信道特性对信号传输的影响..共56页

合集下载

通信原理(第四章)

通信原理(第四章)

27
第4章 信 道 章
四进制编码信道模型
0 0
1 送


1
收 端

2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, ฀ 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, ฀ 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 ฀ 编码信道模型是用数字的转移概率来描述。

第四章 信道(2)

第四章 信道(2)

§4.3.1 调制信道模型
e0 (t ) k (t )ei (t ) n(t )
k(t)——乘性干扰 它是时间t的函数,表示信道的特性是随时间变化的。 随时间变化的信道成为时变信道 k(t)——乘性干扰——引起的失真随时间做随机变化 特性随机变化的信道称为随参信道 特性不随时间变化或者变化很小的信道称为恒参信道
§4.3.1 调制信道模型
输出量表示为:
e0 (t ) k (t )ei (t ) n(t ) ——二端口网络
e0(t)——输出端电压 ei(t)——输入信号电压 k(t)——乘性干扰 n(t)——加性干扰
n(t)——加性干扰 当没有信号输入时,信道输出端也有加性干扰 k(t)——乘性干扰 当没有信号输入时,信道输出端没有乘性干扰
( w)
dw
td (常数)
理想的相—频及群迟延—频率特性曲线:
( )
( )
k
k

恒参信道对信号传输的影响
实际信道对信号产生的两种失真: (1)幅频失真 表示信号中不同频率的分量分 H ( w ) K (频率失真): 别受到信道不同的衰减。
模拟信号:波形失真——信噪比下降
回顾窄带随机过程
(t ) a (t ) cos[ct (t )]
(t ) c (t ) cos ct s (t ) sin ct
可见,随机过程的统计特性可由
a (t )、 (t )或者c (t )、s(t )的特性确定 反之也成立
重要结论之二: 一个均值为零,方差为σ2ξ的窄带高斯过程ξ (t), 其包络a ξ(t)的一维分布是瑞利分布;
设一恒参信道的幅频特性和相频特性分别为:
H ( w) K

影响信道极限传输速率的因素

影响信道极限传输速率的因素
THANKS
信号失真分为线性失真和非线性失真 。线性失真主要由于信道带宽限制和 信号的频谱特性不匹配,而非线性失 真则主要是由于信道非线性效应。
信号失真对传输速率的影响
信号失真会导致误码率的增加,从而降低数据传输的可靠 性。在高速传输时,信号失真会更加明显,影响传输速率 的提升。
随着传输速率的提高,信道对信号的畸变能力减弱,因此 需要在有限带宽内控制信号的畸变,以保证信号质量。
02
信噪比
定义
信噪比(Signal-to-Noise Ratio,简称SNR)是指信号功 率与噪声功率的比值,通常以 分贝(dB)为单位表示。
信噪比是衡量通信系统性能的 重要参数,它决定了信号在传 输过程中能够被正确接收和识 别的能力。
在通信系统中,信噪比越大, 信号质量越好,传输误码率越 低,传输速率越高。
05
信道衰减
定义
信道衰减是指信号在 传输过程中,由于各 种原因导致的信号幅 度减小。
信道衰减是影响信道 极限传输速率的重要 因素之一。
信道衰减可能是由于 传输线、电磁波、散 射、折射等原因引起 的。
信道衰减对传输速率的影响
信道衰减会降低信号的幅度,导致信号接收端无法正确解码,从而降低传输速率。 随着信道衰减的增加,信号的误码率也会相应增加,导致数据传输的可靠性降低。
降低系统中的噪声功率可以改善信噪比。这可以 通过改进系统设计、优化设备性能、加强环境噪 声抑制等方法实现。
信道编码技术
通过采用纠错编码技术,可以在传输过程中纠正 因噪声干扰引起的错误,从而提高信噪比和传输 速率。
03
信号失真
定义
信号失真:在信号传输过程中,由于 信道特性、噪声干扰等因素,导致信 号波形发生变化,使得接收端收到的 信号与原始信号不一致。

2.4节信道特性对信号传输的影响

2.4节信道特性对信号传输的影响
T
当T Tc 时,说明信道传送的数据符号波形在 一个或几个符号间隔T内不会出现明显衰落,只 有在许多个符号之后才会出现明显的幅度衰落。 详细内容大家可以参考“无线通信”相关教材。
频率偏移:输入信号的频谱经过信道 传输后产生了偏移。由于用于调制解调或 频率变换的振荡器的频率误差引起的,会 引起模拟和数字通信系统的解调性能下降。
相位抖动:由于用于调制解调或频率 变换的振荡器的频率不稳定产生的。这对 高速数据通信系统的性能影响比较大。
随参信道特性对信号传输的影响 (两径传播)
1、无线通信信道简介 无线信道的衰落分为大尺度衰落和小尺度
2、幅频失真
当理想恒参信道的幅频特性在信号的频 带范围内不是常数,即 H() K
就会使信号产生幅频失真;
典型音频电话信道:用插入损耗
(insertion loss)和频率的关系来表示幅
频特性。这里的插入损耗是指发送信号经
过恒参信道后在功率方面的损失,以dB为
单位,即
发送信号功率 10lg 接收信号功率
(2)多普勒效应分析
当接收机与发射机之间以一定的速度相对运动时, 每条传播路径的信号频率相对载波发生了频率偏移,即 多普勒效应。
Ds:两条传输路径的频率差即多普勒扩展。
相干时间(Coherence
Time)T:c
1 2Ds
慢衰落(Slow Fading)信道:信号周期小于信道的相干时
间,信号在不同时刻所经历的衰落不会发生剧变。
多径时延扩展:Td
max i, j
i
(t
)
j
(t
)
相关带宽(Coherence
Bandwidth):
Bc
1 Td
平坦衰落(Flat Fading):信号带宽小于信道的相关带宽,

知识要点随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善

知识要点随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善

《通信原理》 第六讲知识要点:随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善方法§3. 3 随参信道及其传输特性随参信道是指信道传输特性随时间随机快速变化的信道。

常见的随参信道有陆地移动信道、短波电离层反射信道、超短波流星余迹散射信道、超短波及微波对流层散射信道、超短波电离层散射以及超短波超视距绕射等信道。

一、随参信道举例1. 陆地移动信道陆地移动通信工作频段主要在VHF 和UHF 频段,电波传播特点是以直射波 为主。

但是,由于城市建筑群和其它地形地物的影响,电波在传播过程中会产生反射波、散射波以及它们的合成波,电波传输环境较为复杂,因此移动信道是典型的随参信道。

1) 自由空间传播当移动台和基站天线在视距范围之内,这时电波传播的主要方式是直射波。

设发射机输入给天线功率为T P (W),则接收天线上获得的功率为24⎪⎭⎫ ⎝⎛=d G G P P R T T R πλ (3.3-1) 式中,T G 为发射天线增益,R G 为接收天线增益,d 为接收天线与发射天线之间直线距离,πλ42为各向同性天线的有效面积。

当发射天线增益和接收天线增益都等于1时,式(3.3-1)简化为24⎪⎭⎫⎝⎛=d P P T R πλ (3.3-2)自由空间传播损耗定义为 RTfs P P L =(3.3-3) 代入式(3.3-2)可得24⎪⎭⎫⎝⎛=λπd L fs (3.3-4)用dB 可表示为 []λπdL fs 4lg20=f d lg 20lg 2044.32++= (dB) (3.3-5)式中,d 为接收天线与发射天线之间直线距离,单位为km ;f 为工作频率,单位为MHz 。

2) 反射波与散射波当电波辐射到地面或建筑物表面时,会发生反射或散射,从而产生多径传播现象,如图3-17所示。

图3-17 移动信道的传播路径3) 折射波电波在空间传播中,由于大气中介质密度随高度增加而减小,导致电波在空间传播时会产生折射、散射等。

通信原理第7版第4章(樊昌信版)课件

通信原理第7版第4章(樊昌信版)课件

正确
错误
Pe P(0)P(1/ 0) P(1)P(0 /1)
学习交流PPT
24
四进制 无记忆 编码信道

0
1
发 送 端2
3
学习交流PPT
0
1
接 收 2端
3
25
§4.4
恒参/随参信道特性 对信号传输的影响
学习交流PPT
26
恒参信道 特性及其对信号传输的影响
线性时不变系统
• 特点:传输特性随时间缓变或不变。
传播路径 天波传播方式
学习交流PPT
6
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
D2 D2 h (m)
8r 50
D 为收发天线间距离(km)
So()C()Si()
C n (t )
学习交流PPT
22
不同的物理信道具有不同的特性C() = 常数(可取1)
加性高斯白噪声信道模型
学习交流PPT
23
§4.3.2 编码信道模型 模型: 可用 转移概率来描述。
二进制 无记忆 编码信道 模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
学习交流PPT
7
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信

第三章 信道 信道是通信系统必不可少的组成部分.一般来说,实.

第三章 信道 信道是通信系统必不可少的组成部分.一般来说,实.


在信道有效的传输带宽内, | H(ω) |不是恒定不变的,而是 随频率的变化有所波动。这种振幅频率特性的不理想导致信 号通过信道时波形发生失真,又称为幅度频率失真。
如有线电话信道的衰减—频率特性就是不理想的,
产生原因:信道中存在各种滤波器、混合线圈、串联电 容、分布电感等。 影响: 对模拟信号,使波形失真,如语音信号,不同频率 强弱变化; 对数字信号,会引起相邻码元波形在时间上相互重 叠(因信道特性变化),从而造成码间串扰、误码。 1. 相位——频率畸变: 经常用群迟延——频率特性来描述相频特性: 群迟延——频率特性为:τ(ω)=dφ(ω)/d ω,当φ(ω) =-ωtd 即τ(ω)=-td时,无相频畸变。
3.克服措施: 模拟通信: 利用线性补偿网络进行频域均衡,使衰耗特性曲 线平坦,联合频率特性无畸变。 数字通信:合理设计收、发滤波器,消除信道产生的码间串扰; 信 道特性缓慢变化时,用时域均衡器,使码间串扰降到最小且可自适 应信道特性变化。

三、随参信道特性及其对信号传输的影响
随参信道包括短波电离层反射信道、超短波流星余迹散射、超短 波及微波对流层散射、超短波电离层散射等。 对流层:10km~12km以下大气层 电离层:60~600km大气层
如果传输特性不好(即上述两个条件不满足),会使信号传输产 生失真(也称畸变)。 1. 幅度——频率畸变
幅度——频率畸变是信道的幅度——频率特性不理想引起的,主 要是
三、参信道特性及其对信号传输的影响
当前大多数的数据通信都是通过恒参信道(或近 似恒参信道)进行传输的,如有线信道、微波视距信 道、卫星信道等都是恒参信道。恒参信道的主要特点 是可以把信道等效成一个线性时不变网络,传输技术 主要解决由线性失真引起的符号间干扰和由信道引入 的加性噪声所造成的判断失误。

信道特性对信号传输的影响

信道特性对信号传输的影响

信道特性对信号传输的影响1.无失真传输要求(1)振幅-频率特性要求振幅特性与频率无关,即其振幅-频率特性曲线是一条水平直线。

(2)相位-频率特性要求相位特性是一条通过原点的直线,或其传输群时延(即系统在某频率处的相位对频率的变化率)与频率无关,等于常数。

2.失真(1)线性失真①频率失真a.定义:频率失真是指信道的振幅-频率特性曲线不满足呈一条理想水平直线而引起的失真。

b.影响:使模拟信号的波形产生畸变。

在传输数字信号时,造成码间串扰。

c.补偿措施:用一个线性网络进行补偿,使其频率特性与信道的频率特性之和在信号频谱占用的频带内为一条水平直线。

②相位失真a.定义:相位失真是由信道的相位特性不满足群时延为常数的理想特性而引起的失真。

b.影响:相位失真对于数字信号的传输影响很大,引起码间串扰,使误码率增大。

c.补偿措施:用一个线性网络进行补偿。

(2)非线性失真①定义非线性失真是指信道输入和输出信号的振幅关系不是直线关系的失真。

②分类a.谐波失真定义:非线性特性使信号产生新的谐波分量。

产生原因:由信道中的元器件特性不理想造成。

b.频率偏移失真定义:信道输入信号的频谱经过信道传输后产生了平移。

产生原因:由发送端和接收端中用于调制解调或频率变换的振荡器的频率误差引起。

c.相位抖动失真定义:信道输入信号的相位谱经过信道传输不稳定。

产生原因:由振荡器的频率不稳定产生。

③特性图图4-10 非线性特性(3)衰落①衰落的定义衰落是指信号的包络因传播而产生起伏变化的现象。

②衰落的分类快衰落:由多径效应引起的衰落。

慢衰落:由于移动台的不断运动,电波传播路径地形地貌的不断变化,路径上季节、日夜、天气等的变化使得衰落的起伏周期较长的一种衰落。

频率选择性衰落:衰落和频率有关,不同频段上衰落特性不一样,当频率超过相干带宽时发生频率选择性衰落。

(4)多径效应①产生原因信号经过几条路径到达接收端,而且每条路径的长度(时延)和衰减都随时间而变。

各种类型信道

各种类型信道

第四章 信道
第一节
一、基本问题
《通信原理(一)》CAI
无线信道
– 无线信道电磁波的频率 • 受天线尺寸限制,一般为电磁波波长的1/10~1/4, 故无线信道电磁波的频率较高。 – 地球大气层的结构 电离层 • 对流层:地面上 0 ~ 10 km 平流层 • 平流层:约10 ~ 60 km 60 • 电离层:约60 ~ 400 km km 对流层
信道是以传输媒质为基础的信号传输通道。 有线信道 狭义信道
明线 电缆 光缆
地波传播 短波电离层反射 超短波、微波视距中继 人造卫星中继等
无线信道
广义信道:包括传输媒质和变换装置(发送接收调制解调) 一般来说,实际信道都不是理想的。首先,这些信道具有 非理想的频率响应特性(无源干扰),另外还有噪声和信号 通过信道传输时掺杂进去的其他干扰(有源干扰) 。
10 km 0 km
地 面
第四章 信道
第一节 无线信道
衰 减
《通信原理(一)》CAI
一、基本问题 电离层对于传播的影响
吸收(衰减) 反射 散射

水蒸气 氧 气
(dB/km)
频率(GHz) (a) 氧气和水蒸气(浓度7.5 g/m3)的衰减

大气层对于传播的影响
吸收 散射

衰 减
降雨率
图 4-3 视线传播
式中,D – 收发天线间距离(km)。 [例] 若要求D = 50 km,则由式(4.1-3)
D 2 D 2 502 h 50 8r 50 50

m
图4-4 无线电中继
增大视线传播距离的其他途径 中继通信: 卫星通信:静止卫星、移动卫星 平流层通信:
第四章 信道

通信原理第三章总结

通信原理第三章总结

第三章 总结节1 信道的概念一、信道定义:狭义信道、广义信道二、信道模型:1、调制信道共性:①一对(或多对)信道输入,必对应有一对(或多对)信道输出。

②绝大多数信道是线性的,满足叠加定理。

③信道对信号有延时,还有衰耗(固定或时变)④无信号输入,信道也有输出。

调制信道可用时变线性网络表示恒参信道、随参信道2、编码信道编码信道模型用码序列的转移概率描述3、信道分类节2 调制信道特性及对信号传输的影响一、恒参信道1、幅频特性:2、相频特性:若Φ(ω) = - ω t d ( t d 是常数,为线性函数),无失真。

Φ(ω) 非线性,有失真。

二、随参信道1、随参信道传输媒质三个特点:①传输衰耗随时间而变;()()则有幅频失真则无幅频失真const H const H ≠=ωω②传输时延随时间而变;③多径传播。

2、随参信道对信号传输的影响分析:影响结果:①等幅信号变为有包络变化的信号,即存在幅度快衰落影响;②单一频率信号变为窄带频谱信号,即存在频率弥散影响。

相关带宽△f节3 加性噪声节4 信道容量概念信道传输信息的最大速率 R 称为信道容量, C 为差错任意小的最高信息速率。

待传送的信源信息速率 R 源>C ,则信道肯定不能正确传送该信息;而R 源≤C ,采用适当的方法,该信道能正确无误的传送该信息。

加性高斯白噪声作用下的调制信道(白高斯信道)可由Shannon 公式计算信道的容量:B :信道带宽(Hz ) S :信号功率( W )N = n 0 B :白噪声功率s bit B n S B N S B C /1log 1log 022⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=。

信道特性

信道特性

恒参信道:有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。

⏹ 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。

从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。

网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线.随参信道:短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。

属于随参的传输媒质主要以电离层反射、对流层散射等为代表。

⏹ 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。

⏹ 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。

在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。

随参信道图:共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。

多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。

—— 由第i 条路径的随机相位;————由第i 条路径到达的接收信号振幅_______ 由第i 条路径达到的信号的时延;都是随机变化的(1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号;(2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。

通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。

)()(0t t i i τωϕ-=)(t i μ)(t iτ)(),(),(t t t i i i ϕτμωωϕωτd d )()(=频率选择性衰落与相关带宽:假定多径传播的路径只有两条,且到达接收点的两路信号的强度相同,只是在到达时间上差一个时延 。

信道是指以传输媒质为基础的信号通道

信道是指以传输媒质为基础的信号通道

第4章信道信道是指以传输媒质为基础的信号通道,是将信号从发送端传送到接收端的通道。

如果信道仅是指信号的传输媒质,这种信道称为狭义信道。

如果信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这些装置可以是发送设备、接收设备、馈线与天线、调制器、解调器等。

这种信道称为广义信道。

无线信道利用电磁波在空间的传播来传播信号;有线信道利用导线、波导、光纤等媒质来传播信号。

常把广义信道简称为信道。

4.1 无线信道信道是对无线通信中发送端和接收端之间通路的一种形象比喻。

对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。

信道具有一定的频率带宽,正如公路有一定的宽度一样。

电磁波传播主要分为地波、天波和视线传播三种。

地波:频率在2MHz以下,电磁波沿大地与空气的分界面传播。

传播时无线电波可随地球表面的弯曲而改变传播方向。

在传播途中的衰减大致与距离成正比。

地波的传播比较稳定,不受昼夜变化的影响,所以长波、中波和中短波可用来进行无线电广播。

根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。

地面上的障碍物一般不太大,长波可以很好地绕过它们。

中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领很差。

由于地波在传播过程中要不断损失能量,而且频率越高,损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。

长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所以长波很少用于无线电广播,多用于超远程无线电通信和导航等。

天波:天波是靠电磁波在地面和电离层之间来回反射而传播的,频率范围在2~30MHz。

天波是短波的主要传播途径。

短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。

通信原理第3章信道

通信原理第3章信道
增大视线传播距离的其他途径 ➢ 中继通信: ➢ 卫星通信:静止卫星、 移动卫星
图3.1-5 无线电中继
➢ 平流层通信:利用位于平流层的高空平台电台代替卫星作为 基站的通信。
11
第3章 信 道
三、电离层和大气层对于传播的影响
电离层对于传播的影响
反射 散射
大气层对于传播的影响
散射 吸收
衰 减
根据应用情况不同,在光纤线路中可能设有中继器 (也可不设)。中继器有两种类型:直接中继器和间接中继器。 所谓直接中继器就是光放大器,它直接将光信号放大以补偿光 纤的传输损耗,以便延长传输距离;所谓间接中继器就是将光 信号先解调为电信号,经放大或再生处理后,再调制到光载波 上,利用光纤继续进行传输。在数字光纤信道中,为了减少失 真及防止噪声的积累,每隔一定距离需要加入再生中继器。
电离层
电离层:约60 ~ 400 km
平流层
60 km
对流层
10 km
地面
0 km
6
第3章 信 道
3.短波电离层的传播路径
短波电离层反射信道是利用地面发射的无线电波在电 离层, 或电离层与地面之间的一次反射或多次反射所形成 的信道。
离地面60~400 km的大气层称为电离层。
电离层由分子、原子、离子及自由电子组成,形成的 原因是由于太阳辐射的紫外线和X射线。 当频率范围为 3~30 MHz (波长为10-100m)的短波(或称为高频)无线电 波射入电离层时, 由于折射现象会使电波发生反射,返回 地面,从而形成短波电离层反射信道。
制 器




线测






处 理
电 信 号

信道特性对信号传输的影响.

信道特性对信号传输的影响.

1、信号不失真传输条件


对于信号传输而言,我们追求的是 信号通过信道时不产生失真或者失 真小到不易察觉的程度。 由《信号与系统》课程可知,网络 的传输特性 H ( )通常可用幅度-频 率特性 H () 和相位-频率特性 ( ) 来表征
H () H () e
j ( )

要使任意一个信号通过线性网络不产 生波形失真,网络的传输特性应该具 备以下两个理想条件: (1)网络的幅度-频率特性 H ( ) 是 一个不随频率变化的常数,如图(a) 所示; (2)网络的相位-频率特性 ( )应 与频率成直线关系,如图(b)所示。 其中t0为传输时延常数。
j 0
(1 e
j
)
上式两端分别是接收信号的时间函数和频 谱函数

故得出此多径信道的传输函数为
AF ( )e j 0 (1 e j ) j 0 j H ( ) Ae (1 e ) F ( )
上式右端中,A - 常数衰减因子, j 0 e - 确定的传输时延, j (1 e ) - 和信号频率有关的复因子,其模为
此外也还存在其它一些因素使信道的此外也还存在其它一些因素使信道的输出与输入产生差异亦可称为失真输出与输入产生差异亦可称为失真例如非线性失真频率偏移及相位抖动例如非线性失真频率偏移及相位抖动非线性失真主要由信道中的元器件如非线性失真主要由信道中的元器件如磁芯电子器件等的非线性特性引起磁芯电子器件等的非线性特性引起造成谐波失真或产生寄生频率等
二、随参信道及其对所传信号 的影响



本节知识要点: 多径传播 多径衰落 频率弥散 选择性衰落 相关带宽 分集接收:空间分集,频率分集,角度分集, 极化分集

通信原理(Ⅱ)信道特性对传输的影响

通信原理(Ⅱ)信道特性对传输的影响

两T(条发路射径机的)接收信c 号为:

传播衰减
A
Ei
f(t - E0)L和OSA f(t
第一条路径 的时延
-
b
0
- )
ETOT=ELOS +Eg 两条路径R的(接时收延差机)
h2t.求:此多径信道的传输函E数dr2=Eg

hr
设f (t)的傅里叶θ变i 换(即其θ频0谱)为F():
f (t) F()
2、相位失真:相位~频率特性不良引起的
对语音影响不大,对数字信号影响大 解决办法:同上
3
4.4 信道特性对信号传输的影响
3、非线性失真:
可能存在于恒参信道中
定义:
输入电压~输出电压关系
是非线性的。
4、其他失真:
频率偏移、相位抖动…




直线关系
非线性关系
输入电压
图4-16 非线性特性
2)、相位~频率特性:
要求其为通过原点的直线, 即群时延为常数时无失真
群时延定义: () d d

群(

迟)
ms
0

相位~频率特性
频率(kHz)
(b) 群延迟~频率特性
2
4.4 信道特性对信号传输的影响
1、频率失真:振幅~频率特性不良引起的
频率失真 波形畸变 码间串扰 解决办法:线性网络补偿
4.4 信道特性对信号传输的影响
一、恒参信道的影响
恒参信道举例:各种有线信道、卫星信道… 恒参信道 非时变线性网络 信号通过线性系
统的分析方法。线性系统中无失真条件:
1)、振幅~频率特性:为水平直线时无失真

信道传输特性

信道传输特性

2015年11月26日
第4章 信道传输特性
2.布线系统信道、永久链路、CP链路构成模型
如图4.1所示是布线系统信道、永久链路、CP链路构成模型。
图 4.1 布线系统信道、永久链路、CP链路构成模型
2015年11月26日
第4章 信道传输特性
3.光纤信道构成方式
①光纤信道的第一种构成方式是,由水平光缆和主干光缆至楼层电 信间的光纤配线设备经光纤跳线连接构成,如图4.2所示。
图4.2 光缆经电信间经光纤跳线连接
2015年11月26日
第4章 信道传输特性
②光纤信道的第二种构成方式是,由水平光缆和主干光缆在 楼层电信间做端接(熔接或机械连接) 构成,FD只设光纤之间 的连接点,如图4.3所示。
图 4.3 光缆在电信间做端接
2015年11月26日
第4章 信道传输特性
③光纤信道的第三种构成方式是,由水平光缆经过电信间直 接连接至大楼设备间光配线设备构成,FD安装于电信间,只 作为光缆路径的场合,如图4.4所示。
2015年11月26日
第4章 信道传输特性
由香农公式可得出以下结论: ①提高信号和噪声功率之比,能增加信道容量。 ②当噪声功率N→0时,信道容量C可趋于无穷大。这意味着无 干扰信道容量为无穷大。 ③当信道容量C一定时,可以用不同的带宽和信噪比的组合(或 互换)来传输;即信道容量可以通过系统带宽与信噪比的互换 而保持不变。
S C B log 2 1 n B 0
令N=n0B,
S C B log2 1 N

其中,将S/N称为信噪比,则C是用bit/s表示的信道容量,称为香 农容量。信道容量给出了信道所能传输的最大信息传输速率(即能 达到的最大传输能力)与信道带宽B和信噪比S/N之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档