查了平方差公式,熟记公式结构是解题的关键.23.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【知识考点】平方差公式.【思路分析】利用平方差公式的结构特征判断即可.【解答过程】解:能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.【总结归纳】此题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【知识考点】4G:平方差公式的几何背景.【思路分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答过程】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故(a+b)(a﹣b)=a2﹣b2,故选:A.【总结归纳】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【知识考点】4G:平方差公式的几何背景.【思路分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答过程】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【总结归纳】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.26.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x6【知识考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【思路分析】利用积的乘方,完全平方公式,同底数的幂的除法,以及合并同类项求出结果即可确定答案.【解答过程】解:A、(x5)2=x10,故本选项不符合题意;B、(x﹣y)2=x2﹣2xy+y2,故本选项不符合题意;C、x13÷x3=x10,故本选项符合题意;D、x3+x3=2x3,故本选项不符合题意.故选:C.【总结归纳】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.27.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【知识考点】4C:完全平方公式.【思路分析】根据完全平方公式,即可解答.【解答过程】解:(x+3)2=x2+6x+9,故选:C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 整式的乘除 单元测试卷
一、选择题(共10小题,每小题3分,共30分)
温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )
A. 9
5
4
a a a =+ B. 3
3
3
3
3a a a a =⋅⋅
A 、①②
B 、③④
C 、①②③
D 、①②③④ ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3
B 、3
C 、0
D 、1
8.已知.(a+b)2=9,ab= -11
2 ,则a²+b 2的值等于( )
A 、84
B 、78
C 、12
D 、6
9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 15
8
,11572-=-=
(m 为任意实数),则P 、Q 的大小关系为 ( )
A 、Q P >
B 、Q P =
C 、Q P <
D 、不能确定
(2)(2)()()()()2
3
3
2
32222x y x xy y x ÷-+-⋅
(3)()()
222223366m m n m n m -÷--
18、(本题9分)(1)先化简,再求值:()()()()2
2
1112++++-+--a b a b a b a ,
其中2
1
=a ,
19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,
且E 为AB 边的中点,CF=1
3 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。

20、(本题8分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值
21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++2
2
2
的值。

22、(本题8分).说明代数式[]
y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。

23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:
若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x吨,则应交水费多少元?
参考答案一、选择题
D
二、填空题
11.
44± 12. 23 13.
14
11
-=x 14. -3 15. a+b=c 16. 2
三、解答题
17计算:(本题9分)
(((
ab b a ab ab S 222
1
621619=⨯-⨯-
=阴影解
⎩⎨
⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17
3
08303,8)24()83()3(824833203
2
234223234n m m n m x x n x m n x m n x m x n x x m nx m x m x nx x x 项和不含解原式
[
]
2007,2006,2005,)()()(1
2122===-+-+-=
时当解原式c b a c a c b b a。

相关文档
最新文档