2018年河南省一模试卷

合集下载

2018届河南省六市高三一模理科综合试题及答案

2018届河南省六市高三一模理科综合试题及答案

河南省六市2018学年度高中毕业班第一次联考理科综合能力测试本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至5页,第Ⅱ卷6至16页,共300分。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

考生要认真校对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上指定区域书写作答,在试题上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷(选择题,共126分)可能用到的相对原子质量 H 1 Li 7 C 12 N 14 O 16 F 19Na 23 Al 27 Si 28 P 31 S 32 Ca40 Ni 59一、选择题:本大题共13小题.每小题6分。

在每小题给出的四个选项中.只有一项是符合题目要求的。

1.下列有关“一定”的说法正确的是①进行光合作用的绿色植物,细胞一定均含有叶绿体②生长素对植物生长一定起促进作用③没有细胞结构的生物一定是原核生物④酶催化作用的最适温度一定是37℃⑤人体细胞有氧呼吸全过程一定在线粒体中⑥两个种群间的生殖隔离一旦形成,这两个不同种群的个体之间一定不能进行交配⑦与双缩脲试剂发生紫色反应的物质一定是蛋白质⑧将斐林试剂加入某植物组织样液,显现蓝色,说明该样液中一定不含有还原糖A.全部不正确 B.有一个正确 C.有两个正确 D.有三个正确2.下列实验所选用的材料、试剂和实验目的正确的一组是A.利用甘蔗组织样液进行还原性糖的鉴定,加入斐林试剂并加热会出现明显的砖红色沉淀B.用高倍显微镜观察人口腔上皮细胞中的线粒体时,在洁净的载玻片中央滴一滴用0.5g健那绿和50mL蒸馏水配制的染液C.观察渗透现象时,在长颈漏斗口外封上一层玻璃纸,往漏斗内注入蔗糖溶液,然后将漏斗浸入盛有清水的烧杯中D.探究温度对酶活性的影响,向3%过氧化氢溶液中加入过氧化氢酶溶液3.下图是描述生命现象的示意图,以下相关叙述正确的是A.若甲代表种群,a为能量输入,则b、c可分别代表散失的热量和储存在ATP中的能量B.若甲代表人体下丘脑,a为血浆渗透压下降,则b、c可分别代表产生渴觉和尿液减少C.若甲代表人体B淋巴细胞,a为抗原刺激及淋巴因子的作用,则b、c可分别代表浆细胞和记忆细胞的形成D.若甲代表棉铃虫种群,a为诱捕雄虫,则b、c可分别代表性别比例失调和种群密度提高4.某校学生开展研究性学习,在搭建DNA分子模型的实验中,若有4种碱基塑料片共20个,其中4个C,6个G,3个A,7个T,脱氧核糖和磷酸之间的连接物14个,脱氧核糖塑料片40个,磷酸塑料片100个,代表氢键的连接物若干,脱氧核糖和碱基之间的连接物若干,则A.能搭建出20个脱氧核苷酸B.能搭建出410种不同的DNA分子模型C.所搭建的DNA分子片段最长为7碱基对D.能搭建出一个4碱基对的DNA分子片段5.自然界中,与花生相比,玉米更适合生长在高温、光照强烈和干旱的环境中,其利用CO2的能力也远远高于花生。

河南省六市2018届高三第一次联考(一模)语文试卷(含答案)

河南省六市2018届高三第一次联考(一模)语文试卷(含答案)

三项以上不给分。 ) 9. (4 分) ①采用更为直观的方式,让观众感受文物背后的故事。 ②敢于创新,采用让年轻人喜闻乐见的话语体系、讲述方式; ③引入与文物有关的人物,向观众表现他们对文物的情感与思考; ④讲述“大国重器”的前世今生,让文物与我们的生活发生关联; ⑤要抓住文物真正让人动容的核心及其背后所蕴含的人文精神。 (每点 1 分,答出 4 点即得满分,言之成理的其他答案酌情赋分。 ) 二、古代诗文阅读(35 分) (一)文言文阅读(19 分) 10.D(原文标点:乾象誓死报,复缒而出。自是,贼中举动无不知。乃遣部将诈降,诱 崇明至城下。乾象因自内纵火,崇明父子遁走泸州,乾象遂以众来归。 ) 11.A(古代男子和女子一般都有名有字。男子 20 岁举行冠礼时取字。女子 15 岁及笄时 取字。 ) 12.C(“深受当地百姓爱戴”为无中生有) 13. (10 分) (1)朱燮元于是带领全部军队会聚在长宁,崇明父子逃入红崖大囤,官军围 攻并攻打下红崖大囤。 (“掣”、“蹙”、“拔”各 1 分,句意 2 分) (2)朱燮元十分偏袒贵州将领,多次上奏朝廷,被四川巡按御史马如蛟弹劾。燮元竭力 请求罢职,皇上安慰并挽留他。 (“右”、“劾”、“罢”各 1 分,句意 2 分) (二)古代诗歌阅读(11 分) 14. (5 分)AB(C 项“坐依”句不是以主观感觉反映客观环境。D 项“运用对比的手法描绘 山中景象”错。E 项“专为依依不舍的游者送行”分析有误。选对一项得 2 分,选对两项得满分。 ) 15.(6 分)①“龙在”句属于想象,是虚写,作者突发奇想,池水澄澈清莹,大概是龙潜于 此而致。 ②“雨开”句写眼见, 是实写, 雨过天晴, 山色显得格外清朗、 明净、 鲜润。 ③“碧”“鲜” 两字色调明朗,传神地形容出色彩的明亮;“长”“更”两个字修饰准确,恰当地突出了色彩的程 度。 (6 分,每点 2 分,意思对即可) (三)名篇名句默写(5 分) 16. (5 分) (1)余则缊袍敝衣处其间,略无慕艳意。 (2)闻道有先后,术业有专攻,如是而已。

河南省2018年九年级第一次模拟考试语文试卷(含答案)

河南省2018年九年级第一次模拟考试语文试卷(含答案)

河南省2018年九年级第一次模拟考试试卷语文一、积累与运用(共28分)1.下列词语中加点的字,每对读音都不相同的一项是()(2分)A.关卡./卡.车调.换/南腔北调.息事宁.人/宁.缺毋滥B.盘桓./亘.古栅.栏/灯火阑珊.惴.惴不安/水流湍.急C.拮.据/诘.难号.令/奔走呼号.臭.味相投/乳臭.未干D茎.叶/颈.项蹊.跷/下自成蹊.好.逸恶劳/好.高骛远2.下列词语中,没有错别字的一项是()(2分)A.寒喧名信片首屈一指融会贯通B.脚裸化妆品真知灼见鳞次栉比C.狼藉副作用一愁莫展通宵达旦D.坐镇液化气再接再厉不胫而走3.填入下面横线上的语句,与上下文衔接最恰当的一项是()(23分)文化自信是民族精神的一种自觉形式,是体现民族灵魂的力量,是实现中华民族伟大复兴中国梦的精神基础。

然而,文化自信对一些青少年而言,并不是天然具备的,需要精心培育。

因此,从教育角度来说,要从青少年抓起,培育文化自信。

2017年,中办、国办印发了《关于实施中华优秀传统文化传承发展工程的意见》,教育部门应该,,,,。

……让中华优秀传统文化更多地走进中小学,走进青年的心灵。

①明确拿出课时②创新教学材和教材学形式③妥善制订课纲④发挥中华文化以文化人、,以德育人的积极作用⑤制定落实细则A.①②③④⑤ B.⑤①③②④C.④①③②D.②①③⑤④4.古诗文默写。

(8分)(1)采菊东篱下,。

(陶渊明《饮酒》)(2)几处早莺争暖树,。

(白居易《钱塘湖春行》)(3)《生于忧患,死于安乐》中(4)国家命运,让无数先哲魂牵梦萦。

苏轼渴望为国立功:“,西北望,射天狼”(《江城子·密州出猎》;文天祥不惜为国捐躯:“,”(《过零丁洋》);龚自珍立志为国奉献:“,”(《己亥杂诗》)……他们心系家国,英名永存。

5.名著阅读。

(54分)【甲】保尔双手抱头,陷入沉思之中。

他的一生,从童年时代一直到现在,一幕幕地在他眼前闪过。

他这二十四年生活得怎么样?好呢,还是不好?他一年又一年地回顾,像一个铁面无私的法官检查自己的一生。

河南省六市2018届高三第一次联考(一模)数学(理)试题及答案解析

河南省六市2018届高三第一次联考(一模)数学(理)试题及答案解析

河南省六市2018届高三第一次联考(一模)数学(理)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}1)2lg(|{<-=x x A ,集合}032|{2<--=x x x B ,则=B A ( ) A .)12,2( B .)3,1(- C .)12,1(- D .)3,2( 2.已知i 为虚数单位,若),(11R b a bi a ii∈+=-+,则=+b a ( ) A .0 B .1 C .1- D .23.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为( ) A .101 B .51 C .103 D .52 4.汽车以s m t v /)23(+=作变速运动时,在第1s 至2s 之间的1s 内经过的路程是( ) A .m 5 B .m 211 C .m 6 D .m 2135.为考察B A ,两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( )A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果C .药物A 、B 对该疾病均有显著的预防效果D .药物A 、B 对该疾病均没有预防效果6.一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为( )A .152B .15C .2D .47.已知数列}{n a 满足:2)1(11=-+++n n n a a ,则其前100项和为( ) A .250 B .200 C .150 D .1008.已知锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若)(2c a a b +=,则)sin(sin 2A B A-的取值范围是( ) A. )22,0( B. )23,21( C. )22,21( D. )23,0( 9.设201721,,,a a a 是数列2017,,2,1 的一个排列,观察如图所示的程序框图,则输出的F 的值为( )A .2015B .2016C .2017D .201810.在三棱锥ABC S -中,BC SB ⊥,AC SA ⊥,BC SB =,AC SA =,SC AB 21=,且三棱锥ABC S -的体积为239,则该三棱锥的外接球半径是( ) A .1 B .2 C .3 D .411.椭圆12222=+by a x )0(>>b a 与函数x y =的图象交于点P ,若函数x y =的图象在P处的切线过椭圆的左焦点)0,1(-F ,则椭圆的离心率是( )A .213- B .215- C .223- D .225-12.若关于x 的方程0=+-+m e x e e x xxx 有3个不相等的实数解321,,x x x ,且3210x x x <<<,其中R m ∈,71828.2=e ,则)1)(1()1(3213221---x x x ex e x e x 的值为( ) A .1 B .m -1 C .m +1 D .e 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知)2,3(-=,)2,0(=+,则=|| . 14.已知二项式nxx )1(2+的展开式的二项式系数之和为32,则展开式中含x 项的系数是 (用数字作答).15.已知P 是双曲线C :1222=-y x 右支上一点,直线l 是双曲线的一条渐近线,P 在l 上的射影为Q ,1F 是双曲线的左焦点,则||||1PQ PF +的最小值是 .16.已知动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≤-+++≥≤+1)1)(1(14222y y x x x y x ,则x y x 622-+的最小值是 .三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列}{n a 中,11=a ,其前n 项的和为n S ,且满足)2(1222≥-=n S S a n nn .(1)求证:数列}1{nS 是等差数列; (2)证明:当2≥n 时,2313121321<++++n S n S S S . 18.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如下图表:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元; ②80岁以下老人每人每月发放生活补贴120元; ③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.如图,在四棱锥ABCD P -中,⊥PD 平面ABCD ,底面ABCD 是菱形,060=∠BAD ,O 为AC 与BD 的交点,E 为PB 上任意一点.(1)证明:平面⊥EAC 平面PBD ;(2)若//PD 平面EAC ,并且二面角C AE B --的大小为045,求AD PD :的值.20.已知抛物线C :)0(22>=p py x 的焦点为F ,过F 的直线l 交抛物线C 于点B A ,,当直线l 的倾斜角是045时,AB 的中垂线交y 轴于点)5,0(Q .(1)求p 的值;(2)以AB 为直径的圆交x 轴于点N M ,,记劣弧MN 的长度为S ,当直线l 绕F 点旋转时,求||AB S的最大值. 21.已知函数)(221ln )(2R k kx x x x f ∈-+=. (1)讨论)(x f 的单调性;(2)若)(x f 有两个极值点21,x x ,且21x x <,证明:23)(2-<x f . 请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l 的参数方程为⎩⎨⎧+=+=t y tx 12(t 为参数),圆C 的极坐标方程为)4sin(24πθρ+=.(1)求直线l 的普通方程与圆C 的执直角坐标方程;(2)设曲线C 与直线L 交于B A ,两点,若P 点的直角坐标为)1,2(,求||||||PB PA -的值. 23.选修4-5:不等式选讲已知关于x 的不等式m x x ≤-+|12||2|有解. (1)求实数m 的取值范围;(2)已知m b a b a =+>>,0,0,证明:312222≥+++b a b b a a .理科数学答案一、选择题1-5:CBCDB 6-10:BDCDC 11-12:BA 二、填空题13.5 14.10 15.221+ 16.940- 三、解答题17.解:(1)当2≥n 时,12221-=--n nn n S S S S ,112--=-n n n n S S S S2111=--n n S S ,从而}1{nS 构成以1为首项,2为公差的等差数列. (2)由(1)可知,122)1(111-=⨯-+=n n S S n ,∴121-=n S n∴当2≥n 时,)111(21)22(1)12(11nn n n n n S n n --=-<-= 从而232123)1113121211(21113121321<-<--++-+-+<++++n n n S n S S S n . 18.解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:32515158=+⨯人,80岁以下应抽取:52515258=+⨯人(2)在600人中80岁及以上长者在老人中占比为:6160020452015=+++ 用样本估计总体,80岁及以上长者为:116166=⨯万,80岁及以上长者占户籍人口的百分比为%75.2%10040011=⨯. (3)用样本估计总体,设任一户籍老人每月享受的生活补助为X 元,54)0(==X P ,6009560047551)120(=⨯==X P ,600176008551)200(=⨯==X P ,60056002551)220(=⨯==X P ,60036001551)300(=⨯==X P ,则随机变量X 的分布列为:286003300522017200951200=⨯+⨯+⨯+⨯+=EX全市老人的总预算为84102176.210661228⨯=⨯⨯⨯元 政府执行此计划的年度预算约为2.22亿元.19.解:(1)因为⊥PD 平面ABCD ,∴AC PD ⊥, 又ABCD 是菱形,∴AC BD ⊥,故⊥AC 平面PBD ∴平面⊥EAC 平面PBD .(2)解:连结OE ,因为//PD 平面EAC , 所以OE PD //,所以⊥OE 平面ABCD ,又O 是BD 的中点,故此时E 为PB 的中点,以O 为坐标原点,射线OE OB OA ,,分别为z y x ,,轴建立空间直角坐标系设h OE m OB ==,,则m OA 3=,),0,0(),0,,0(),0,0,3(h E m B m A向量)0,1,0(1=n 为平面AEC 的一个法向量 设平面ABE 的一个法向量为),,(2z y x n =, 则02=⋅AB n 且02=⋅BE n即03=+-my mx 且0=-hz my ,取1=x ,则3=y ,h mz 3=,则)3,3,1(2hm n = ∴2221212103313|,cos |45cos hm n n ⋅++==><=,解得26=m h 故2:6:2:2:===m h m h AD PD . 20.(1))2,0(pF ,当l 的倾斜角为045时,l 的方程为2p x y +=, 设),(),,(2211y x B y x A ,⎪⎩⎪⎨⎧=+=py x p x y 222得0222=--p px xp p x x y y p x x 3,2212121=++=+=+,得AB 的中点为)23,(p p D AB 中垂线为)(23p x p y --=-0=x 代入得525==p y∴2=p(2)设l 的方程为1+=kx y ,代入y x 42=得0442=--kx x444)(2||22121+=++=++=k x x k y y ABAB 中点为)12,2(2+k k D令α2=∠MDN (弧度),||||212AB AB S ⋅=⋅=αα ∴α=||AB S∴D 到x 轴的距离12||2+=k DE∴22112212||21||cos 222+-=++==k k k AB DE α当02=k 时,αcos 取最小值21,α的最大值为3π 故||AB S的最大值为3π.21.(1)kx x x x f 221ln )(2-+=,),0(+∞∈x 所以xkx x k x x x f 1221)('2+-=-+=(1)当0≤k 时,0)('>x f ,所以)(x f 在),0(+∞上单调递增(2)当0>k 时,令12)(2+-=kx x x t ,当0442≤-=∆k 即10≤<k 时,0)(≥x t 恒成立,即0)('≥x f 恒成立所以)(x f 在),0(+∞上单调递增当0442>-=∆k ,即1>k 时,0122=+-kx x ,两根122,1-±=k k x 所以)1,0(2--∈k k x ,0)('>x f)1,1(22-+--∈k k k k x ,0)('<x f),1(2+∞-+∈k k x ,0)('>x f故当)1,(-∞∈k 时,)(x f 在),0(+∞上单调递增当),1(+∞∈k 时,)(x f 在)1,0(2--k k 和),1(2+∞-+k k 上单调递增 )(x f 在)1,1(22-+--k k k k 上单调递减.(2))0(221ln )(2>-+=x kx x x x f k x xx f 21)('-+= 由(1)知1≤k 时,)(x f ),0(+∞上单调递增,此时)(x f 无极值当1>k 时,xkx x k x x x f 1221)('2+-=-+= 由0)('=x f 得0122=+-kx x 0442>-=∆k ,设两根21,x x ,则k x x 221=+,121=⋅x x 其中11102221-+=<<--=<k k x k k x)(x f 在),0(1x 上递增,在),(21x x 上递减,在),(2+∞x 上递增121ln )1(21ln )(21ln 221ln )(22222222222122222222--=+-+=+-+=-+=x x x x x x x x x x x x kx x x x f 令)1(121ln )(2>--=x x x x t 01)('<-=x x x t ,所以)(x t 在),1(+∞上单调递减,且23)1(-=t 故23)(2-<x f .22. 解:(1)直线l 的普通方程为1-=x y ,θθπθρcos 4sin 4)4sin(24+=+=, 所以θρθρρcos 4sin 42+=所以曲线C 的直角坐标方程为04422=--+y x y x .(2)点)1,2(P 在直线l 上,且在圆C 内,由已知直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 221222(t 为参数)代入04422=--+y x y x , 得0722=--t t ,设两个实根为21,t t ,则07,22121<-==+t t t t ,即21,t t 异号 所以2||||||||||||||2121=+=-=-t t t t PB PA .23.解:(1)1|)12(2||12||2|=--≥-+x x x x ,故1≥m (2)由题知1≥+b a ,故222)()22)(22(b a b a b a ba b b a a +≥++++++, ∴31)(312222≥+≥+++b a b a b b a a .。

河南省六市2018届高三第一次联考(一模)试题(图片)——语文(语文)

河南省六市2018届高三第一次联考(一模)试题(图片)——语文(语文)

参考答案一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)1.D(A项“‘隐’的概念第一次出现在古书中”错解文意,《周易》中只是有“隐”的现象的记载;B项“最好的选择”说法错,注意文中“只好”、“消极的妥协”的表述;C项《小雅·鹤鸣》与后二者代表意义不同。

)2.B(引《诗经》是为了说明隐逸文化在当时的意义)3.A(“五石散”是东汉张仲景研制出来的,用于治病。

魏国的何晏首先服用,开魏晋名士服用五石散先河。

,“使他们……赞誉”说法不合文意。

)(二)文学类文本阅读(14分)4.C(A项“对比”之说有误,第二段中两处“像是……”都是比喻。

B项“读书没有选择”“ 希望成为作家是学生时代每一个人的目标”分析有误。

D项“呼吁人们回归经典”属无中生有。

)5.(5分)第一问:①“书呆子”指脱离现实生活、习性乖戾、蛰居苦读的人。

②“真正的读者”指充满好奇心、思想活跃、心胸开阔、善于交际、热爱生活的读书人。

(3分,答对一点1分,答对两点3分)第二问:作者通过对比,意在告诉读者什么才是正确的读书态度。

(2分)6.(6分)①拉近作品与读者的距离,使读者更容易代入自己的阅读经历,从而产生共鸣。

②使文章内容更真实生动,如作者对少年时期阅读经典作品时的心理描写,让读者觉得细腻真实。

③更好地表达情感,如“我们静静的一生中起着不小作用的人物”,生动地表达了作者对当代著作的喜爱和感激之情。

(每点2分。

若有其他答案,言之有理可酌情给分)(三)实用类文本阅读(12分)7.C(非物质文化遗产“国画颜料制作技艺”是说《千里江山图》卷,不是各种釉彩大瓶。

)8.(5分)A、B(C项曲解文意。

《国家宝藏》成功原因是多方面的,题干表述为单方面。

D项“它们的历史、艺术、科学和观赏等价值最高”说法不合文意,原文说“历史价值、艺术价值、科学价值和观赏价值的结合体,更能传递出有益于当下的文化内涵”。

E项“都主要以故宫博物院的文物”说法错,材料三中主要以湖北省博物馆的“镇馆之宝”曾侯乙编钟来说明,尽管提到故宫博物院,重点不是说彰显文化自信。

2018年河南省洛阳市高考数学一模试卷(文科)

2018年河南省洛阳市高考数学一模试卷(文科)

2018年河南省洛阳市高考数学一模试卷(文科)一、选择题:{本大题共12小题.每小题5分,共60分,在每个小题给出的四个选项中,只有项是符合题目要求的)1.(5分)已知集合A={x|2x﹣1<1},B={y|y=},则A∩B=()A.[﹣1,0)B.[﹣1,1)C.[0,1]D.[O,1)2.(5分)复数(1+i)3(i是虚数单位)化简的结果是()A.﹣8B.8C.﹣8i D.8i3.(5分)为了规定学校办学,省电教育厅督察组对某所高中进行了抽样调查,抽查到班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号,33号,46号同学在样本中,那么样本中还有一位同学的编号应是()A.13B.19C.20D.524.(5分)已知等比数列{a n},a2=,a5=,则数列{log2a n}的前10项之和是()A.45B.﹣35C.55D.﹣555.(5分)若x>m是x2﹣3x+2<0的必要不充分条件,则实数m的取值范围是()A.[1,+∞)B.(﹣∞,2]C.(﹣∞,1]D.[2,+∞)6.(5分)阅读如图所示的程序框图,若输入a=,则输出的k值是()A.9B.10C.11D.127.(5分)一个几何体的侧视图如图所示,若该几何体的体积为,则它的正视图为()A.B.C.D.8.(5分)函数f(x)=e ln|x|﹣2sinx的图象大致是()A.B.C.D.9.(5分)若函数f(x)=的最小值为f(0),则实数a的取值范围()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]10.(5分)已知x,y满足约束条件,目标函数z=2x﹣3y的最大值是2,则实数a=()A.B.1C.D.411.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.12.(5分)定义在R上的函数f(x)的导函数为f’(x),f(0)=0若对任意x∈R,都有f(x)>f’(x)+1,则使得f(x)+e x<1成立的x的取值范围为()A.(0,+∞)B.(﹣∞,0)C.(﹣1,+∞)D.(﹣∞,1)二、填空题:本大题共4小题,每小题5分,共2013.(5分)若实数a,b满足+=,则ab的最小值为.14.(5分)如图所示,已知点G是△ABC的重心,过点G作直线与AC两边分别交于M,N两点,且=x,=y,则x+2y的最小值为.15.(5分)双曲线C:﹣=1(a>0,b>0)的左焦点为F,若F关于直线+y=0的对称点A是双曲线C上的点,则双曲线C的离心率为.16.(5分)已知函数f(x)=x﹣(a+1)lnx﹣(a∈R,且a<1),g(x)=x2+e x ﹣xe x,若存在x1∈[e,e2],使得对任意x2∈[﹣2,0],f(x1)<g(x2)恒成立,则a的取值范围是.三、解答题:共5小题,总计70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c依次成等差数列.(1)若向量=(3,sinB)与=(2,sinC)共线,求cosA的值;(2)若ac=8,求△ABC的面积S的最大值.18.(12分)某省2016年高中数学学业水平测试的原始成绩采用百分制,发布某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D 的所有数据的茎叶图如图2所示.(1)求图2中x的值,并根据样本数据比较甲乙两校的合格率;(2)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.19.(12分)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.20.(12分)已知点M,N分别是椭圆的左右顶点,F为其右焦点,|MF|与|FN|的等比中项是,椭圆的离心率为.(1)求椭圆C的方程;(2)设不过原点O的直线l与该轨迹交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围.21.(12分)已知a∈R,函数f(x)=e x﹣ax.(1)若函数f(x)在区间(﹣e,﹣1)上是减函数,求实数a的取值范围;(2)若函数F(x)=f(x)﹣(e x﹣2ax+2lnx+a)在区间(0,)内无零点,求实数a的最大值.[选修4—4:参数方程与极坐标系]22.(10分)在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|﹣|x+2|.(1)解不等式f(x)>0;(2)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.2018年河南省洛阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:{本大题共12小题。

2018年河南省八市学评高考语文一模试卷

2018年河南省八市学评高考语文一模试卷

2018年河南省八市学评高考语文一模试卷一、现代文阅读(35分)1.阅读下面文本,完成下列各题。

把时间变成历史李拯阅读历史,有这样一个引人深思的问题:在古代中国,挑战中华文明的游牧民族,为什么大多反而被中国文化所“内化”?一个很有启发性的答案是,中国文化有着由文明定义的“历史叙事”,相对而言,游牧民族则只拥有自然流动的时间。

这启示人们,时间自在自为地流逝,唯有通过人类文明,才能变成具有人文刻度的历史。

天地玄黄,宇宙洪荒,如果缺少人的行动与奋斗,时间只是“逝者如斯夫”的自然变化。

马克思说过,“整个所谓世界历史不外是人通过人的劳动而诞生的过程,是自然界对人来说的生成过程”。

可以说,正是人类生生不息的奋斗,才把匀速流动的时间,变成有着起伏快慢和生长节奏的历史,从而建构起一个前后相续、薪火相传的“意义的世界”。

而作为世界上唯一未曾中断、在几千年时间跨度里保持了连续性的文明体系,中国比其他国家更加注重“历史意识”。

我们的时间之轴,可说被一系列伟大的历史事件所标定。

比如说,秦统一中国,既证明了大一统的可能性,也让大一统成为中国历史的主流叙事和预设模式;再比如说,前段时间举国纪念长征胜利,正是因为80年前那场史诗般的征途,为现代中国走出了一条开阔的道路。

一代代人的接续奋斗,就像锋利的铧犁一样,在时间的荒原里开垦出历史的田垄,由此哺育着文明的生长繁荣。

时间一旦变成历史,就不仅关乎过去,更意味着向未来的延伸。

博尔赫斯在其小说名篇《小径分叉的花园》里,用“小径分叉”来比喻时间的分叉,因为“时间总是不断地分叉为无数个未来”。

其实,时间分叉只是形象的文学修辞,时间不会自动分叉,而恰恰是人类的奋斗,才让未来具有可以期待的无限可能性。

在人类历史上,无论是恺撒的“我来,我见,我征服”,还是哥伦布发现新大陆,抑或是牛顿提出三大定律,正是人类对未来可能性的不懈追求,才不断把无声的时间变成激动人心的历史。

可以说,失去了可能性,未来就不再值得期待,历史就不再值得创造,剩下的只是自然时间的无谓流动而已。

2018年河南省中考一模数学试卷(解析版)

2018年河南省中考一模数学试卷(解析版)

2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.【解答】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.二、填空题(每小题3分,共15分)11.(3分)=2.【解答】解:∵22=4,∴=2.故答案为:212.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=﹣2.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为 2.4cm.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为1或.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有150人,图表中的m=45,n=36;(2)统计图中,A类所对应的扇形圆心角的度数为28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是6%;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)【解答】解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是PM=PN,位置关系是PM⊥PN.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MP A=∠BDC,∠EAC+∠BDC=90°,∴∠MP A+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;。

2018年河南省六市高三第一次联考(一模)英语试题(解析版)

2018年河南省六市高三第一次联考(一模)英语试题(解析版)

河南省六市2018届高三第一次联考(一模)英语试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节 (共5小题;每小题1.5分,满分7.5分)请听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

在听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. Where is the woman going this afternoon?A. The beach.B. The job center.C. The shopping mall2. Where does the conversation most probably take place?A. At the railway station.B. On the train.C. On a bridge.3. How long does David stay abroad in all?A. 9 days.B. 11 days.C. 16 days.4. What is the man doing?A. Making a callB. Making a visit.C. Making an appointment.5. What does the woman think of the science museum?A. Exciting.B. Tiring.C. Boring.第二节 (共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2018年河南省中考数学一模试卷

2018年河南省中考数学一模试卷

2018年河南省中考数学一模试卷、选择题(每小题3分,共30 分) 1. (3分)下列各数中,最小的数是() A .- 3B .- (- 2) C. 0 D .-丄42. (3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )6. (3分)关于x 的一元二次方程x 2- 2x+k+2=0有实数根,则k 的取值范围在数 轴上表示正确的是( )A .7. (3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动 其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(A .Z ABC=/ ADC, Z BAD=Z BCD B. AB=BC8. (3分)郑州地铁I 号线火车站站口分布如图所示,有 A , B , C, D , E 五个进A . 9.29X 104 5 * * * 9B . 9.29X 1010 C. 92.9 X 1010( )D . 9.29X 1011C.D .④c.-1 0C. AB=CD AD=BCD .Z DAB+Z BCD=1803. (3分)如图所示的几何体的主视图是出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好 选择从同一个口进出的概率是(AE,过点B 作BF 丄AE 交AE 于点F ,贝U BF 的长为(D .10. (3分)如图,动点P 从(0, 3)出发,沿箭头所示方向运动,每当碰到矩 形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时, 点P 的坐标为()A .(1,4)B .(5,0) C.(7,4) D .(8,3)二、填空题(每小题3分,共15分) 11. (3 分)■二 _____ .12. (3 分)方程 3X 2 - 5x+2=0 的一个根是 a ,则 6a 2- 10a+2= ____ .13. (3分)点A (X 1,y 1)、B (X 2,y 2)在二次函数yrx 2 -4x - 1的图象上,若当如图,在矩形 ABCD 中, D .AB=2, BC=3.若点E 是边CD 的中点,连接 B .9. (3 分)1v X1V2,3v X2V4 时,则y1 与y2的大小关系是y1 _________ y2.(用 \”、N”、“=填空)14. (3分)如图1,在R △ ABC中,/ ACB=90,点P以每秒2cm的速度从点A 出发,沿折线AC- CB运动,到点B停止.过点P作PD丄AB,垂足为D,PD 的长y (cm)与点P的运动时间x (秒)的函数图象如图2所示.当点P运动15. (3分)如图,在菱形ABCD中,ABV3,/ B=120°,点E是AD边上的一个动点(不与A,D重合),EF// AB交BC于点F,点G在CD上, DG=DE若厶EFG是等腰三角形,则DE的长为 _______B三、解答题(本大题共8小题,满分75分)16. (8 分)先化简,再求值:(x+2y) 2-(2y+x) (2y - x)- 2,其中x= -;+2,- 2.17. (9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式 A B C D E人数12 30 m 54 9请你根据以上信息,回答下列问题:(1) ________________________ 接受问卷调查的共有__ 人,图表中的m= ,n= __________________________ ;(2) _____________________________________________ 统计图中,A类所对应的扇形圆心角的度数为_______________________________ ;(3) _____________________________________________ 根据调查结果,我市市民最喜爱的运动方式是_______________________________ ,不运动的市民所占的百分比是 _______ ;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有暴走团”活动, 若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗暴走团”的大约有多少人?第4页(共26页)18. (9分)如图,AB是。

2018年河南省郑州市高考数学一模试卷(文科)

2018年河南省郑州市高考数学一模试卷(文科)

2018年河南省郑州市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.36.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm37.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.912.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.2018年河南省郑州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i故选A2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2故选:D.3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即1+m2﹣(m﹣1+2m)=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=(1,1),=(0,2),满足≠,当m=2时,量=(1,2),=(1,2),不满足≠,综上m=1,故选:B.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题【解答】解:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若,则”的逆否命题是“若α=,则sinα=”为真命题,则D正确.故选D.5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.故选:A.6.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.【解答】解:数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),则:数列为等差数列.设公差为d,则:d=a2﹣a1=2﹣1=1,则:a n=1+n﹣1=n.故:,则:,所以:,=,=,=.所以:.故选:C9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]【解答】解:当x≤0时,f(x)单调递增,∴f(x)≤f(0)=1﹣a,当x>0时,f(x)单调递增,且f(x)>﹣a.∵f(x)在R上有两个零点,∴,解得0<a≤1.故选A.10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则+=(a+b)(+)=(1+4++)≥(5+2)=×9=,当且仅当b=2a=时,的最小值为.12.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.【解答】解:根据题意,对于(2x﹣)•ln≤,变形可得(2x﹣)ln≤,即(2e﹣)ln≤,设t=,则(2e﹣t)lnt≤,t>0,设f(t)=(2e﹣t)lnt,(t>0)则其导数f′(t)=﹣lnt+﹣1,又由t>0,则f′(t)为减函数,且f′(e)=﹣lne+﹣1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e﹣t)lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值范围为(0,];故选:D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为1.【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A(1,3)时,4x﹣y最小,最小值为:1,则目标函数z=4x﹣y的最小值:1.故答案为:1.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=3.【解答】解:∵直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,∴,解得a=3.故答案为:3.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=100.【解答】解:∵,∴log2a n+1﹣log2a n=1,即,∴.∴数列{a n}是公比q=2的等比数列.则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,∴log2(a101+a102+…+a110)=.故答案为:100.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x.【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.【解答】解:(1)由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,则2sinCcosB=2sin(B+C)+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,则C=;(2)由S=absinC=c,则c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)【解答】解:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣(5+10+15+47)=3,y=20﹣(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)==;(2)填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100则K2=≈9.091;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.【解答】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:(2)∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,由V E=V P﹣AEC,得,﹣PAC∴d==3,故点B到平面PAC的距离为3.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.【解答】解:(1)由已知可得f(x)的定义域为(0,+∞),∵f′(x)=﹣a,∴f′(1)=1﹣a=0,解得:a=1,∴f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式f(x)﹣+2x+>k(x﹣1)可化为lnx﹣+x﹣>k(x﹣1),令g(x)=lnx﹣+x﹣﹣k(x﹣1),(x>1),g′(x)=,∵x>1,令h(x)=﹣x2+(1﹣k)x+1,h(x)的对称轴是x=,①当≤1时,即k≥﹣1,易知h(x)在(1,x0)上递减,∴h(x)<h(1)=1﹣k,若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)递减,∴g(x)<g(1)=0,不适合题意.若﹣1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时,g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h(x)在(1,x0)递增,∴h(x)>h(1)=1﹣k>0,∴g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k的取值范围是(﹣∞,1).22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】(1)直线L的参数方程为:(α为参数).曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x(2)当时,直线l的参数方程为:(t为参数),代入y2=8x得到:.(t1和t2为A和B的参数),所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.则:=.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.【解答】解:(1)由已知得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,则有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是(﹣∞,﹣)∪(4,+∞);(2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值范围是(﹣1,4].。

2018年河南省中考数学一模试卷及答案

2018年河南省中考数学一模试卷及答案

2018年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. -3B. -(-2)C. 0D. -2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A. 9.29×109B. 9.29×1010C. 92.9×1010D. 9.29×10113.如图所示的几何体的主视图是()A.B.C.D.4.小明解方程-=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1-(x-2)=1①去括号,得1-x+2=1②合并同类项,得-x+3=1③移项,得-x=-2④系数化为1,得x=2⑤A. ①B. ②C. ③D. ④5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A. 180个,160个B. 170个,160个C. 170个,180个 D. 160个,200个6.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BCC. AB=CD,AD=BCD. ∠DAB+∠BCD=180°8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (7,4)D. (8,3)二、填空题(本大题共5小题,共15.0分)11.=______.12.方程3x2-5x+2=0的一个根是a,则6a2-10a+2=______.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2-4x-1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)14.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P 作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为______.15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x+2y)2-(2y+x)(2y-x)-2x2,其中x=+2,y=-2.四、解答题(本大题共7小题,共67.0分)17.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数为______;(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.如图,反比例y=的图象与一次函数y=kx-3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是____,位置关系是____.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.如图,抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m的值.答案和解析1.【答案】A【解析】解:因为在数轴上-3在其他数的左边,所以-3最小;故选:A.应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.此题考负数的大小比较,应理解数字大的负数反而小.2.【答案】B【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=10.【解答】解:929亿=92 900 000000=9.29×1010.故选B.3.【答案】D【解析】解:由图可知,主视图由一个矩形和三角形组成.故选:D.先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】A【解析】解:-=1去分母,得1-(x-2)=x,故①错误,故选:A.根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【答案】B【解析】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【答案】C【解析】解:∵关于x的一元二次方程x2-2x+k+2=0有实数根,∴△=(-2)2-4(k+2)≥0,解得:k≤-1.故选C.根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【答案】D【解析】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【答案】C【解析】5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【答案】C【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】-2【解析】解:∵方程3x2-5x+2=0的一个根是a,∴3a2-5a+2=0,∴3a2-5a=-2,∴6a2-10a+2=2(3a2-5a)+2=-2×2+2=-2.故答案是:-2.根据一元二次方程的解的定义,将x=a代入方程3x2-5x+2=0,列出关于a的一元二次方程,通过变形求得3a2-5a的值后,将其整体代入所求的代数式并求值即可.此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【答案】<【解析】解:由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【答案】2.4cm【解析】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7-3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7-2×5=4cm,∴PD=4×si n∠B=4×=2.4cm,故答案为2.4cm.由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【答案】1或【解析】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.16.【答案】解:原式=x2+4xy+4y2-(4y2-x2)-2x2=x2+4xy+4y2-4y2+x2-2x2=4xy,当x=+2,y=-2时,原式=4×(+2)×(-2)=4×(3-4)=-4.【解析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【答案】150;45;36;28.8°;散步;6%【解析】(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【解析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x-4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE 可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx-3,得4k-3=1,∴k=1,∴一次函数的解析式为y=x-3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,如图.当x=0时,y=-3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴-1=1-(n-3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【解析】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.21.【答案】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【解析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【答案】解:(1)PM=PN;PM⊥PN(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.可知△PMN是等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【解析】【分析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D 共线时,BD的最大值=BC+CD=6,由此即可解决问题.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∠AEC=∠BDC,∵∠EAC+∠AEC=90°,∴∠EAC+∠BDC=90°,∴∠AOD=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案为PM=PN,PM⊥PN;(2)见答案;(3)见答案.23.【答案】解:(1)把点B(3,0),C(0,3)代入y=-x2+bx+c,得到,解得,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x-1+1+3=-(x-1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,-m2+2m+3),∴MG=|-m2+2m+3|,BG=3-m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=-或3(舍弃),∴M(-,),当点M在x轴下方时,=,解得m=-或m=3(舍弃),∴点M(-,-),综上所述,满足条件的点M坐标(-,)或(-,-);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,当-m2+2m+3=1-m时,解得m=,当-m2+2m+3=m-1时,解得m=,∴满足条件的m的值为或;【解析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题;本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

河南省2018年高考物理一模试卷(word版含答案解析)

河南省2018年高考物理一模试卷(word版含答案解析)

2018年河南省高考物理一模试卷一、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力()A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心2.一静止的钠核发生β衰变,衰变方程为Na→Mg+e,下列说法正确的是()A.衰变后镁核的动能等于电子的动能B.衰变后镁核的动量大小等于电子的动量大小C.镁核的半衰期等于其放出一个电子所经历的时间D.衰变后电子与镁核的质量之和等于衰变前钠核的质量3.如图所示,光滑物块m放在斜面体M上,斜面体M底部粗糙,物块m两端与固定的弹簧相连,弹簧的轴线与斜面平行.当物块在斜面上做周期性往复运动时,斜面体保持静止,下列图中能表示地面对斜面体的摩擦力F f随时间t变化规律的是()A.B.C.D.4.“畅想号”火星探测器首次实现火星软着陆和火星表面巡视勘察,并开展地质构造等科学探测.“畅想号”在地球表面的重力为G1,在火星表面的重力为G2;地球与火星均视为球体,其半径分别为R1、R2;地球表面重力加速度为g.则()A.火星表面的重力加速度为B.火星与地球的质量之比为C.卫星分别绕火星表面与地球表面运行的速率之比为D.“畅想号”火星探测器环绕火星表面做匀速圆周运动的周期为2π5.空间存在着如图的匀强磁场,MN为磁场理想边界,光滑水平面上有一个边长为a,质量为m,电阻为R的金属正方形线框,从图中Ⅰ位置以速度2v沿垂直于磁场方向开始运动,当线框运动到分别有一半面积在两个磁场中的如图II 位置时,线框的速度为v,则下列说法正确的是()A.在图中位置II时线框中的电功率为B.此过程中回路产生的电能为mv2C.在图中位置II时线框的加速度为D.此过程中通过线框截面的电量为6.如图所示,三根绝缘轻杆构成一个等边三角形,三个顶点分别固定A、B、C 三个带正电的小球.小球质量分别为m、2m、3m,所带电荷量分别为q、2q、3q.CB边处于水平面上,ABC处于竖直面内,整个装置处于方向与CB边平行向右的匀强电场中.现让该装置绕过中心O并与三角形平面垂直的轴顺时针转过120°角,则A、B、C三个球所构成的系统的()A.电势能不变B.电势能减小C.重力势能减小D.重力势能增大7.如图所示,一质量为m的小球固定在长为2L的轻杆上端,轻杆下端用光滑铰链连接于地面上的A点,杆可绕A点在竖直平面内自由转动,杆的中点系一细绳,电机与自动装置控制绳子,使得杆可以从虚线位置绕A点逆时针倒向地面,且整个倒下去的过程中,杆做匀速转动.那么在此过程中()A.小球重力做功为2mgLB.绳子拉力做功大于2mgLC.重力做功功率逐渐增大D.绳子拉力做功功率先增大后减小8.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N 板的夹角为θ=30°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,则()A.两板间电压的最大值U m=B.CD板上可能被粒子打中区域的长度S=()LC.粒子在磁场中运动的最长时间t m=D.能打到N板上的粒子的最大动能为二、非选择题(一)必考题9.某实验小组用如图甲所示装置测量木板对木块的摩擦力所做的功.实验时,木块在重物牵引下向右运动,重物落地后,木块继续向右做匀减速运动.图乙是重物落地后打点计时器打出的纸带,纸带上的小黑点是计数点,相邻的两计数点之间还有4个点(图中未标出),计数点间的距离如图所示.已知打点计时器所用交流电的频率为50Hz.(1)可以判断纸带的(填“左端”或“右端”)与木块连接.根据纸带提供的数据可计算出打点计时器在打下A点、B点时木块的速度v A、v B,其中v A= m/s.(结果保留两位有效数字)(2)要测量在AB段木板对木块的摩擦力所做的功W AB,还应测量的物理量是.(填入物理量前的字母)A.木板的长度l B.木块的质量m1C.木板的质量m2D.重物的质量m3E.木块运动的时间t F.AB段的距离x AB(3)在AB段木板对木块的摩擦力所做的功的表达式W AB=.(用v A、v B 和第(2)问中测得的物理量的符号表示)10.某同学为了将一量程为3V的电压表改装成可测量电阻的仪表﹣欧姆表(1)先用如图a所示电路测量该电压表的内阻,图中电源内阻可忽略不计,闭合开关,将电阻箱阻值调到3kΩ时,电压表恰好满偏;将电阻箱阻值调到12kΩ时,电压表指针指在如图b所示位置,则电压表的读数为V.由以上数据可得电压表的内阻R V=kΩ;(2)将图a的电路稍作改变,在电压表两端接上两个表笔,就改装成了一个可测量电阻的简易欧姆表,如图c所示,为将表盘的电压刻度转换为电阻刻度,进行了如下操作:将两表笔断开,闭合开关,调节电阻箱,使指针指在“3.0V”处,此处刻度应标阻值为(填“0”或“∞”);再保持电阻箱阻值不变,在两表笔间接不同阻值的已知电阻找出对应的电压刻度,则“1V”处对应的电阻刻度为kΩ;(3)若该欧姆表使用一段时间后,电池内阻不能忽略且变大,电动势不变,但将两表笔断开时调节电阻箱,指针仍能满偏,按正确使用方法再进行测量,其测量结果将A.偏大B.偏小C.不变D.无法确定.11.光滑水平面上放着质量m A=lkg的物块A与质量m B=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B 均不拴接),用手挡住B不动,此时弹簧弹性势能E P=49J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B 恰能到达最高点C.取g=l0m/s2,求(1)绳拉断后B的速度V B的大小;(2)绳拉断过程绳对B的冲量I的大小;(3)绳拉断过程绳对A所做的功W.12.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B=1.0T的匀强磁场垂直导轨平面斜向下,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m=0.01kg、电阻不计.定值电阻R1=30Ω,电阻箱电阻调到R2=120Ω,电容C=0.01F,取重力加速度g=10m/s2.现将金属棒由静止释放.(1)在开关接到1的情况下,求金属棒下滑的最大速度.(2)在开关接到1的情况下,当R2调至30Ω后且金属棒稳定下滑时,R2消耗的功率为多少?(3)在开关接到2的情况下,求经过时间t=2.0s时金属棒的速度.【物理选修3-3】13.对于一定质量的理想气体,下列说法正确的是()A.体积不变,压强减小的过程,气体一定放出热量,内能减小B.若气体内能增加,则外界一定对气体做功C.若气体的温度升高,则每个气体分子的速度一定增大D.若气体压强不变,气体分子平均距离增大时,则气体分子的平均动能一定增大E.气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的14.如图所示,粗细均匀的U形管,左端封闭,右端开口,左端用水银封闭着长L=15cm的理想气体,当温度为27℃时,两管水银面的高度差△h=3cm,设外界大气压为75cmHg,则(1)若对封闭气体缓慢加热,为了使左右两管中的水银面相平,温度需升高到多少?(2)若保持27℃不变,为了使左右两管中的水银面相平,需从右管的开口端再缓慢注入的水银柱长度应为多少?【物理选修3-4】15.如图所示,一列简谐横波在某一时刻的波的图象,A、B、C是介质中的三个质点,已知波是向x正方向传播,波速为v=20m/s,下列说法正确的是()A.这列波的波长是10cmB.质点A的振幅为零C.质点B此刻向y轴正方向运动D.质点C再经过0.15s通过平衡位置E.质点一个周期内通过的路程一定为1.6cm16.在桌面上有一个倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示.有一半径为r=0.1m 的圆柱形平行光束垂直入射到圆锥的桌面上,光束的中心轴与圆锥的轴重合.已知玻璃的折射率为n=1.73.则:①通过计算说明光线1能不能在圆锥的侧面B点发生全反射?②光线1经过圆锥侧面B点后射到桌面上某一点所用的总时间是多少?(结果保留三位有效数字)2018年河南省开封市高考物理一模试卷参考答案与试题解析一、选择题:本题共8小题,每小题6分,共48分。

【全国市级联考】河南省六市2018届高三第一次联考(一模)理综物理试题(附参考答案及评分标准)

【全国市级联考】河南省六市2018届高三第一次联考(一模)理综物理试题(附参考答案及评分标准)

二、选择题:此题共8 小题,每题 6 分。

在每题给出的四个选项中,第14~ 18 题只有一项切合题目要求,第19~ 21 题有多项切合题目要求。

所有选对的得 6 分,选对但不全的得 3 分,有选错或不选的得0 分。

14.以下说法正确的选项是A.诊疗甲状腺疾病时,给病人注射放射性同位素的目的是将其作为示踪原子B.23592 U 的半衰期约为 7 亿年,跟着地球温度的高升,其半衰期将变短C.核反响过程中假如核子的均匀质量减小,则要汲取能量D. 联合能越大,原子中核子联合得越坚固,原子核越稳固15.如图,一粗拙绝缘竖直平面与两个等量异种点电荷连线的中垂线重合。

A、 O、 B 为竖直平面上的三点,且 O 为等量异种点电荷连线的中点,AO=BO。

现有带电荷量为q、质量为 m 的小物块视为质点,从 A 点以初速度 v0向 B 滑动,抵达 B 点时速度恰巧为0。

则A. 从 A 到 B,小物块的加快度渐渐减小B. 从 A 到 B,小物块的加快度先增大后减小C.小物块必定带负电荷,从 A 到 B 电势能先减小后增大D. 从 A 到 B,小物块的电势能向来减小,遇到的电场力先增大后减小16.万有引力定律和库仑定律都知足平方反比规律,所以引力场和电场之间有很多相像的性质,在办理相关问题时能够将它们进行类比。

比如电场中引入电场强度来反应电场的强弱,其定义为 E F,在引力场中q能够用一个近似的物理量来反应引力场的强弱。

设地球质量为M,半径为 R,地球表面处重力加快度为g,引力常量为 G。

假如一个质量为m 的物体位于地心2R 处的某点,则以下表达式中能反应该点引力场强弱的是A. G Mm2 B. G m 2 C. G M 2 D.g (2 R) (2 R) (2R) 217.如图甲所示,一匝数N=10 匝、总电阻Ω、ad 长 L1=0.4m 、ab 宽 L2=0.2m 的匀质矩形金属线框静止上的匀强磁场地区内,磁感觉强度B0=1T ,圆形磁场的磁感觉强度为B,方向垂直线框平面向下,大小随时间变化规律如图乙所示,已知线框与水平面间的最大静摩擦力f=1.2N ,π≈ 3,则A. t=0 时辰穿过线框的磁通量大小为B. 线框静止时,线框中的感觉电流为C.线框静止时, ad 边所受安培力水平向左,大小为D. 经时间 t=2s,线框开始滑动18.在圆滑水平川面搁置着足够长的质量为M 的木板,其上搁置着质量为m 带正电的小物块(电荷量保持不变),二者之间的动摩擦因数恒定,且 M>m,空间存在足够大的方向垂直于纸面向里的匀强磁场。

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.13.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.47.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.1008.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.201810.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.411.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.2018年河南省六市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)【解答】解:集合A={x|lg(x﹣2)<1}={x|0<x﹣2<10}={x|2<x<12},集合B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∪B={x|﹣1<x<12}=(﹣1,12).故选:C.2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.1【解答】解:∵a+bi====i,∴a=0,b=1.∴a+b=1.故选:D.3.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.【解答】解:根据题意,汽车以v=(3t+2)m/s作变速运动时,则汽车在第1s至2s之间的1s内经过的路程S=(3t+2)dt=(+2t)=;故选:D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果【解答】解:由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选:B.6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.4【解答】解:由已知中的三视图可得:该几何体是一个三棱锥:AD=DC=BD =2,∠ADC=120°,BD⊥平面ADC,其直观图如图所示:AB=BC=2,AC=2,底面△BCD的面积为:×2×2=2,侧面△ABD的面积为:×2×2=2,侧面△ADC的面积为:×2×2×=,侧面△ACB是腰长为2,底长2的等腰三角形,故底边上的高为=,其面积为:×2 ×=,综上可知,最大的面的面积为,故选:B.7.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.100【解答】解;n=2k﹣1(k∈N*)时,a2k+a2k﹣1=2.∴其前100项和=(a1+a2)+(a3+a4)+…+(a99+a100)=2×50=100.故选:D.8.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.【解答】解:由b2=a(a+c),利用余弦定理,可得:c﹣a=2a cos B,利用正弦定理边化角,得:sin C﹣sin A=2sin A cos B,∵A+B+C=π,∴sin(B+A)﹣sin A=2sin A cos B,∴sin(B﹣A)=sin A,∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵0<B<,<A+B<π,那么:<A<,则=sin A∈(,).故选:B.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.2018【解答】解:分析题中程序框图的功能是先求这2 017个数的最大值,然后进行计算F=b+sin;因为b=max{1,2,…,2 017}=2 017,所以F=2 017+sin=2 018.故选:D.10.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.4【解答】解:如图,取SC的中点O,连接OB,OA,∵SB⊥BC,SA⊥AC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=SC,OA=SC,∴SC⊥平面OAB,O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=SC=R,∴△AOB为正三角形,则∠BOA=60°,∴V S﹣ABC =V S﹣OAB+V C﹣OAB=,解得R=3.故选:C.11.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.【解答】解:由题意,左焦点F为(﹣1,0),设P(t,),k PF=,由y=,求导y′=,则k PF=,即=,解得t=1,即P(1,1),设椭圆M的右焦点为F2(1,0),则2a=|PF1|+|PF2|=1+,∴椭圆M的离心率为e===,故选:B.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e【解答】解:由方程⇒,令,则有t++m=0.⇒t2+(m﹣1)t+1′﹣m=0,令函数g(x)=,,∴g(x)在(﹣∞,1)递增,在(1,+∞)递减,其图象如下,要使关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3结合图象可得关于t的方程t2+(m﹣1)t+1′﹣m=0一定有两个实根t1,t2,(t1<0<t2)且,∴=[(t1﹣1)(t2﹣1)]2.(t1﹣1)(t2﹣1)=t1t2﹣(t1+t2)+1=(1﹣m)﹣(1﹣m)+1=1.∴=[(t1﹣1)(t2﹣1)]2=1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=5.【解答】解:∵,,∴==(﹣3,4),∴.故答案为:5.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是10【解答】解:由题意可得2n=32,n=5,展开式的通项公式为T r+1=•x10﹣2r•x ﹣r=•x10﹣3r.令10﹣3r=1,r=3,故展开式中含x项的系数是=10,故答案为10.15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.【解答】解:设右焦点分别为F2,∵∴|PF1|﹣|PF2|=2,∴|PF1|=|PF2|+2,∴|PF1|+|PQ|=|PF2|+2+|PQ|,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,可得l的方程为y=±x,F2(,0),F2到l的距离d=1∴|PQ|+|PF1|的最小值为2+1.故答案为:1+2.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是﹣.【解答】解:动点P(x,y)满足,x≥1时,x+≥1+;∴要使(x+)(﹣y)≤1,只要﹣y≤,﹣y≤﹣x(*),设f(x)=﹣x,x∈R,则f(x)是单调减函数,(*)可化为y≥x;∴动点P满足,该不等式组表示的平面区域如图所示:又x2+y2﹣6x=(x﹣3)2+y2﹣9,由两点间的距离公式可得,M(3,0)到区域中A的距离最小,由,解得A(,);∴x2+y2﹣6x=(x﹣3)2+y2﹣9≥|AM|2﹣9=+﹣9=﹣.故答案为:﹣.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.【解答】证明:(1)当n≥2时,,S n﹣1﹣S n=2S n S n﹣1,从而构成以1为首项,2为公差的等差数列.(2)由(1)可知,,∴,∴当n≥2时,,从而.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老:人每月发放生活补贴,标准如下①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【解答】解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:人,80岁以下应抽取:人(2)在600人中80岁及以上长者在老人中占比为:用样本估计总体,80岁及以上长者为:万,80岁及以上长者占户籍人口的百分比为.(3)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,,,,,,则随机变量X的分布列为:,全市老人的总预算为28×12×66×104=2.2176×108元政府执行此计划的年度预算约为2.22亿元.19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.【解答】解:(I)∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD∵菱形ABCD中,AC⊥BD,PD∩BD=D∴AC⊥平面PBD又∵AC⊂平面EAC,平面EAC⊥平面PBD;(II)连接OE,∵PD∥平面EAC,平面EAC∩平面PBD=OE,PD⊂平面PBD∴PD∥OE,结合O为BD的中点,可得E为PB的中点∵PD⊥平面ABCD,∴OE⊥平面ABCD,又∵OE⊂平面EAC,∴平面EAC⊥平面ABCD,∵平面EAC∩平面ABCD=AC,BO⊂平面ABCD,BO⊥AC∴BO⊥平面EAC,可得BO⊥AE过点O作OF⊥AE于点F,连接OF,则∵AE⊥BO,BO、OF是平面BOF内的相交直线,∴AE⊥平面BOF,可得AE⊥BF因此,∠BFO为二面角B﹣AE﹣C的平面角,即∠BFO=45°设AD=BD=a,则OB=a,OA=a,在Rt△BOF中,tan∠BFO=,可得OF=Rt△AOE中利用等积关系,可得OA•OE=OF•AE即a•OE=a•,解之得OE=∴PD=2OE=,可得PD:AD=:2即PD:AD的值为.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.【解答】解:(1)抛物线C:x2=2py(p>0)的焦点为F,,当l的倾斜角为45°时,l的方程为设A(x1,y1),B(x2,y2),由,得x2﹣2px﹣p2=0,x1+x2=2p,y1+y2=x1+x2+p=3p,得AB中点为…(3分)AB中垂线为,x=0代入得.∴p=2…(6分)(2)设l的方程为y=kx+1,代入x2=4y得x2﹣4kx﹣4=0,,AB中点为D(2k,2k2+1)令∠MDN=2α,,∴…(8分)D到x轴的距离|DE|=2k2+1,…(10分)当k2=0时cosα取最小值,α的最大值为.故的最大值为.…(12分)21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.【解答】解:(1),x∈(0,+∞)所以①当k≤0时,f'(x)>0,所以f(x)在(0,+∞)上单调递增②当k>0时,令t(x)=x2﹣2kx+1,当△=4k2﹣4≤0即0<k≤1时,t(x)≥0恒成立,即f'(x)≥0恒成立所以f(x)在(0,+∞)上单调递增当△=4k2﹣4>0,即k>1时,x2﹣2kx+1=0,两根所以,f'(x)>0,f'(x)<0,f'(x)>0故当k∈(﹣∞,1)时,f(x)在(0,+∞)上单调递增当k∈(1,+∞)时,f(x)在和上单调递增f (x)在上单调递减.(2)证明:,,由(1)知k≤1时,f(x)(0,+∞)上单调递增,此时f(x)无极值当k>1时,由f'(x)=0得x2﹣2kx+1=0,△=4k2﹣4>0,设两根x1,x2,则x1+x2=2k,x1•x2=1其中f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,==.令,所以t(x)在(1,+∞)上单调递减,且故.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为y=x﹣1,∵圆C的极坐标方程为:,∴ρ2=4ρsinθ+4ρcosθ∴圆C的直角坐标方程为x2+y2﹣4x﹣4y=0.(2)点P(2,1)在直线l上,且在圆C内,由已知直线l的参数方程是(t为参数)代入x2+y2﹣4x﹣4y=0,得,设两个实根为t1,t2,则,即t 1,t2异号所以.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.【解答】(本小题满分10分)解:(Ⅰ)|2x|+|2x﹣1|≥|2x﹣(2x﹣1)|=1,故m≥1;…(5分)(Ⅱ)∵a>0,b>0,∴a+2b>0,2a+b>0故==a2+b2+2ab=(a+b)2,即由(Ⅰ)知a+b=m≥1,∴.…(10分)。

2018年河南省开封市开封县高考语文一模试卷(解析版)

2018年河南省开封市开封县高考语文一模试卷(解析版)

2018年河南省开封市开封县高考语文一模试卷一、现代文阅读(35分)1.(9分)阅读下面的文字,完成下列各题。

学界曾普遍认为,我国古代社会停滞以至僵化始于宋代。

其实,宋代是个竞争性强、开放性高的社会。

传统社会是封闭式的固态社会,人们的政治地位、经济地位以及职业具有非运动性,和前代相比,宋代呈现较为明显的社会流动倾向。

社会流动是指人们的社会地位以及职业的变动,是社会自我调节的重要机制之一,是社会富有活力与否的重要标志。

面对社会流动增大的现实,宋人张载在《经学理窟》)中说:“今日万钟,明日弃之;今日富贵,明日饥饿。

”魏晋南北朝时期,门阀士族往往世代为官,这种状况到唐代没有根本性改变。

宋代“朝廷无世臣”,士庶界限趋于消解,官民之间可以转化。

沈伦原是以教书为业的穷书生,后来官拜宰相,去世后,家道随之中落。

宋代政治上的流动与科举改革关系极大。

宋代“取士不问家世”“一切考诸试篇”,采取弥封、誊录等措施,平民子弟仕进的可能性增大。

明代学者胡应麟在《华阳博议下》中说:“五代以还,不崇门阀。

”宋代门第观念相对淡薄,人们更加看重科举和官职,这些影响到社会生活的方方面面,从前士庶不通婚、不交往的旧习俗有所改变,出现了“婚姻不问阀阅”“所交不限士庶”(朱熹《增损吕氏乡约》)等新现象。

魏晋南北朝时期,自然经济色彩浓重。

中唐前后,商品经济有所发展,宋代商品经济发展更上一层楼。

营利者往往“累千金之得,以求田问舍”,政治权力向经济力量屈服,宋朝政府不得不减少对土地买卖的限制和干预,土地作为商品进入流通领域,土地所有权转换频率加快,以致“庄田置后频移主”(刘克庄《故宅》).苏洵曾感叹:“富者之子孙或不能保其地,以复于贫。

”商人比田主风险更大,“有朝为富商,暮为乞丐者”,达官显宦同样难免。

对于经济上的社会流动,宋人概括道:“富儿更替做。

”我国古代,人们的身份被固化为四大类别﹣﹣士农工商。

士列四民之首,商居四民之末。

随着商品经济的发展,四民由四种不同身份演变为四种不同的职业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三毕业班第一次模拟考试
数学文科
一、选择题
1. 在复平面内i
i 2121-+所对应的点位于 ( ) A. 第一象限 B.第二象限 C.第三象限 D.第四象限
2. 设集合A={}{}
R x y y B x x x ∈-==≤≤-,13/,22/,则=⋂B A ( ) A. ()+∞-,1 B.()+∞-,2 C.[]2,1- D.(]2,1-
3. 已知函数()x f 满足:①对任意()()();0,,0,21212121>--≠+∞∈x x x f x f x x x x 都有
且②对定义域内任意x ,都有()()x f x f -=。

则符合上述条件的函数是 ( )
A. ()12++=x x x f
B.()x x
x f -=1 C.()1ln +=x x f D.()x x f cos = 4. 若
3sin cos 1=+x
x ,则=-x x sin 2cos ( ) A. -1 B.1 C.52- D.-1或52- 5. 已知等比数列{}n a 中,653=+a a ,则=+75a a ( ) A.12 B.10 C.212 D.26
6. 执行如图所示的程序框图,若输入p=0.8,则输出的n= ( )
A.3
B.4
C.5
D.6
7. 如图所示是一个几何体的三视图,则该几何体的体积是 ( )
A. π24+
B.π234+
C.π+4
D.2
4π+ 8. 在边长为a 的正三角形内任取一点p ,则点p 到三个顶点的距离均大于
2a 的概率是( ) A. π631211- B.π631- C.31 D.4
1 9. 已知{}n a 是等差数列,n S 是其前n 项和,若5327a a =+,则13S = ( )
A.49
B. 91
C.98
D.182
10. 已知函数()⎪⎭
⎫ ⎝⎛
-=3sin πx x f ,要得到()x x g cos =的图像,则只需将函数()x f y =的图像 ( )
A. 向右平移65π个单位
B.向右平移3
π个单位
C.向左平移3π个单位
D.向左平移6
5π个单位 11.已知函数2
3)(2
3x x x f +=与()a x x g +=6的图像有3个不同的焦点,则a 的取值范围是 ( ) A.⎥⎦⎤⎢⎣⎡-227,322 B.⎪⎭⎫ ⎝⎛-227,322 C.⎪⎭⎫ ⎝⎛-322,227 D.⎥⎦
⎤⎢⎣⎡-322,227 12.已知21,F F 分别是椭圆()0122
22>>=+b a b
y a x 的左右焦点,P 为椭圆上一点,且()011=+•OP OF PF (O 为坐标原点)
=,则椭圆的离心率为 ( ) A.36- B.
236- C.56- D.2
56- 二、填空题
13.命题“,R x ∈∀都有02≥+x x ”的否定是
14.长、宽、高分别为1,2,3的长方体的顶点都在同一球面上,则该球的表面积为 15.已知向量()3,2=a ,()y x b ,=,且变量x,y 满足⎪⎩
⎪⎨⎧≤-+≤≥,03,,0y x x y y 则z=b a •的最大值为
16.在平面直角坐标系xOy 中,点(),3,0-A 若圆C :()()122
2=+-+-a y a x 上存在一点M 满足MO MA 2=,则实数a 的取值范围是
三、解答题
17.已知ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且满足c B a a =+cos 2。

()I 求证:B=2A ()II 若ABC ∆为锐角三角形,且c=2,求a 的取值范围。

18.某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x 分布在[)100,50内,且销售量x 的分布频率
()()()⎪⎪⎩⎪⎪⎨⎧+<≤-+<≤-=.,110010,20
n ,110010,5.010为奇数为偶数,n n x n a n n x n n x f ()I 求a 的值()II 若销售量大于等于80,则称该日畅销,其余为滞销。

根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率)。

19. 如图,已知在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,且PA ⊥PD ,PA=PD,AD=4,BC AD ,AB=BC=CD=2,E 为PD 的中点。

()I 证明:PAB CE 平面
()II 求三棱锥E-PBC 的体积。

20. 如图,在平面直角坐标系xOy 中,直线x y l =:1与直线x y l -=:2之间阴影部分记为W ,区域W 中动点P(x,y)到2,1l l 的距离之积为1。

()I 求点P 的轨迹C 的方程
()II 动直线l 穿过区域W ,分别交直线2,1l l 于A,B 两点,若直线l 与轨迹C 有且只有一个公共点,求证:OAB ∆的面积恒为定值。

21. 已知函数()(),ln 3,22
2x e x g x
e e x x
f =+=其中e 为自然对数的底数。

()I 讨论函数()x f 的单调性
()II 试判断曲线()()x g y x f y ==与是否存在公共点并且在公共点处有公切线。

若存在,求出公切线l 的方程;若不存在,请说明理由。

22. 已知函数()121-++=x a x x f
()I 当21=a 时,若()()0,11>+≥n m n
m x f 对任意R x ∈恒成立,求n m +的最小值; ()II 若()2-≥x x f 的解集包含[]2,1-,求实数a 的取值范围。

相关文档
最新文档