2020-2021学年八年级上学期12月月考数学试题91

合集下载

2020-2021学年重庆市渝北区松树桥中学八年级(上)月考数学试卷(12月份)

2020-2021学年重庆市渝北区松树桥中学八年级(上)月考数学试卷(12月份)

2020-2021学年重庆市渝北区松树桥中学八年级(上)月考数学试卷(12月份)一、单选题(共12小题).1.下列长度的三条线段,能构成三角形的是()A.1,2,6B.1,2,3C.2,3,4D.3,3,62.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不是轴对称图形的是()A.B.C.D.3.下列各式能用平方差公式计算的是()A.(3x+2y)(2x﹣3y)B.(3x+2y)(3x﹣y)C.(3x+2y)(3x﹣2y)D.(3x﹣2y)(2y﹣3x)4.下列等式成立的是()A.2﹣1=﹣2B.(a2)3=a5C.a6÷a3=a2D.﹣2(x﹣1)=﹣2x+25.在式子,,,,,中,分式的个数是()A.2个B.3个C.4个D.5个6.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是()A.SAS B.ASA C.AAS D.HL7.设有一凸多边形,除去一个内角以外,其它内角的和为2570°,则该内角为()A.40°B.90°C.120°D.130°8.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=50时,计算s的值为()A.196B.200C.204D.1989.等腰三角形的两边长分别为3cm和7cm,则周长为()cm.A.13B.17C.13或17D.17或1110.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°11.如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE =CD,AB=8cm,则△DEB的周长为()A.4cm B.8cm C.10cm D.14cm12.关于x的不等式组有四个整数解,且关于x的分式方程有整数解,那么所有满足条件的整数a的和()A.18B.12C.17D.30二、填空题13.计算:+()﹣2+(π﹣1)0=.14.分解因式:ab2﹣9a=.15.如图,AD是△ABC的一条中线,若BD=3,则BC=.16.如图,已知D为△ABC边AB的中点,E在AC上,将ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于度.17.已知p+q=2,pq=﹣2,则(1﹣p)(1﹣q)=.18.如图,在△ABC中,tan∠ABC=,BC=5,∠CAB<90°,D为边AB上一动点,以CD为一边作等腰Rt△CDE,且∠EDC=90°,连接BE,当S△BDE=时,则BD的长度为.三、解答题19.计算:(1)(m﹣3n)(m+n)﹣(m﹣2n)2;(2)(x+1)÷.20.已知:如图,∠ABD=∠ACD=90°,∠CBD=∠BCD,连接AD.(1)求证:△ABD≌△ACD;(2)若∠BAD=30°,AB=2,求BC的长.21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:CE=CF.23.为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过10万元,则至少应安排甲工程队工作多少天?24.配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为5=22+12,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成a2+b2(a,b是整数)的形式;(2)若x2﹣4x+5可配方成(x﹣m)2+n(m,n为常数),则mn的值;探究问题:(1)已知x2+y2﹣2x+4y+5=0,则x+y的值为;(2)已知S=x2+4y2+4x﹣12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.拓展结论:已知实数x,y满足﹣x2+3x+y﹣5=0,求x+y的最小值.25.问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.参考答案一、单选题1.下列长度的三条线段,能构成三角形的是()A.1,2,6B.1,2,3C.2,3,4D.3,3,6【分析】根据三角形的三边关系计算,判断即可.解:A、∵1+2<6,∴长度为1,2,6的三条线段不能构成三角形,本选项不符合题意;B、∵1+2=3,∴长度为1,2,3的三条线段不能构成三角形,本选项不符合题意;C、∵3﹣2<4<3+2,∴长度为2,3,4的三条线段能构成三角形,本选项符合题意;D、∵3+3=6,∴长度为3,3,6的三条线段不能构成三角形,本选项不符合题意;故选:C.2.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.3.下列各式能用平方差公式计算的是()A.(3x+2y)(2x﹣3y)B.(3x+2y)(3x﹣y)C.(3x+2y)(3x﹣2y)D.(3x﹣2y)(2y﹣3x)【分析】运用平方差公式(a+b)(a﹣b)=a2﹣b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.解:A、(3x+2y)(2x﹣3y)中不存在互为相同的项和相反的项,所以不能用平方差公式计算,故本选项不合题意;B、(3x+2y)(3x﹣y)中不存在互为相反项,所以不能用平方差公式计算,故本选项不合题意;C、(3x+2y)(3x﹣2y)符合平方差公式,故本选项合题意;D、(3x﹣2y)(2y﹣3x)=﹣(3x﹣2y)(3x﹣2y)中不存在互为相反的项,所以不能用平方差公式计算,故本选项不合题意;故选:C.4.下列等式成立的是()A.2﹣1=﹣2B.(a2)3=a5C.a6÷a3=a2D.﹣2(x﹣1)=﹣2x+2【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数);幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行计算即可.解:A、2﹣1=,故原题计算错误;B、(a2)3=a6,故原题计算错误;C、a6÷a3=a3,故原题计算错误;D、﹣2(x﹣1)=﹣2x+2,故原题计算正确;故选:D.5.在式子,,,,,中,分式的个数是()A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,x+共有3个.故选:B.6.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是()A.SAS B.ASA C.AAS D.HL【分析】直角三角形的判定定理有SAS,ASA,AAS,SSS,HL,根据HL推出两三角形全等即可.解:∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中∴Rt△ABC≌Rt△DCB(HL),故选:D.7.设有一凸多边形,除去一个内角以外,其它内角的和为2570°,则该内角为()A.40°B.90°C.120°D.130°【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.解:∵2570°÷180°=14…50°,∴该内角应是180°﹣50°=130°.故选:D.8.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=50时,计算s的值为()A.196B.200C.204D.198【分析】观察可得规律:n每增加一个数,s就增加四个.解:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=50时,s=(50﹣1)×4=196.故选:A.9.等腰三角形的两边长分别为3cm和7cm,则周长为()cm.A.13B.17C.13或17D.17或11【分析】题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.解:当7为腰时,周长=7+7+3=17;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17.故选:B.10.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD 的度数,根据三角形的外角的性质计算得到答案.解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.11.如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE=CD,AB=8cm,则△DEB的周长为()A.4cm B.8cm C.10cm D.14cm【分析】证明Rt△ACD≌Rt△AED(HL),由全等三角形的性质得出AC=AE,根据三角形的周长可得出答案.解:在Rt△ACD和△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,∵AB=8cm,∴△DEB的周长是8cm.故选:B.12.关于x的不等式组有四个整数解,且关于x的分式方程有整数解,那么所有满足条件的整数a的和()A.18B.12C.17D.30【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,由分式方程有非负整数解,确定出a的值,求出之和即可.解:不等式组得,,∵关于x的不等式组有四个整数解,∴0≤<1,∴4≤a<9,解分式方程得,x=,∵关于x的分式方程有整数解,∴为整数,且≠2,∴a偶数,且a≠6,∵4≤a<9,∴a=4或8,∴所有满足条件的整数a的和:4+8=12,故选:B.二、填空题13.计算:+()﹣2+(π﹣1)0=8.【分析】根据开立方,可得立方根;根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.解:原式=﹣2+9+1=8.故答案为:8.14.分解因式:ab2﹣9a=a(b+3)(b﹣3).【分析】根据提公因式,平方差公式,可得答案.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).15.如图,AD是△ABC的一条中线,若BD=3,则BC=6.【分析】根据三角形的中线的定义可得BC=2BD.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.16.如图,已知D为△ABC边AB的中点,E在AC上,将ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于50度.【分析】先根据图形翻折不变性的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算即可求解.解:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=65°,∴∠BDF=180°﹣∠B﹣∠BFD=180°﹣65°﹣65°=50°.故答案为:50.17.已知p+q=2,pq=﹣2,则(1﹣p)(1﹣q)=﹣3.【分析】利用多项式乘多项式的法则对所求式子进行化简,再代入已知条件的数值运算即可.解:∵p+q=2,pq=﹣2,∴(1﹣p)(1﹣q)=1﹣q﹣p+pq=1﹣(p+q)+pq=1﹣2+(﹣2)=﹣3.故答案为:﹣3.18.如图,在△ABC中,tan∠ABC=,BC=5,∠CAB<90°,D为边AB上一动点,以CD为一边作等腰Rt△CDE,且∠EDC=90°,连接BE,当S△BDE=时,则BD的长度为.【分析】过点E作EH⊥BA,交BA的延长线于H,过点C作CG⊥BA于G,交BA的延长线于G,由“AAS”可证△EDH≌△DCG,可得EH=DG,由锐角三角函数和勾股定理可求CG=,BG=2,由三角形的面积公式EH==DG,即可求解.解:如图,过点E作EH⊥BA,交BA的延长线于H,过点C作CG⊥BA于G,交BA的延长线于G,∵∠EDC=90°,∴∠EDH+∠CDG=90°,∵EH⊥BA,CG⊥BA,∴∠EHD=∠CGD=90°,∴∠EDH+∠DEH=90°,∴∠CDG=∠DEH,又∵DE=DC,∴△EDH≌△DCG(AAS),∴EH=DG,∵S△BDE=BD×EH=,∴EH==DG,∵tan∠ABC==,∴BG=2CG,∵BG2+CG2=BC2=25,∴CG=,BG=2,∵BD+DG=BG,∴BD+=2,∴BD=,故答案为:.三、解答题19.计算:(1)(m﹣3n)(m+n)﹣(m﹣2n)2;(2)(x+1)÷.【分析】(1)先利用多项式乘多项式法则、完全平方公式计算,再去括号、合并同类项即可;(2)先将括号内分式通分、将除式因式分解,再计算括号内分式的减法、将除法转化为乘法,继而约分即可.解:(1)原式=m2+mn﹣3mn﹣3n2﹣(m2﹣4mn+4n2)=m2+mn﹣3mn﹣3n2﹣m2+4mn﹣4n2=2mn﹣7n2;(2)原式=(﹣)÷=•=•=﹣(x+4)=﹣x﹣4.20.已知:如图,∠ABD=∠ACD=90°,∠CBD=∠BCD,连接AD.(1)求证:△ABD≌△ACD;(2)若∠BAD=30°,AB=2,求BC的长.【分析】(1)根据∠CBD=∠BCD,即可得出BD=CD,依据HL即可判定△ABD≌△ACD;(2)根据AB=AC,∠BAC=60°,即可得出△ABC是等边三角形,进而得到BC的长.解:(1)∵∠CBD=∠BCD,∴BD=CD,又∵∠ABD=∠ACD=90°,AD=AD,∴Rt△ABD≌Rt△ACD(HL);(2)∵△ABD≌△ACD,∴∠BAD=∠CAD=30°,AB=AC,∴∠BAC=60°,∴△ABC是等边三角形,又∵AB=2,∴BC=2.21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)求△ABC的面积.【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.解:(1)如图,△A1B1C1即为所求,并写出A1(﹣1,1),B1,(﹣4,2),C1(﹣2,4).(2)△ABC的面积=3×3﹣×2×2﹣2××1×3=4.22.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:CE=CF.【分析】(1)根据直角三角形的两锐角互余等量代换即可得解;(2)根据直角三角形的两锐角互余及对顶角相等得出∠CAF+∠CFA=90°,∠EAD+∠CEF=90°,根据角平分线的定义得出∠CAF=∠EAD,即可得到∠CFA=∠CEF,根据等角对等边即可得解.【解答】(1)证明:∵∠ACB=90°,∴∠CAD+∠B=90°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠ACD=∠B;(2)证明:∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB,∴∠EAD+∠AED=90°,∵∠AED=∠CEF,∴∠EAD+∠CEF=90°,∵AF平分∠CAB,∴∠CAF=∠EAD,∴∠CFA=∠CEF,∴CE=CF.23.为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过10万元,则至少应安排甲工程队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天,列出分式方程,求解即可;(2)①先根据甲队工作y天完成的工作量,求得乙工程队的工作天数,根据这次的绿化总费用不超过10万元,列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣2=,解得:x=150,经检验:x=150是原方程的解,则2x=300.答:甲工程队每天能完成绿化的面积是300m2,乙工程队每天能完成绿化的面积是150m2,(2)设甲队工作y天完成:300y(m2),乙队完成工作所需要(天),根据题意得:0.3y+0.2×≤10,解得:y≥28.所以y最小值是28.答:至少应安排甲队工作28天.24.配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为5=22+12,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成a2+b2(a,b是整数)的形式29=22+52;(2)若x2﹣4x+5可配方成(x﹣m)2+n(m,n为常数),则mn的值2;探究问题:(1)已知x2+y2﹣2x+4y+5=0,则x+y的值为﹣1;(2)已知S=x2+4y2+4x﹣12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.拓展结论:已知实数x,y满足﹣x2+3x+y﹣5=0,求x+y的最小值.【分析】解决问题:(1)根据“完美数”的定义判断即可;(2)利用配方法进行转化,然后求得对应系数的值;探究问题:(1)配方后根据非负数的性质可得x和y的值,进行计算即可;(2)利用完全平方公式把原式变形,根据“完美数”的定义证明结论.解:解决问题:(1)∵29=52+22,故答案为29=22+52;(2)∵x2﹣4x+5=(x2﹣4x+4)+1=(x﹣2)2+1,又x2﹣4x+5=(x﹣m)2+n,∴m=2,n=1,∴mn=2×1=2;故答案为2;探究问题:(1)x2+y2﹣2x+4y+5=0,x2﹣2x+1+(y2+4y+4)=0,(x﹣1)2+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x+y=1﹣2=﹣1;故答案为:﹣1;(2)当k=13时,S是完美数,理由如下:S=x2+4y2+4x﹣12y+13=x2+4x+4+4y2﹣12y+9=(x+2)2+(2y﹣3)2,∵x,y是整数,∴x+2,2y﹣3也是整数,∴S是一个“完美数”.拓展结论:∵﹣x2+3x+y﹣5=0,∴x+y=x2﹣2x+5=(x﹣1)2+4≥4∴当x=1时,x+y最小,最小值为4.25.问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF>EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【分析】(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.证明△BDE≌△CDH(SAS),推出BE=CH,利用三角形的三边关系即可解决问题.(2)结论:EF2=BE2+CF2.如图2中,延长ED到H,使得DH=DE,连接CH,FH.利用全等三角形的性质以及勾股定理即可解决问题.(3)结论:EF=BE+CF.利用旋转法构造全等三角形即可解决问题.解:(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵DE=DH,FD⊥EH,∴FE=FH,在△FCH中,∵CH+CF>FH,∴BE+CF>EF.故答案为>.(2)结论:EF2=BE2+CF2.理由:如图2中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∠B=∠DCH,∵DE=DH,FD⊥EH,∴FE=FH,∵∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCH=90°,∴∠FCH=90°,∴FH2=CH2+CF2,∴EF2=BE2+CF2.(3)如图3中,结论:EF=BE+CF.理由:∵DB=DC,∠B+∠ACD=180°,∴可以将△DBE绕点D顺时针旋转得到△DCH,A,C,H共线.∵∠BDC=130°,∠EDF=65°,∴∠CDH+∠CDF=∠BDE+∠CDF=65°,∴∠FDE=∠FDH,∵DF=DF,DE=DH,∴△FDE≌△FDH(SAS),∴EF=FH,∵FH=CF+CH=CF+BE,∴EF=BE+CF.。

浙江省杭州市西湖区之江实验中学2023-2024年八年级上学期12月第三次月考数学试题

浙江省杭州市西湖区之江实验中学2023-2024年八年级上学期12月第三次月考数学试题

浙江省杭州市西湖区之江实验中学2023-2024年八年级上学期12月第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.第十九届亚运会于2023年9月23日至10月8日在杭州隆重举行,下列图标是亚运会上常见的运动图标,其中是轴对称图形的是( )A .B .C .D . 2.若x y >,则下列不等式成立的是( )A .22x y ->-B .66x y -<-C .0x y -<D .55x y > 3.在平面直角坐标系中,将点A (-1,-4)向右平移3个单位长度后得到的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.一次函数32y x =-+的图像经过( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限5.根据下列已知条件,能唯一画出ABC V 的是( )A .3AB =,4BC =,8CA =B .4AB =,3BC =,30A ∠=︒ C .::3:4:5A B C ∠∠∠=D .60A ∠=︒,45B ∠=︒,4AB =, 6.圆圆将某服饰店的促销活动内容告诉芳芳后,假设芳芳购买A 商品的定价为x 元,并列出关系式为0.8(2100)1000x -<,则圆圆告诉芳芳的内容可能是( ) A .买两件A 商品可先减100元,再打8折,最后不到1000元B .买两件A 商品可先减100元,再打2折,最后不到1000元C .买两件A 商品可先打8折,再减100元,最后不到1000元D .买两件A 商品可先打2折,再减100元,最后不到1000元7.如图,在ABC V 中,BD 平分ABC ∠,根据尺规作图的痕迹作射线AE ,交BD 于点I ,连接CI ,则下列说法错误的是( )A .点I 到边AB AC 、的距离相等B .CI 平分ACB ∠C .1902DIE ACB ︒∠=+∠D .点I 到A 、B 、C 三点的距离相等8.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角,这个三等分角仪由两根有槽的棒OA 、OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D 、E 可在槽中滑动,若ODE α∠=,则CDE ∠的度数是( )A .603α︒- B .21203α︒- C .23α D .4603α-︒ 9.已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是( )A .B .C .D .10.将一个等腰三角形ABC 纸板沿垂线段AD ,DE 进行剪切,得到三角形①②③,其中EC 与BD 共线.若6BD =,则AB 的长为( )A .223B .7CD .152二、填空题11.不等式412x -≥-的解集为.12.将直线21y x =-的图象向下平移2个单位长度,得到的直线的解析式为. 13.如图,在ABC V 中,AC 的垂直平分线分别交AC BC 、于E D 、两点,4CE ABC =V ,的周长是25,则ABD △的周长为.14.某种气体的体积y (L )与气体的温度x (℃)对应值如下表.若要使气体的体积至少为106升,则气体的温度不低于℃.15.如图,已知AB CD ∥,BC CD ⊥,AD 与BC 交点为E ,点F 是ED 中点,若2CAD DAB ∠=∠,8ED =,1AB =,则BC 的长为.16.图1是小馨在“天猫双12”活动中购买的一张多档位可调节靠椅.档位调节示意图如图2所示,已知两支脚0.7==AB AC 米,0.84=BC 米,O 为AC 上固定连接点,靠背0.7OD =米.档位为Ⅰ档时,OD AB ∥,档位为Ⅱ档时,'OD AC ⊥.当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端D 向后靠的水平距离(即EF )为米.三、解答题17.以下是圆圆解不等式组()()21213x x ⎧+>-⎪⎨-->⎪⎩①②的解答过程: 解:由①,得22x +>-,所以4x >-.由②,得13x ->-,所以2x ->-,所以2x >.所以原不等式组的解是2x >.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.18.如图,已知ABC V 中,AB AC =,D 为BC 的中点,DE AC DF AB ⊥⊥,,垂足分别是点E 、F ,求证:DF DE =.19.公元前约400年,古希腊的希波克拉底研究了他自己所画的形如图①图形,得出如下结论:“两个月牙形的面积之和,等于ABC V 的面积,即123S S S +=”,随即他试图将结论推广并提出了两个猜想:(1)以正方形的边为直径作半圆,和以对角线为直径的圆形成如图②所示的4个月牙形,则4个月牙形的面积之和等于正方形的面积,即1243ABCD S S S S S +++=正方形.(2)以正六边形的边AB ,BC ,CD 为直径作半圆,和与对角线AD 为直径的圆围成的6个月牙形,则6个月牙形的面积之和等于正六边形的面积135624ABCDEF S S S S S S S +++++=六边形,请你判断两个猜想是否正确,并说明理由. 20.如图,在平面直角坐标系中,()3,3A -,()4,4B --,()0,1C -.(1)在图中作出ABC V 关于y 轴对称的111A B C △,并写出111A B C △顶点的坐标;(2)求ABC V 的周长;(3)在y 轴上找一点P ,使PB PA +最小,点P 的坐标为______.21.如图,直线1l 的函数表达式为22y x =-,直线1l 与x 轴交于点D ,直线2l :y kx b =+与x 轴交于点A ,且经过点B ,如图所示,直线1l ,2l 交于点(),2C m .(1)求点C 的坐标和直线2l 的函数表达式;(2)利用函数图象直接写出关于x 的不等式22x kx b -≤+的解集.22.如图,等边三角形ABC 中,点D 是边BC 上的点.以AD 为边,构造等边三角形ADE ,连结EC .(1)求证:ABD ACE ≌△△.(2)若AC DE ⊥,4AB =,求AD 的长.23.某商场准备购进甲乙两种服装进行销售.甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x 件,两种服装全部售完,商场获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100件服装的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该服装店对甲种服装以每件优惠a (a 020<<)元的价格进行优惠促销活动,乙种服装每件进价减少b 元,售价不变,且4a b -=,若最大利润为4950元,求a 的值.24.如图,B 为A ∠边上一点,5AB =,BC AC ⊥,P 为线段AC 上一点,点Q ,P 关于直线BC 对称,QD AB ⊥于点D ,直线DQ ,BC 交于点E ,连结DP ,设AP m =.(1)若4BC =,求用含m 的代数式表示PQ 的长;(2)在(1)的条件下时,若AP PD =,求CP 的长;(3)连接PE ,若60A ∠=︒,PCE V 与PDE △的面积之比为1:2,求m 的值.。

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题(含答案)

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题(含答案)

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的位置上)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录.下列四幅作品分别代表“立春”、“谷雨”、“立夏”、“小满”,其中是轴对称图形的是()A. B.C. D.2.下列各数中,属于有理数的是()B.2-227C. D.1.…(每相邻两个1之间0的个数依次多1个)3π3.若,则的值是()24x =x A.2 B.±2 C.16 D. ±164.我国是最早了解勾股定理的国家之一.三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于下列哪部著名数学著作中()A.《周髀算经》B.《九章算术》C.《海岛算经》D.《几何原本》5.已知点和点关于y 轴对称,则ab 的值为()()1,P a -(),6Q b A.-5 B.5 C.-7 D.76.“一座姑苏城,半卷江南诗.”2023年苏州市文旅行业势头强劲,经综合测算,国庆长假期间,我市累计接待游客1781.5万人次,按可比口径较2019年增长43.3%.近似数1781.5万精确到()A.十分位B.百位C.千位D.千分位7.如图,在平分角的仪器中,,,将点A 放在一个角的顶点,AB 和AD 分别AB AD =BC DC =与这个角的两边重合,能说明AC 就是这个角的平分线的数学依据是()A.SSSB.ASAC.SASD.AAS8.如图,在中,,以的三边为边向外做正方形ACDE ,正方形Rt ABC △90C ∠=︒ABC △CBGF ,正方形AHIB ,连结EC ,CG ,作交HI 于点P ,记正方形ACDE 和正方形AHIB CP CG ⊥的面积分别为,,若,,则等于()1S 2S 14S =27S =:ACP BCP S S △△A. B.4:3 D.7:42二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应的横线上)9.64的立方根是_________.10._________.+=11.在函数的取值范围是_________.y =x 12.已知直角三角形的两边长为5和12,则其斜边上的中线为_________.13.点P 在第二象限,距x 轴2个单位长度,距y 轴3个单位长度,则点P 的坐标为_________.14.如图所示,,,若,,则的度数是ABC ADE ≌△△AE BC ∥30B ∠=︒100C ∠=︒BAD ∠_________.15.如图,在数轴上,点A 与原点重合,点A 、B 之间的距离为1,于点B ,且,BC AB ⊥12BC =连接AC ,在AC 上截取,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点CD BC =E 表示的实数是___________.16.如图,在中,,,点E 和点F 分别为AC 和BC 上的动点,ABC △6AC BC ==120ACB ∠=︒且,连接BE ,AF ,当的值最小时,点F 到AB 的距离为___________.AE CF =AF BE +三、解答题(本大题共11题,共82.分.解答时应写出文字说明、证明过程或演算步骤.)17.(本题满分4分)求x 的值.()31242x -=18.(本题满分8分)计算:(1.(2).))2222+--19.(本题满分6分)下列正方形网格图中,部分方格涂上了阴影,请按照不同要求作图.(1)如图①,整个图形是轴对称图形,画出它的对称轴.(2)如图②,将某一个方格涂上阴影,使整个图形有两条对称轴.(3)如图③,将某一个方格涂上阴影,使整个图形有四条对称轴.20.(本题满分7分)已知与成正比例,且时,.1y -2x +1x =7y =(1)求y 与x 之间的函数关系式;(2)设点在(1)中函数的图象上,求a 的值.(),2a -21.(本题满分7分)如图,在中,,,,点D 为内ABC △13AB =12AC =AC BC ⊥ABC △一点,且,.3CD =4BD =(1)求BC 的长;(2)求图中阴影部分(四边形ABDC )的面积.22.(本题满分9分)阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:;等运算都是分母有==1===理化.根据上述材料,(1;(2;(3)计算.)1+⋅⋅⋅+23.(本题满分9分)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答下列问题:(1)若整齐叠放在桌面上的饭碗的高度与饭碗数x (个)成一次函数关系,求y 与x 之间()cm y 的函数表达式;(2)若把这两摞饭碗整齐地叠放成一摞时,求这摞饭碗的高度;(3)若桌面上若干个饭碗整齐地叠放成一摞,测得它的高度是37.5cm ,求碗的个数.24.(本题满分8分)古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设,则三角形的2a b c p ++=面积.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面S =积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积S =选择上述合适的公式,解决下列问题:(1)若一个三角形的三边长分别是5,6,7,求这个三角形的面积;(23,.25.(本题满分6分)阅读并解答问题明朝数学家程大位在数学著作《直指算法统宗》中以《西江月》词牌叙述了一道“荡秋千”问题:原文:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索有几?译文:如图,有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?(注古代5尺为1步)建立数学模型,解决问题:如图,秋千绳索OA 静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺)1AC =10EB =,此时踏板升高离地五尺(尺),已知于点C ,于点D ,5BD =OC CD ⊥BD CD ⊥于点E ,,求秋千绳索(OA 或OB )的长度.BE OC ⊥OA OB =26.(本题满分8分)如图,点D ,E 在的边BC 上,,.ABC △AB AC =AD AE =(1)如图1,求证:;BD CE =(2)如图2,若点E 在AB 的垂直平分线上,过点B 作于点G ,,求BG AE ⊥3EG =的值.BE CE -图1图227.(本题满分10分)如图,在平面直角坐标系中,点A 的坐标为(0,4),点B 的坐标为(-2,0),点C 的坐标为(3,0).(1)求证:是等腰三角形;ABC △(2)若点P 在AO 上且点P 到两边的距离相等,利用尺规作图,找出点P 的位置(保留作ACB ∠图痕迹),并求出的面积;ACP △(3)若动点Q 从点O 出发,沿着的路径运动,当是等腰三角形时,直接写O A C →→COQ △出点Q 的坐标.初二数学答案1~5C ,B ,B ,A ,D ;6~8C ,A ,A9.4;10.11.且;12.6.5或6;13.;2x ≥-0x ≠()3,2-14.80°;;16. ;17. ;324x =18.(1);(2)1π-19.20.(1);(2)25y x =+72a =-21.(1)5;(2)24;22.(1;(2;(3)1011.23.(1);(2)21cm ;(3)22个.1.5 4.5y x =+24.(1);(2)3.25.14.5尺.26.(1)证明方法不唯一;(2)6;27.(1)理由略;(2)如图所示,分别以A ,B 为圆心,大于长为半径画弧,交于点M ,连接CM 交AO 于12AB P ,则点P 即为所求;的面积为;ACP △154(3)①;②;③;④.()0,32172,2525⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭3,22⎛⎫ ⎪⎝⎭。

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题一、单选题1.下列式子是分式的是( )A .xB .23C .2xD .3x 2.下列各组的两个图形属于全等图形的是( )A .B .C .D .3.如图,若ABC ADE △≌△,则AB 的对应边是( )A .CDB .BDC .AD D .AE4.下列分式是最简分式的是( )A .11x x --B .211x x --C .42xD .221x x - 5.春节游河南,探寻千年古韵,品味地道年味!有游客m 人,到龙门石窟游玩,需要住宿,如每n 个人住一间房,结果还有一个人无房住,则客房的间数是( )A .1m n -B .1m n -C .1m n +D .1m n+ 6.将分式ab a b-中的a b 、都扩大为原来的3倍,则分式的值( ) A .不变B .是原来的3倍C .是原来的9倍D .是原来的6倍7.如图,AC 与BD 交于点O ,若OA OD =,要用“SAS”证明AOB DOC △≌△,还需要的条件是( )A . OB OC =B . AB DC = C .AD ∠=∠ D .B C ∠=∠8.已知1313a a =□,能使等式恒成立的运算符号是( ) A .+B .-C .·D .÷ 9.若分式52x--的值为负数,则x 的取值范围是( ) A .x <2 B .x >2 C .x >5 D .x <﹣210.下列各命题的逆命题成立的是( )A .对顶角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45︒,那么这两个角相等11.若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y -的分子应变为( ) A .6x 2(x ﹣y )2 B .2(x ﹣y ) C .6x 2 D .6x 2(x+y ) 12.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边OA 、OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,就可以知道射线OC 是AOB ∠的角平分线.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等,B .两角及其夹边分别相等的两个三角形全等.C .两角分别相等且其中一组等角的对边相等的两个三角形全等.D .三边分别相等的两个三角形全等.13.化简分式23311x x x-+--过程中开始出现错误的步骤是( ) 23333(1)11(1)(1)(1)(1)x x x x x x x x x --++=---+-+-…………① 331(1)(1)x x x x --+=+-………② 22(2)(1)x x x --=+-…………③ 21x =--…………④ A .① B .② C .③ D .④14.如图,课本上给出了小明一个画图的过程,这个画图过程说明的事实是( )A .两个三角形的两条边和夹角对应相等,这两个三角形全等B .两个三角形的两个角和其中一角的对边对应相等,这两个三角形全等C .两个三角形的两条边和其中一边对角对应相等,这两个三角形不一定全等D .两个三角形的两个角和夹边对应相等,这两个三角形不一定全等二、填空题15.把2336a b ab-约分后,分母是22b ,分子是 16.关于x 的分式方程5222m x x+=--. (1)若方程的根为1x =,则m =;(2)若方程有增根,则m =三、解答题17.如图所示,在边长为1的正方形网格图中,点A B C D 、、、均在正方形网格格点上.(1)图中与线段AD 的长相等的线段是;(2)B D ∠+∠=︒.18.已知:如图,直线a b 、被直线c 所截,1∠与2∠互补,求证:a b P .19.如图,ADE BCF V V ≌,8cm AD =,6cm CD =,30A ∠=︒,80E ∠=︒.(1)求BD 的长.(2)求BCF ∠的度数.20.如图,小明家住在河岸边的B 处,河对岸的A 处有一棵树,他想要测得这棵树与自己家之间的距离AB .设计了下面的方案:在与B 点同侧的河岸边选择一点C ,测得75ABC ∠=o ,35ACB ∠=o ,然后在M 处立了标杆,使75MBC ∠=o ,35MCB ∠=o ,此时测得MB 的长就是A ,B两点间的距离.小明设计的方案是否正确?请说明理由.21.已知分式2x a+-(a,b为常数)满足表格中的信息:(1)则b的值是______;(2)求出c的值______.22.根据如图所示的程序,求输出D的化简结果.23.直角三角形ABC中,90ACB∠=︒,直线l过点C.(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E .求证:ACD CBE V V≌; (2)当8cm AC =,6cm BC =时,过B 作BP l ⊥于P 点,延长BP 到F 点,使PF BP =.点M 是AC 上一点,点N 是CF 上一点,分别过点M 、N 作MD ⊥直线l 于点D ,NE ⊥直线l 于点E .点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C .点N 从F 点出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F .点M 、N 同时开始运动,各自达到相应的终点时停止运动.设运动时间为t 秒,请求出所有使MDC △与CEN V全等的t 的值.24.甲,乙两个工程队分别接到36千米的道路施工任务.以下是两个工程队的施工规划.(1)问甲工程队完成施工任务需要多少天?(2)若要尽快完成施工任务,乙工程队应采取哪种方案?说明你的理由.。

抚州市2020—2021学年初二上第一次月考数学试卷含答案解析

抚州市2020—2021学年初二上第一次月考数学试卷含答案解析

抚州市2020—2021学年初二上第一次月考数学试卷含答案解析一、选择题(本大题共6小题,共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.162.下列四个数中,是无理数的是()A.B.C.D.()23.“的平方根是±”用数学式表示为()A.=±B.= C.±=± D.﹣=﹣4.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.605.已知直角三角形两边的长分别为5、12,则第三边的长为()A.13 B.60 C.17 D.13或6.如图数轴上有O,A,B,C,D五点,依照图中各点所表示的数,判定在数轴上的位置会落在下列哪一线段上()A.OA B.AB C.BC D.CD二、填空题(本大题共6小题,共18分)7.试写出两个无理数和,使它们的和为﹣6.8.运算:|3.14﹣π|=.9.面积为37cm2的正方体的棱长为cm.10.已知两条线段的长分别为和,当第三条线段的长取时,这三条线段能围成一个直角三角形.11.观看下列各式:2×=,3×=,4×=,…,则依次第五个式子是.12.如图,在长方形ABCD中,边AB的长为3,AD的长为2,AB在数轴上,以原点A 为圆心,AC的长为半径画弧,交负半轴于一点,则那个点表示的实数是.三、运算题(本大题共5小题,共30分)13.运算:﹣+.14.打算用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?什么缘故?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?16.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.19.如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,现在OB的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)假如木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?(2)请判定木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.20.如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直截了当跳跃到A处,距离以直线运算,假如两只猴子所通过的距离相等,求这棵树高.21.在边长为1的网格纸内分别画边长为,,的三角形,并运算其面积.五、解答题(本大题共1小题,共10分)22.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别那个三角形的形状.六、解答题(本大题共1小题,共12分)23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、c a+b﹣c3、4、5 25、12、13 48、15、17 6(2)假如a+b﹣c=m,观看上表猜想:=,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.2021-2021学年江西省抚州市八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.16【考点】二次根式的性质与化简.【分析】表示16的算术平方根,依照二次根式的意义解答即可.【解答】解:原式==4.故选A.【点评】要紧考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.2.下列四个数中,是无理数的是()A.B.C.D.()2【考点】无理数.【分析】依照无理数是无限不循环小数,可得答案.【解答】解:A、是无理数,,,()2是有理数,故选:A.【点评】此题要紧考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2021秋•抚州校级月考)“的平方根是±”用数学式表示为()A.=±B.= C.±=± D.﹣=﹣【考点】平方根.【分析】依照平方根的定义,即可解答.【解答】解:“的平方根是±”用数学式表示为±=±.故选:C.【点评】本题考查了平方根的定义,解决本题的依照是熟记平方根的定义.4.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.60【考点】勾股定理.【分析】要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:依照正方形的面积与边长的平方的关系得,图中直角三角形得A正方形的面积是1000﹣640=360,故选A.【点评】本题考查了直角三角形中勾股定理的运用,本题中依照勾股定理求斜边长的平方是解本题的关键.5.已知直角三角形两边的长分别为5、12,则第三边的长为()A.13 B.60 C.17 D.13或【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边依旧斜边,因此两条边中的较长边12既能够是直角边,也能够是斜边,因此求第三边的长必须分类讨论,即12是斜边或直角边的两种情形,然后利用勾股定理求解.【解答】解:当12和5均为直角边时,第三边==13;当12为斜边,5为直角边,则第三边==,故第三边的长为13或.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.如图数轴上有O,A,B,C,D五点,依照图中各点所表示的数,判定在数轴上的位置会落在下列哪一线段上()A.OA B.AB C.BC D.CD【考点】估算无理数的大小;实数与数轴.【分析】由于=4,<,因此应落在BC上.【解答】解:∵=4,<,∴3.6,因此应落在BC上.故选:C.【点评】本题要紧考查了无理数的估算,此题要紧考查了估算无理数的大小,能够直截了当估算因此无理数的值,也能够利用“夹逼法”来估算.二、填空题(本大题共6小题,共18分)7.试写出两个无理数π﹣2和﹣π﹣4,使它们的和为﹣6.【考点】实数的运算.【分析】写出两个无理数,使其之和为﹣6即可.【解答】解:依照题意得:π﹣2﹣4﹣π=﹣6;故答案为:π﹣2,﹣π﹣4【点评】此题考查了实数的运算,熟练把握运算法则是解本题的关键.8.运算:|3.14﹣π|=π﹣3.14.【考点】实数的性质.【分析】依照差的绝对值是大数减小数,可得答案.【解答】解:|3.14﹣π|=π﹣3.14,故答案为:π﹣3.14.【点评】本题考查了实数的性质,差的绝对值是大数减小数.9.面积为37cm2的正方体的棱长为cm.【考点】算术平方根.【分析】能够设正方体的棱长是x,则可用x表示出正方体的面积,即可求得正方体的棱长.【解答】解:设正方形的棱长是x,则x2=37.解得:x=,故答案为:.【点评】本题要紧考查了正方体的面积的运算方法,正确利用算术平方根的定义求解x的值,是解决本题的关键,难度一样.10.已知两条线段的长分别为和,当第三条线段的长取2或4时,这三条线段能围成一个直角三角形.【考点】勾股定理的逆定理.【分析】分两种情形考虑:若为斜边,不为斜边,利用勾股定理求出第三边即可.【解答】解:若为斜边,依照勾股定理得:第三边为=2;若不为斜边,依照勾股定理得:第三边为=4,则当第三条线段的长取2或4时,这三条线段能围成一个直角三角形.故答案为:2或4【点评】此题考查了勾股定理的逆定理,熟练把握勾股定理的逆定理是解本题的关键.11.观看下列各式:2×=,3×=,4×=,…,则依次第五个式子是6×=.【考点】二次根式的性质与化简.【分析】观看一系列等式,得到一样性规律,即可确定出第五个式子.【解答】解:依照题意得:第五个式子为6×=.故答案为:6×=.【点评】此题考查了二次根式的性质与化简,弄清题中的规律是解本题的关键.12.如图,在长方形ABCD中,边AB的长为3,AD的长为2,AB在数轴上,以原点A 为圆心,AC的长为半径画弧,交负半轴于一点,则那个点表示的实数是1﹣.【考点】实数与数轴.【分析】连接AC,先依照勾股定理求出AC的长,再由数轴上两点间的距离公式即可得出结论.【解答】解:连接AC,∵边AB的长为3,AD的长为2,∴AC===.∵A点为1,∴那个点表示的实数是1﹣.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.三、运算题(本大题共5小题,共30分)13.运算:﹣+.【考点】实数的运算.【分析】原式利用二次根式性质,以及平方根定义运算即可得到结果.【解答】解:原式=2﹣8+=﹣.【点评】此题考查了实数的运算,熟练把握运算法则是解本题的关键.14.打算用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.【考点】二次根式的应用.【分析】设所需要的正方形地板砖的边长为a米,依照题意列方程,开平方求a的值,注意a的值为正数.【解答】解:设所需要的正方形地板砖的边长为a米,依题意,得100a2=16,即a2=0.16,解得a=0.4.答:所需要的正方形地板砖的边长为0.4米.【点评】本题考查了二次根式中求面积公式中的运用.关键是依照题意列方程,开平方运算,结果是边长为正数.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?什么缘故?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?【考点】勾股定理的逆定理.【分析】(1)先在Rt △ABC 中,利用勾股定理可求AC ,在△ACD 中,易求AC 2+CD 2=AD 2,再利用勾股定理的逆定理可知△ACD 是直角三角形,且∠ACD=90°;(2)分别利用三角形的面积公式求出△ABC 、△ACD 的面积,两者相加即是四边形ABCD 的面积,再乘以100,即可求总花费.【解答】解:(1)在Rt △ABC 中,∵AB=3m ,BC=4m ,∠B=90°,AB 2+CB 2=AC 2∴AC=5cm ,在△ACD 中,AC=5cm CD=12m ,DA=13m ,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD=90°;(2)∵S △ABC =×3×4=6,S △ACD =×5×12=30,∴S 四边形ABCD =6+30=36,费用=36×100=3600(元).【点评】本题考查勾股定理、勾股定理的逆定理的应用、三角形的面积公式.判定三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判定即可.16.如图是一块地,已知AD=8cm ,CD=6cm ,∠D=90°,AB=26cm ,BC=24cm ,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】依照勾股定理可求出AC 的长,依照勾股定理的逆定理可求出∠ACB=90°,可求出△ACB 的面积,减去△ACD 的面积,可求出四边形ABCD 的面积.【解答】解:如图,连接AC .∵CD=6cm ,AD=8cm ,∠ADC=90°,∴AC==10(cm ).∵AB=26cm ,BC=24cm ,102+242=262.即AC 2+BC 2=AB 2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC ﹣S△ACD=×10×24﹣×6×8=96(cm2).【点评】本题考查了勾股定理和勾股定理的逆定理,关键判定出直角三角形从而可求出面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?【考点】勾股定理的应用.【分析】解答此题要先找出AB、BC所在的长方形,数出小格的个数,再运算.【解答】解:∵每一块地砖的长度为20cm∴A、B所在的长方形长为20×4=80cm,宽为20×3=60cmAB==100又B、C所在的长方形长为20×12=240cm,宽为20×5=100cmBC==260,AB+BC=100+260=360cm.【点评】解答本题的关键是找出AB、BC所在的长方形,依照方格的长度运算出长方形的长和宽,利用勾股定理运算AB、BC之间的距离.四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.【考点】立方根;平方根;算术平方根.【分析】依照立方根与算术平方根的定义得到3a+b﹣1=27,2a+1=25,则可运算出a=12,b=﹣8,然后运算a+b后利用平方根的定义求解.【解答】解:依照题意得3a+b﹣1=27,2a+1=25,解得a=12,b=﹣8,因此a+b=12﹣8=4,而4的平方根为±=±2,因此a+b的平方根为±2.【点评】本题考查了立方根:假如一个数的立方等于a,那么那个数叫做a的立方根或三次方根.这确实是说,假如x3=a,那么x叫做a的立方根.记作:.也考查了平方根与算术平方根.19.如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,现在OB的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)假如木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?(2)请判定木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.【考点】直角三角形斜边上的中线.【分析】(1)依照勾股定理求出OA,求出OC,依照勾股定理求出OD即可;(2)依照直角三角形斜边上中线性质得出即可.【解答】解:(1)在直角△ABC中,已知AB=2.5m,BO=0.7m,则由勾股定理得:AO==2.4m,∴OC=2m,∵直角三角形CDO中,AB=CD,且CD为斜边,∴由勾股定理得:OD==1.5m,∴BD=OD﹣OB=1.5m﹣0.7m=0.8m;(2)不变.理由:在直角三角形中,斜边上的中线等于斜边的一半,因为斜边AB不变,因此斜边上的中线OP不变;【点评】本题考查了勾股定理和直角三角形斜边上中线性质的应用,能依照勾股定理求出各个边的长是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.20.如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直截了当跳跃到A处,距离以直线运算,假如两只猴子所通过的距离相等,求这棵树高.【考点】勾股定理的应用.【分析】设未知数,依照两只猴子通过的距离相等那个等量关系列出方程,并求解,即可求得树高.【解答】解:由题意知,BC+CA=BD+DA,∵BC=10m,AC=20m∴BD+DA=30m,设BD=x,则AD=30﹣x,在直角三角形ADC中,(10+x)2+202=(30﹣x)2,解得x=5,10+x=15.答:这棵树高15m.【点评】本题考查了勾股定理的灵活运用,本题中找到等量关系,同时依照勾股定理列出方程是解题的关键.21.在边长为1的网格纸内分别画边长为,,的三角形,并运算其面积.【考点】勾股定理.【分析】依照=,=,=画出三角形即可,再由矩形的面积减去三个顶点上三角形的面积即可.【解答】解:如图所示,S=2×4﹣×1×2﹣×1×3﹣×1×4=8﹣1﹣﹣2=.△ABC【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.五、解答题(本大题共1小题,共10分)22.(10分)(2021春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别那个三角形的形状.【考点】勾股定理的逆定理;非负数的性质:偶次方;完全平方公式.【分析】现对已知的式子变形,显现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判定三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判定即可.六、解答题(本大题共1小题,共12分)23.(12分)(2020•滨湖区校级模拟)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、c a+b﹣c3、4、5 25、12、13 48、15、17 6(2)假如a+b﹣c=m,观看上表猜想:=,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.【考点】勾股定理.【分析】(1)Rt△ABC的面积S=ab,周长l=a+b+c,分别将3、4、5,5、12、13,8、15、17三组数据代入两式,可求出的值;(2)通过观看以上三组数据,可得出:=;(3)依照lm=(a+b+c)(a+b﹣c),a2+b2=c2,S=ab可得出:lm=4s,即=.【解答】解:(1)∵Rt△ABC的面积S=ab,周长l=a+b+c,故当a、b、c三边分别为3、4、5时,S=×3×4=6,l=3+4+5=12,故=,同理将其余两组数据代入可得为1,.∴应填:,1,(2)通过观看以上三组数据,可得出.(3)∵l=a+b+c,m=a+b﹣c,∴lm=(a+b+c)(a+b﹣c)=(a+b)2﹣c2=a2+2ab+b2﹣c2.∵∠C=90°,∴a2+b2=c2,s=ab,∴lm=4s.即.【点评】本题要紧考查勾股定理在解直角三角形面积和周长中的运用.。

广东省东莞市新世纪英才学校2020-2021学年八年级上学期12月月考数学试题

广东省东莞市新世纪英才学校2020-2021学年八年级上学期12月月考数学试题

广东省东莞市新世纪英才学校2020-2021学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根3.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.164.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.3005.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.已知5m a =,6n a =,则m n a +的值为( )A .30B .11C .56D .657.将下列四种长度的三根木棒首尾顺次连接,能组成三角形的是( )A .2,5,8B .3,4,5C .2,2,4D .1,2,38.如图,已知12∠=∠,要得到ABD ACD △≌△,还需从下列条件中补选一个,则错误的选法是( )A .DB DC = B .AB AC = C .ADB ADC ∠=∠D .B C ∠=∠ 9.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( )A .4B .3C .2D .1 10.下列各式:①01a =;②235a a a ⋅=;③2124-=-;④4(35)(2)8(1)0--+-÷⨯-=;⑤2222x x x +=,其中正确的是( )A .①②⑤B .①③⑤C .②③④D .②④⑤二、填空题 11.已知5,3a b ab -==,则22a b += ___________________.12.点(3,2)A -关于y 轴的对称点A '的坐标为_______13.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是_______.(只需填一个即可)14.如图,在ABC 中,AC=BC ,ABC 的外角∠ACE=100°,则∠A=_______度.15.等腰三角形一边等于4,另一边等于2,则周长是_______16.一个多边形每个内角是150度,这是_______边形17.如图,把面积为1的等边ABC 的三边分别向外延长m 倍,得到111A B C △,那么111A B C △的面积是_______(用含m 的式子表示)三、解答题18.先化简,再求值:()()22225335a b ab ab a b --+,其中3,2a b ==-19.已知一个n 边形的内角和为720︒.求n20.如图CE =CB ,CD =CA ,∠DCA =∠ECB ,求证:DE =AB .21.如图,(1)写出△ABC 的各顶点坐标;(2)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(3)写出△ABC 关于x 轴对称的三角形的各顶点坐标.22.如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD⊥CE24.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.25.如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案1.B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.2.B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B3.C【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x 的值即可.【详解】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点睛】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.5.D【解析】根据合并同类项,幂的乘方与积的乘方,零指数幂运算法则和完全平方公式逐一计算作出判断:A、2a和3b不是同类项,不能合并,故此选项错误;B、按完全平方公式展开(x+2)2=x2+4x+4,故此选项错误;C、按积的乘方运算计算(ab3)2=a2b6,故此选项错误;D、(﹣1)0=1,故此选项正确.故选D6.A【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【详解】+=⨯,m n nma aa=⨯=,5630故选:A.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.7.B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】解:A、2+5<8,不能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项正确;C、2+2=4,不能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项错误;故选:B.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.A【分析】根据全等三角形的判定方法进行综合判断即可.【详解】A、此时与已知条件构成“边边角”,故错误;B、与已知条件可构成“边角边”证明全等,故正确;C、与已知条件可构成“角边角”证明全等,故正确;D、与已知条件可构成“角角边”证明全等,故正确;故选:A.【点睛】本题考查证明三角形全等所需添加的条件,熟练掌握基本的判定方法是解题关键.9.C【分析】作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OB于E,∵∠AOP=∠BOP ,PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠BCP=∠AOB=2∠BOP=30°∴在Rt △PCE 中,PE=12PC=12×4=2, 故选C.【点睛】本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.10.D【分析】分别根据零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.【详解】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2124-=-,根据负整数指数幂的定义1p p a a-=(a≠0,p 为正整数),故本小题错误; ④-(3-5)+(-2)4÷8×(-1)=0符合有理数混合运算的法则,故本小题正确;⑤x 2+x 2=2x 2,符合合并同类项的法则,本小题正确.故选:D .【点睛】本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.31【详解】∵a-b=5,∴(a-b)2=25,即a2-2ab+b2=25,∵ab=3,∴a2+b2=25+2ab=25+6=31,故答案为31.12.(3,2)【分析】利用关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数,可得结果.【详解】解:点A(-3,2)关于y轴的对称点为点A′的坐标为:(3,2).故答案为:(3,2).【点睛】此题主要考查了关于y轴对称的点的坐标,正确把握横纵坐标的关系是解题关键.13.∠A=∠F(答案不唯一)【详解】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加夹角∠A=∠F,利用SAS可证全等;或添加AC∥EF得夹角∠A=∠F,利用SAS可证全等;或添加BC=DE,利用SSS可证全等.14.50【解析】∵AC=BC,∴∠A=∠B(等角对等边).∵∠A+∠B=∠ACE(三角形的一个外角等于与它不相邻的两个内角之和),∴∠A=12∠ACE=12×100°=50°.15.10【分析】因为等腰三角形的两边分别为4和2,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为2,2、2、4不可以构成三角形;当4为腰时,其它两边为4和2,4、4、2可以构成三角形,周长为10,故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.十二【分析】先求出每一个外角的度数,然后根据边数=360°÷外角计算即可.【详解】解:180°-150°=30°,360°÷30°=12.故答案为:十二.【点睛】本题考查了多边形的外角和与边数的关系,熟记外角和与多边形的边数的关系是解题的关键.17.3m2+3m+1【分析】连接AA1,B1C,BC1,根据等底等高的三角形的面积相等求出△A1AB,△BCC1的面积,△AB1C的面积,同理可求△A1AB1的面积,△B1CC1的面积,△A1BC1的面积,然后相加即可得解.【详解】解:如图,连接AA1,B1C,BC1,如图所示:∵把面积为1的等边△ABC的三边分别向外延长m倍,∴△A1AB的面积=△BCC1的面积=△AB1C的面积=m×1=m,同理:△A1AB1的面积=△B1CC1的面积=△A1BC1的面积=m×m=m2,∴△A1B1C1的面积=3m2+3m+1;故答案为:3m2+3m+1..【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.18.-8ab2,-96【分析】直接去括号合并同类项进而把a,b的值代入得出答案.【详解】解:原式=15a2b-5ab2-3ab2-15a2b=-8ab2,当a=3,b=-2时,原式=-8×3×(-2)2=-96.【点睛】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.19.6【分析】多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.【详解】解:依题意有:(n-2)•180°=720°,解得n=6.故答案为:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.20.见解析【分析】全等三角形的判定和性质.求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【详解】证明:∵∠DCA=∠ECB∴∠DCA+∠ACE=∠BCE+∠ACE∴∠DCE=∠ACB.∵在△DCE和△ACB中DC=AC,∠DCE=∠ACB,CE=CB,∴△DCE≌△ACB(SAS)∴DE=AB.21.(1)A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1)(2)图像见解析(3)(﹣3,﹣2)、B (﹣4,3)、C(﹣1,1)【分析】(1)根据图形可直接写出各点坐标;(2)分别找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据关于x轴对称的点的坐标特点:横坐标不变、纵坐标变相反数可得答案.【详解】解:(1)A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1);(2)如图所示:(3)△ABC关于x轴对称的三角形的各顶点坐标(﹣3,﹣2)、B(﹣4,3)、C(﹣1,1).【点睛】此题主要考查了作图--轴对称变换,以及关于x轴对称的点的坐标特点,关键是正确找出关键点的对称点,再画出图形.22.证明见解析.【解析】试题分析:根据∠A=∠D,CO=BO以及∠AOC=∠DOB利用AAS判定定理得出三角形全等.试题解析:在△AOC和△DOB中,,{,.A DAOC DOBCO BO∠=∠∠=∠=∴△AOC≌△DOB(AAS).考点:三角形全等的判定23.(1)证明见解析;(2)证明见解析【解析】试题分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.试题解析:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.考点:1.等腰直角三角形;2.全等三角形的性质;3.全等三角形的判定.24.(1)Rt△ABE≌Rt△CBF;(2)∠ACF=30°.【解析】试题分析:(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;(2)由等腰直角三角形的性质易求∠BAE=∠CAE﹣∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.(1)证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL);(2)如图,∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE﹣∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.考点:全等三角形的判定与性质.25.(1)证明过程见解析;(2)等腰直角三角形,证明过程见解析.【解析】试题分析:(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.试题解析:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,{AD CEA FCE AF CF=∠=∠=,∴△ADF≌△CEF;(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.考点:1.全等三角形的判定与性质;2.等腰直角三角形.。

2020-2021学年南通市崇川区启秀中学八年级(上)月考数学试卷(12月份) word版含解析

2020-2021学年南通市崇川区启秀中学八年级(上)月考数学试卷(12月份) word版含解析

2020-2021学年江苏省南通市崇川区启秀中学八年级(上)月考数学试卷(12月份)一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)下列运算结果为a ﹣1的是( ) A .a 2−1a ⋅a a+1B .1−1aC .a+1a÷a a−1D .a 2+2a+1a+12.(3分)下列运算正确的是( ) A .3a +2a =5a 2 B .x 2﹣4=(x +2)(x ﹣2) C .(x +1)2=x 2+1 D .(2a )3=6a 23.(3分)如果将分式x+y 6xy中的x 和y 都扩大为原来的3倍,那么分式的值( )A .缩小到原来的13B .扩大到原来的3倍C .不变D .扩大到原来的9倍4.(3分)估计√32×√12+√20的运算结果应在( ) A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.(3分)一个等腰三角形两边的长分别为√75和√18,则这个三角形的周长为( ) A .10√3+3√2B .5√3+6√2C .10√3+3√2或5√3+6√2D .无法确定6.(3分)已知√5=a ,√14=b ,用含a 、b 的式子表示√0.063,则下列结果正确的是( ) A .ab 10B .3ab 10C .ab100D .3ab 1007.(3分)小颖用4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2.若a =2b ,则S 1,S 2之间的数量关系为( )A .S 1=32S 2B .S 1=2S 2C .S 1=52S 2D .S 1=3S 28.(3分)把(x −1)√−1x−1根号外的因式移入根号内,化简的结果是( ) A .√1−xB .√x −1C .−√x −1D .−√1−x9.(3分)已知x 2﹣3x ﹣4=0,则代数式xx 2−x−4的值是( )A .3B .2C .13D .1210.(3分)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x >y ).则①x ﹣y =n ;②xy =m 2−n 24;③x 2﹣y 2=mn ;④x 2+y 2=m 2−n 22中,正确的是( )A .①②③B .①②④C .①③④D .①②③④二、填空题(本大题共8小题,11′12题,每小题3分,13~18题,每题4分,共30分) 11.(3分)若分式2x−6x+1的值为0,则x 的值为 .12.(3分)分解因式:a ﹣6ab +9ab 2= . 13.(4分)当x 时,√x+1|x|−2有意义. 14.(4分)若a 2=3b =81,则代数式a ﹣2b = .15.(4分)若△ABC 三边a 、b 、c 满足a 2﹣ab ﹣ac +bc =0,则△ABC 是 三角形. 16.(4分)若整数x 满足|x |≤3,则使√7−x 为整数的x 的值是 (只需填一个). 17.(4分)关于x 的分式方程x x−1+k x−1−x x+1=0无解,则k 的值为 .18.(4分)已知方程3−a a−4−a =14−a ,且关于x 的不等式组{x >a x ≤b只有4个整数解,那么b 的取值范围是 .三、解答题(本大题共8小题,共92分) 19.(20分)计算:(1)(a +b )2+a (a ﹣2b );(2)(2.5×1012)﹣2÷(2×10﹣2)6;(结果用科学记数法表示)(3)√20+√5√5−√13×√12;(4)√15÷(1√31√5). 20.(15分)化简: (1)√2−2√2⋅√5+5;(2)√(x −1x )2+4−√(x +1x )2−4(0<x <1);(3)当a =1−3时,求a 2−1a−1−√a 2+2a+1a 2+a −1a的值.21.(10分)解方程: (1)2x−1=4x 2−1;(2)(x 2−x+7x+1−x −1)÷x 2−4x+1=1.22.(7分)已知x =2−3,x 的整数部分为a ,小数部分为b ,求a−b−2a+b的值. 23.(8分)已知实数a 满足|2020﹣a |+√a −2021=a ,求a ﹣20202的值. 24.(8分)当x 取什么整数时,3x+6x+1−x−1x÷x 2−1x 2+2x的值是整数.25.(12分)新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同. (1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天? 26.(12分)先阅读下列的解答过程,然后作答:形如√m ±2√n 的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,这样(√a )2+(√b )2=m ,√a •√b =√n ,那么便有√m ±2√n =√(√a ±√b)2=√a ±√b (a >b )例如:化简√7+4√3解:首先把√7+4√3化为√7+2√12,这里m =7,n =12; 由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4+√3)2=2+√3由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.2020-2021学年江苏省南通市崇川区启秀中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)下列运算结果为a ﹣1的是( ) A .a 2−1a ⋅a a+1B .1−1a C .a+1a÷a a−1D .a 2+2a+1a+1【解答】解:A 、原式=(a−1)(a+1)a •aa+1=a ﹣1,符合题意; B 、1−1a =a−1a ,故此选项不合题意;C 、原式=a+1a •a−1a =a 2−1a 2,故此选项不合题意;D 、原式=(a+1)2a+1=a +1,故此选项不合题意;故选:A .2.(3分)下列运算正确的是( ) A .3a +2a =5a 2 B .x 2﹣4=(x +2)(x ﹣2) C .(x +1)2=x 2+1D .(2a )3=6a 2【解答】解:A 、3a +2a =5a ,故此选项不符合题意; B 、x 2﹣4=(x +2)(x ﹣2),正确,故此选项符合题意; C 、(x +1)2=x 2+2x +1,故此选项不符合题意; D 、(2a )3=8a 3,故此选项不符合题意; 故选:B . 3.(3分)如果将分式x+y 6xy中的x 和y 都扩大为原来的3倍,那么分式的值( )A .缩小到原来的13B .扩大到原来的3倍C .不变D .扩大到原来的9倍【解答】解:因为3(x+y)9×6xy=13×x+y 6xy,所以分式的值变为原来的13.故选:A .4.(3分)估计√32×√12+√20的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间【解答】解:∵√32×√12+√20=4+√20,而4<√20<5, ∴原式运算的结果在8到9之间; 故选:C .5.(3分)一个等腰三角形两边的长分别为√75和√18,则这个三角形的周长为( ) A .10√3+3√2B .5√3+6√2C .10√3+3√2或5√3+6√2D .无法确定【解答】解:(1)若√18=3√2为腰长,√75=5√3为底边长, ∵6√2<5√3, ∴三角形不存在;(2)若5√3为腰长,所以这个三角形的周长为10√3+3√2. 故选:A .6.(3分)已知√5=a ,√14=b ,用含a 、b 的式子表示√0.063,则下列结果正确的是( ) A .ab 10B .3ab 10C .ab100D .3ab 100【解答】解:∵√5=a ,√14=b , ∴√0.063=√9×7010000=√9×√7010000=3×√5×√14100=3ab100. 故选:D .7.(3分)小颖用4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2.若a =2b ,则S 1,S 2之间的数量关系为( )A .S 1=32S 2B .S 1=2S 2C .S 1=52S 2D .S 1=3S 2【解答】解:S 1=12b (a +b )×2+12ab ×2+(a ﹣b )2=a 2+2b 2, S 2=(a +b )2﹣S 1=(a +b )2﹣(a 2+2b 2)=2ab ﹣b 2,∵a =2b ,∴S 1=a 2+2b 2=6b 2,S 2=2ab ﹣b 2=3b 2 ∴S 1=2S 2, 故选:B .8.(3分)把(x −1)√−1x−1根号外的因式移入根号内,化简的结果是( ) A .√1−xB .√x −1C .−√x −1D .−√1−x【解答】解:由已知可得,x ﹣1<0,即1﹣x >0,所以,(x −1)√−1x−1=−√−(1−x)2x−1=−√1−x .故选:D .9.(3分)已知x 2﹣3x ﹣4=0,则代数式xx 2−x−4的值是( )A .3B .2C .13D .12【解答】解:已知等式整理得:x −4x=3, 则原式=1x−4x−1=13−1=12, 故选:D .10.(3分)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x >y ).则①x ﹣y =n ;②xy =m 2−n 24;③x 2﹣y 2=mn ;④x 2+y 2=m 2−n 22中,正确的是( )A .①②③B .①②④C .①③④D .①②③④【解答】解:①x ﹣y 等于小正方形的边长,即x ﹣y =n ,正确; ②∵xy 为小长方形的面积, ∴xy =m 2−n 24, 故本项正确;③x 2﹣y 2=(x +y )(x ﹣y )=mn ,故本项正确; ④x 2+y 2=(x +y )2﹣2xy =m 2﹣2×m 2−n 24=m 2+n 22, 故本项错误. 所以正确的有①②③. 故选:A .二、填空题(本大题共8小题,11′12题,每小题3分,13~18题,每题4分,共30分) 11.(3分)若分式2x−6x+1的值为0,则x 的值为 3 .【解答】解:由题意可得:2x ﹣6=0且x +1≠0, 解得x =3. 故答案为:3.12.(3分)分解因式:a ﹣6ab +9ab 2= a (1﹣3b )2 . 【解答】解:a ﹣6ab +9ab 2, =a (1﹣6b +9b 2), =a (1﹣3b )2. 故答案为:a (1﹣3b )2.13.(4分)当x ≥﹣1且x ≠2. 时,√x+1|x|−2有意义. 【解答】解:由题意得,x +1≥0且|x |﹣2≠0, 解得x ≥﹣1且x ≠±2. 故x 取值范围是x ≥﹣1且x ≠2. 故答案为:≥﹣1且x ≠2.14.(4分)若a 2=3b =81,则代数式a ﹣2b = ﹣17或1 . 【解答】解:∵a 2=3b =81,(±9)2=34=81, ∴a =±9,b =4, 则a ﹣2b =﹣17或1. 故答案为:﹣17或1.15.(4分)若△ABC 三边a 、b 、c 满足a 2﹣ab ﹣ac +bc =0,则△ABC 是 等腰 三角形. 【解答】解:∵a 2﹣ab ﹣ac +bc =0, ∴(a ﹣b )(a ﹣c )=0,∴a ﹣b =0或a ﹣c =0,即a =b 或a =c ,∴△ABC 是等腰三角形, 故答案为:等腰.16.(4分)若整数x 满足|x |≤3,则使√7−x 为整数的x 的值是 ﹣2或3 (只需填一个). 【解答】解:∵|x |≤3, ∴﹣3≤x ≤3,∴当x =﹣2时,√7−x =√7−(−2)=3, x =3时,√7−x =√7−3=2.故,使√7−x 为整数的x 的值是﹣2或3(填写一个即可). 故答案为:﹣2或3. 17.(4分)关于x 的分式方程x x−1+k x−1−x x+1=0无解,则k 的值为 ﹣2或﹣1 .【解答】解:方程两边同乘(x +1)(x ﹣1)得:x (x +1)+k (x +1)﹣x (x ﹣1)=0, 整理得:(2+k )x =﹣k ,当2+k =0时,整式方程无解,即k =﹣2,当x =1或x =﹣1时,代入(2+k )x =﹣k 得k =﹣1. ∴k =﹣2或﹣1时,分式方程x x−1+k x−1−x x+1=0无解,故答案为:﹣2或﹣1. 18.(4分)已知方程3−aa−4−a =14−a ,且关于x 的不等式组{x >a x ≤b只有4个整数解,那么b 的取值范围是 3≤b <4 .【解答】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,即a 2﹣3a ﹣4=0, 分解因式得:(a ﹣4)(a +1)=0, 解得:a =﹣1或a =4,经检验a =4是增根,分式方程的解为a =﹣1,当a =﹣1时,由{x >−1x ≤b 只有4个整数解,得到3≤b <4. 故答案为:3≤b <4.三、解答题(本大题共8小题,共92分) 19.(20分)计算:(1)(a +b )2+a (a ﹣2b );(2)(2.5×1012)﹣2÷(2×10﹣2)6;(结果用科学记数法表示)(3)√20+√5√5−√13×√12;(4)√15÷(1√31√5). 【解答】解:(1)原式=a 2+2ab +b 2+a 2﹣2ab =2a 2+b 2;(2)原式=2.5﹣2×10﹣24÷(26×10﹣12)=2.5﹣2×10﹣24×2﹣6×1012=5×10﹣15;(3)原式=√205+1−√13×12 =2+1﹣2 =1;(4)原式=√15÷√5+√3√5×√3=√15√155+3=√5−√3)(5+3)(5−3)=15√5−15√32. 20.(15分)化简: (1)√2−2√2⋅√5+5;(2)√(x −1x )2+4−√(x +1x )2−4(0<x <1);(3)当a =1−3时,求a 2−1a−1−√a 2+2a+1a 2+a −1a的值.【解答】解:(1)原式=√(√2)2−2×√2×√5+(√5)2 =√(√2−√5)2 =√5−√2;(2)原式=√(x +1x )2−√(x −1x )2 =|x +1x |﹣|x −1x | ∵0<x <1,∴原式=x +1x +x −1x=2x ;(3)a =3−1=−(√3+1)=−√3−1, 原式=(a+1)(a−1)a−1−√(a+1)2a(a+1)−1a=a +1−−(a+1)a(a+1)−1a=a +1 =−√3−1+1=−√3.21.(10分)解方程: (1)2x−1=4x 2−1;(2)(x 2−x+7x+1−x −1)÷x 2−4x+1=1. 【解答】解:(1)方程变形为:2x−1=4(x+1)(x−1),两边同乘以(x +1)(x ﹣1),去分母得:2(x +1)=4,解得x =1,把x =1代入(x +1)(x ﹣1)=(1+1)(1﹣1)=0,∴x =1是原方程的增根,∴原方程无解.(2)方程变形为:[x 2−x+7x+1−(x+1)2x+1]÷(x+2)(x−2)x+1=1, −3(x−2)x+1•x+1(x+2)(x−2)=1, −3x+2=1,两边同乘以x +2得:x +2=﹣3,解得x =﹣5,把x =﹣5代入原方程,左边=[(−5)2−(−5)+7−5+1−(﹣5)﹣1]÷(−5)2−4−5+1=1,右边=1, ∴左边=右边,∴原方程的解为x =﹣5.22.(7分)已知x =2−3,x 的整数部分为a ,小数部分为b ,求a−b−2a+b 的值. 【解答】解:∵2−√3=√3)(2−√3)(2+√3)=2+√3,∴x 的值为2+√3,∵1<3<4,∴1<√3<2,∴1+2<2+√3<2+2,即3<2+√3<4,∴x 的整数部分a =3,小数部分b =2+√3−3=√3−1,∴a−b−2a+b =√3−1)−23+3−1 =2−√32+√3 =(2−√3)(2−√3)(2+3)(2−3)=(2−√3)2=4﹣4√3+3=7﹣4√3.23.(8分)已知实数a 满足|2020﹣a |+√a −2021=a ,求a ﹣20202的值.【解答】解:∵要使√a −2021有意义,∴a ﹣2021≥0,解得a ≥2021,∴a ﹣2020+√a −2021=a ,即√a −2021=2020,∴a ﹣2021=20202,∴a =20202+2021,∴原式=20202+2021﹣20202=2021.24.(8分)当x 取什么整数时,3x+6x+1−x−1x ÷x 2−1x +2x 的值是整数.【解答】解:原式=3x+6x+1−x−1x •x(x+2)(x+1)(x−1)=3x+6x+1−x+2x+1=4x+8x+1=4+4x+1,当x =﹣5、﹣3、﹣2、0、1、3时,4x+1为整数, 由题意得:x ≠±1,0,﹣2,∴x =﹣5,﹣3,3时,原式为整数.25.(12分)新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?【解答】解:(1)设乙厂每天生产x 万个口罩,则甲厂每天生产(x +2)万个, 由题意可得:50x+2=40x ,解得:x =8,经检验得:x =8是原方程的根,故x +2=10(万个),答:乙厂每天生产8万个口罩,甲厂每天生产10万个;(2)设两厂一起生产了a 天,甲一共生产b 天,由题意可得:{8a +10b =400①3a +4b ≤156②, 由①得:b =40﹣0.8a ,代入②得:a ≥20,答:两厂至少一起生产了20天.26.(12分)先阅读下列的解答过程,然后作答:形如√m ±2√n 的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,这样(√a )2+(√b )2=m,√a•√b=√n,那么便有√m±2√n=√(√a±√b)2=√a±√b(a>b)例如:化简√7+4√3解:首先把√7+4√3化为√7+2√12,这里m=7,n=12;由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4+√3)2=2+√3由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.【解答】解:(1)√13−2√42=√(√7−√6)2=√7−√6;(2)√7−√40=√7−2√10=√(√5−√2)2=√5−√2;(3)√2−√3=√8−434=√6−√22.。

东莞市东华初级中学2023-2024学年八年级上学期月考数学试题(解析版)

东莞市东华初级中学2023-2024学年八年级上学期月考数学试题(解析版)

东莞市东华初级中学2023-2024 学年八上数学月考模拟 (6)一.选择题(共10小题, 每小题3分, 共30分)1. 下列图形中,不是轴对称图形的的是( )A.B. C. D. 【答案】A【解析】【分析】根据轴对称图形的定义,即可求解.【详解】解:A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意;故选:A .【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2. 以下列各组线段为边长,能组成三角形的是( )A. 2,3,6B. 3,4,8C. 5,6,10D. 7,8,18【答案】C【解析】【分析】根据三角形的三边关系逐项判断即可得.三角形的三边关系:任意两边之和大于第三边.【详解】解:A 、236+<,不满足三角形的三边关系定理,不能组成三角形;B 、348+<,不满足三角形的三边关系定理,不能组成三角形;C 、5611+>,满足三角形的三边关系定理,能组成三角形;D 、7818+<,不满足三角形的三边关系定理,不能组成三角形.故选:C .【点睛】本题考查了三角形的三边关系,掌握三角形的三边关系是解题关键.3. 如图,AD 是ABC 的中线,CE 是ACD 的中线,23cm ACE S = 则ABC S = ( )2cm .A. 3B. 6C. 12D. 24【答案】C【解析】 【分析】根据三角形的中线将三角形分成面积相等的两部分即可.【详解】解:由三角形的中线将三角形分成面积相等的两部分可知,CE 是ACD 的中线,12ACE ADC S S =△△, AD 是ABC 的中线, 12ADC ABC S S =, 14ACE ABC S S ∴= , 23cm ACE S = ,2412cm ABC ACE S S ∴== .故选:C .【点睛】本题考查三角形的面积,知道三角形的中线将三角形分成面积相等的两部分是关键.4. 在∆ABC 中,∠ A :∠ B :∠ C=2:3:5,则∆ABC 是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定【答案】C【解析】【分析】根据比例设∠A 、∠B 、∠C 分别为k 、2k 、3k ,然后根据三角形的内角和等于180°列式求出三角形各内角的度数作出判断即;依据是三角形按角分类有锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫锐角三角形;有一个角是钝角的三角形叫钝角三角形;有一个角是直角的三角形叫直角三角形.【详解】设∠A 、∠B 、∠C 分别为2k 、3k 、5k ,则2k+3k+5k=180°∴ ∠A=36° ∠B=54° ∠C=90°所以这个三角形是直角三角形.故答案为C.【点睛】此题考查三角形内角和定理,解题关键在于列出方程解答.5. 三角形中,到三边距离相等的点是( )A. 三条高线所在直线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边的垂直平分线的交点【答案】C【解析】【分析】直接根据角平分线的性质即可得出结论.【详解】解:∵角的平分线上的点到角的两边的距离相等,∴在三角形中,到三边距离相等的点是三条角平分线的交点,故选:C .【点睛】本题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质是关键.6. 在平面直角坐标系中,将点()3,2P −向右平移3个单位得到点P ′,则点P ′关于x 轴的对称点的坐标为( )A. ()0,2−B. (0,2C. ()6,2−D. ()6,2−− 【答案】A【解析】【分析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P ′的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.【详解】解:∵将点()3,2P −向右平移3个单位,∴点P ′的坐标为:(0,2),∴点P ′关于x 轴的对称点的坐标为:(0,-2).故选:A .【点睛】本题考查平移时点的坐标特征及关于x 轴的对称点的坐标特征,熟练掌握对应的坐标特征是解题的关键.7. 一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )A. 5B. 6C. 7D. 8【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2360180900×+=度;n 边形的内角和是(2)180n −°,则可以设这个多边形的边数是n ,这样就可以列出方程(2)180900n −°=°,解之即可. 【详解】解:多边形的内角和是2360180900×+=度,设这个多边形的边数是n ,根据题意得:(2)180900n −°=°,解得7n =,即这个多边形的边数是7.故选:C .【点睛】本题考查了多边形的内角和公式和外角和定理,解题的关键是掌握多边形内角和公式(2)180n −°.8. 如图,已知O 是AB 的中点,添加下列一个条件后,仍无法判定AOC BOD △△≌的是( )A. OC OD =B. A B ∠=∠C. AC BD =D. C D ∠=∠【答案】C【解析】 【分析】根据全等三角形的判定定理逐项分析判断即可求解.【详解】解:∵O 是AB 的中点,∴AO BO =,又AOC BOD ∠=∠A. 添加OC OD =,根据SAS 可以证明AOC BOD △△≌,故该选项不符合题意;B. 添加A B ∠=∠,根据ASA 可以证明AOC BOD △△≌,故该选项不符合题意;C 添加AC BD =,不能证明AOC BOD △△≌,故该选项符合题意;D. 添加C D ∠=∠,根据AAS 可以证明AOC BOD △△≌,故该选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.9. 在△ABC 中,与∠A 相邻的外角是110°,要使△ABC 为等腰三角形,则∠B 的度数是( )A. 70°B. 55°C. 70°或55°D. 70°或55°或40°.【分析】已知给出了∠A的相邻外角是110°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【详解】∵∠A的相邻外角是110°,∴∠A=70°,分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=70°,或顶角∠B=40°(2)当∠A为顶角时,则底角∠B= 55°.故选:D.【点睛】考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10. 如图,BN为∠MBC的平分线,P为BN上一点,且PD⊥BC于点D,∠APC+∠ABC=180°,给出下列结论:①∠MAP=∠BCP;②P A=PC;③AB+BC=2BD;④四边形BAPC的面积是△PBD面积的2倍,其中结论正确的个数有()A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】过点P作PK⊥AB,垂足为点K.证明Rt△BPK≌Rt△BPD,△P AK≌△PCD,利用全等三角形的性质即可解决问题.【详解】解:过点P作PK⊥AB,垂足为点K.∵PK ⊥AB ,PD ⊥BC ,∠ABP =∠CBP ,∴PK =PD ,在Rt △BPK 和Rt △BPD 中,BP BP PK PD = =, ∴Rt △BPK ≌Rt △BPD (HL ),∴BK =BD ,∵∠APC +∠ABC =180°,且∠ABC +∠KPD =180°,∴∠KPD =∠APC ,∴∠APK =∠CPD ,故①正确,在△P AK 和△PCD 中,AKP PDC PK PDAPK CPD ∠=∠ = ∠∠=, ∴△P AK ≌△PCD (ASA ),∴AK =CD ,P A =PC ,故②正确,∴BK ﹣AB =BC ﹣BD ,∴BD ﹣AB =BC ﹣BD ,∴AB +BC =2BD ,故③正确,∵Rt △BPK ≌Rt △BPD ,△P AK ≌△PCD (ASA ),∴S △BPK =S △BPD ,S △APK =S △PDC ,∴S 四边形ABCP =S 四边形KBDP =2S △PBD .故④正确.故选A . 【点睛】本题考查全等三角形的判定和性质,角平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二.填空题(共5小题,每小题3分,共15分)11. 如图,正方形网格中,∠1+∠2+∠3=_____________【答案】135°在【解析】【分析】先证明△ABC ≌△AEF ,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC 和△AEF 中,AB AE B E BC FE ∠∠===∴△ABC ≌△AEF (SAS ),∴∠BAC =∠4,∵∠BAC =∠1,∴∠4=∠1,∵∠3+∠4=90°,∴∠1+∠3=90°,∵AG=DG ,∠AGD=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°【点睛】本题考查了三角形全等判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.12. 已知一个正n 边形的每个内角为120°,则这个多边形的对角线有_________条.【答案】9【解析】【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线有(3)n −条,即可求得对角线的条数.【详解】解: 多边形的每一个内角都等于120°,∴每个外角是60°,的则多边形的边数为360606°÷°=,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有633−=条.∴这个多边形的对角线有1(63)92×=条, 故答案为:9. 【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.同时考查了多边形的边数与对角线的条数的关系.13. 如图, 已知ABC 是等边三角形,4cm AB =,BD 是ABC 的高,点E 在BC 的延长线上,连接DE .若30E ∠=°,则CE 的长为_________cm .【答案】2【解析】【分析】根据等边三角形的性质解答即可.【详解】解: 等边ABC 的边长4cm AB =,60ACB ∠=°∴,4cm AC AB ==BD 是ABC 的高,12cm 2DC AC ∴==, 30E ∠=° ,E EDC ACB ∠+∠=∠,603030EDC ACB E ∴∠=∠−∠=°−°=°,EDC E ∴∠=∠,2cm CD CE ∴==.故答案为:2.【点睛】此题考查等边三角形的性质,关键是根据等边三角形的三线合一解答.14. 如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,AB =6 cm ,则△DEB 的周长是______cm .【答案】6【解析】【分析】首先根据角平分线的性质可得CD =DE ,即可证得()Rt ACD Rt AED HL ≌,可得AC =AE ,再根据BC =AC ,可得△DEB 的周长=BC +BE =AC +BE =AE +BE =AB ,据此即可解答.【详解】解:∵AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,∠C =90°,∴CD =DE ,在Rt ACD 与Rt AED 中,==AD AD CD ED, ()Rt ACD Rt AED HL ∴ ≌,∴AC =AE ,∴△DEB 的周长=BD +DE +BE =BD CD +BE =BC +BE ,又∵BC =AC ,∴△DEB 的周长=BC +BE =AC +BE =AE +BE =AB =6 cm .故答案是:6.【点睛】本题考查了角平分线的性质,全等三角形的判定与性质,三角形周长的求法,熟练掌握和运用角平分线的性质定理及证明直角三角形全等的方法是解决本题的关键.15. 如图,已知30MON ∠=°,点123A A A 、、…在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若12OA =,则 202120212022A B A △的边长为_________.【答案】20212【解析】【分析】利用等边三角形的性质,以及外角的性质,推出每个等边三角形的边长分别为:123,,OA OA OA ,推出相应的数字规律,即可得解.【详解】解:∵112A B A △为等边三角形,∴11260∠=°B A A , ∵11211B A A B O A O =∠+∠∠,30MON ∠=°,∴1130B A O O ∠=∠=°, ∴1112A B OA ==, 同理可得:223A B A △、334A B A △…的边长分别为:23,OA OA由12OA =,可求得,112A B A △的边长12OA =, 223A B A △的边长22222OA ==×=,334A B A △的边长233222OA ==×=,,从而得1n n n A B A + 的边长为2n ,∴202120212022A B A △的边长为20212,故答案为:20212.【点睛】本题考查等边三角形的性质,等腰三角形的判定和性质,三角形外角的性质.熟练掌握等边三角形的三个角均为60°,三角形的一个外角等于与它不相邻的两个内角和是解题的关键.三.解答题(一)(共3小题,每小题8分, 共24分)16. 如图,在△ABC 中,AD ⊥BC 于点D ,AE 平分∠BAC ,若30BAE ∠=°,20CAD ∠=°,求∠B 的度数.【答案】50°.【解析】【分析】先利用角平分线定义求得260BAC BAE ∠=∠=°,在Rt ACD 利用直角三角形的两锐角互余求得C ∠,最后在ABC 中利用三角形的内角和即可求解.【详解】解:∵AE 平分∠BAC ,30BAE ∠=°, ∴260BAC BAE ∠=∠=°,∵20CAD ∠=°,AD ⊥BC ,∴9070C CAD ∠=°−∠=°,∴在ABC 中,18050B BAC C ∠=°−∠−∠=°.【点睛】本题考查了角平分线的定义,直角三角形的性质,三角形的内角和定理,熟练掌握定义和定理是解题的关键.17. 如图,△ABC 中,90C ∠=°,AC =BC .(1)用直尺和圆规作BAC ∠BC 于点D (保留作图痕迹)(2)过点D 画△ABD 的边AB 上的高DE ,交线段AB 于点E ,若△BDE 的周长是5cm ,求AB 的长.【答案】(1)见解析;(2)AB 的长为5cm【解析】分析】(1)利用基本作图作AD 平分∠BAC ;(2)根据角平分线上的点到角的两边的距离相等可得CD=DE ,然后利用“HL ”证明Rt △ACD 和Rt △AED 全等,根据全等三角形对应边相等可得AC=AE ,然后求出AB 等于△BDE 的周长.【详解】(1)如图,AD 即为所作;的【(2)∵AD 平分∠BAC ,∠C=90°,DE ⊥AB ,∴CD=DE ,在Rt △ACD 和Rt △AED 中,AD AD CD DE = =, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC ,∵AC=BC ,∴BC=AE ,∵△BDE 的周长=BE+BD+DE=BE+BD+CD=BE+BC=BE+AE=AB ,∴AB=5cm .故AB 的长为5cm .【点睛】本题考查了作图-基本作图:作一个角的平分线,角平分线的性质,全等三角形的判定与性质,熟记性质并求出AB 等于△BDE 的周长是解题的关键.18. 已知: 如图,在Rt ABC △中,90C ∠=°,D 是AC 上一点,DE AB ⊥于E ,且DE DC =.(1)求证:BD 平分ABC ∠;(2)若36A ∠=°,求BDC ∠的度数.【答案】(1)见详解 (2)63°【解析】【分析】(1)根据角平分线的性质解答即可;(2)根据三角形的内角和解答即可.【小问1详解】证明: DC BC ⊥ ,DE AB ⊥,DE DC =∴点D 在ABC ∠的平分线上,BD ∴平分ABC ∠;【小问2详解】解:90C ∠=° ,36A ∠=°,9054ABC A ∴∠=°−∠=°,BD 平分ABC ∠,1272DBC ABC ∴∠=∠=°, ∴在Rt BDC 中,9063BDC DBC ∠=°−∠=°.【点睛】本题重点考查了角平分线的性质,根据角平分线的性质解答是关键.四.解答题(二) (共3 每小题9分, 共27分)19. 如图,在ABC 中,90C ∠=°,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =.求证:(1)CF EB =;(2)2AB AF BE =+.【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得DE DC =.再根据()Rt Rt HL CDF EBD ≌,得CF EB =;(2)利用角平分线性质证明()Rt Rt HL ADC ADE ≌△△,得到AC AE =,再将线段AC 进行转化.【小问1详解】证明:∵AD 是BAC ∠的平分线,DE AB ⊥,90C ∠=°,∴DE DC =,在Rt CDF △和Rt EBD △中,BD DF DC DE = =, ∴()Rt Rt HL CDF EBD ≌,∴CF EB =;【小问2详解】证明:在Rt ADC 与Rt ADE △中,CD DE AD AD= = , ∴()Rt Rt HL ADC ADE ≌△△,∴AC AE =,∴2AB AE BE AC BE AF CF BE AF BE =+=+=++=+.【点睛】本题主要考查了角平分线的性质,全等三角形的性质与判定,解题的关键是熟练掌握全等三角形的判定与性质.20. 如图,在平面直角坐标系中,网格中每个小方格都是边长为1个单位长度的正方形,四边形ABCD 的顶点均在格点上.(1)在图中画出四边形ABCD 关于y 轴对称的四边形1111D C B A ;(2)分别写出点A 、C 的对应点11A C 、的坐标.【答案】(1)见解析 (2)点11A C 、的坐标分别为()()117,83,2A C 、【解析】【分析】(1)分别确定A ,B ,C ,D 的对应点1A ,1B ,1C ,1D ,再顺次连接即可;(2)根据1A , 1C 在坐标系内的位置可得其坐标.【小问1详解】解:如图,四边形1111D C B A 为所作.【小问2详解】点11A C 、的坐标分别为()()117,83,2A C 、.【点睛】本题考查的是坐标与图形,画关于y 轴对称的图形,熟练地利用轴对称的性质画图是解本题的关键.21. 如图,在ABC 中,AB AC =,D 是AB 上的一点,过点D 作DE BC ⊥于点E ,延长ED 和CA ,交于点F .(1)求证:ADF △是等腰三角形;(2)若30F ∠=°,4BD =,2AD =,求EC 的长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据AB AC =得到B C ∠=∠,结合垂直以及等角的余角相等即可证明;(2)结合(1)中的结论以及题目条件得到ABC 是等边三角形然后根据已知条件计算即可.【小问1详解】解:AB AC = ,B C ∴∠=∠,FE BC ⊥ ,9090F C BDE B °∴∠+∠=∠+∠=°,,F BDE ∴∠=∠,而BDE FDA ∠=∠F FDA ∴∠=∠,AF AD ∴=,ADF ∴ 是等腰三角形;【小问2详解】解:DE BC ⊥ ,90DEB ∴∠=°,30F ∠=° ,4BD =,30BDE F ∴∠=∠=°,60B ∴∠=°,122BE BD ∴==, AB AC = ,ABC ∴ 是等边三角形,6BC AB AD BD ∴==+=,4EC BC BE ∴=−=.【点睛】本题主要考查等腰三角形的判定以及余角的性质,含30°角的直角三角形的性质,熟练掌握等腰及等边三角形的性质以及含30°角的直角三角形的性质是解决本题的关键.五.解答题(三) (共2小题,每小题 12分,共24分)22. 如图 1,A (-2,0),B (0,4),以 B 点为直角顶点在第二象限作等腰直角△ABC .(1)求C 点的坐标;(2)在坐标平面内是否存在一点P,使△PAB 与△ABC 全等?若存在,直接写出P 点坐标,若不存在,请说明理由;(3)如图2,点E 为y 轴正半轴上一动点, 以E 为直角顶点作等腰直角△AEM,过M 作MN⊥x 轴于N,求OE-MN 的值.【答案】(1)C(-4,6);(2)存在一点P,使△PAB与△ABC全等,符合条件的P的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.【解析】【分析】(1))作CE⊥y轴于E,证△CEB≌△BOA,推出CE=OB=4,BE=AO=2,即可得出答案;(2)分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;(3)作MF⊥y轴于F,证△EFM≌△AOE,求出EF,即可得出答案.【详解】解:(1)作CE⊥y轴于E,如图1,∵A(-2,0),B(0,4),∴OA=2,OB=4,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°,∴∠ECB=∠ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠∠∠∠===∴△CBE ≌△BAO ,∴CE=BO=4,BE=AO=2,即OE=2+4=6,∴C (-4,6).(2)存在一点P ,使△PAB 与△ABC 全等,分为四种情况:①如图2,当P 和C 重合时,△PAB 和△ABC 全等,即此时P 的坐标是(-4,6);②如图3,过P 作PE ⊥x 轴于E ,则∠PAB=∠AOB=∠PEA=90°,∴∠EPA+∠PAE=90°,∠PAE+∠BAO=90°,∴∠EPA=∠BAO ,在△PEA 和△AOB 中EPA BAO PEA AOB PA AB ∠∠∠∠===∴△PEA ≌△AOB ,∴PE=AO=2,EA=BO=4,∴OE=2+4=6,即P 的坐标是(-6,2);③如图4,过C 作CM ⊥x 轴于M ,过P 作PE ⊥x 轴于E ,则∠CMA=∠PEA=90°,∵△CBA ≌△PBA ,∴∠PAB=∠CAB=45°,AC=AP ,∴∠CAP=90°,∴∠MCA+∠CAM=90°,∠CAM+∠PAE=90°,∴∠MCA=∠PAE ,在△CMA 和△AEP 中MCA PAE CMA PEA AC AP ∠∠∠∠===∴△CMA ≌△AEP ,∴PE=AM ,CM=AE ,∵C (-4,6),A (-2,0),∴PE=4-2=2,OE=AE-A0=6-2=4,即P 的坐标是(4,2);④如图5,过P 作PE ⊥x 轴于E ,∵△CBA ≌△PAB ,∴AB=AP ,∠CBA=∠BAP=90°,则∠AEP=∠AOB=90°,∴∠BAO+∠PAE=90°,∠PAE+∠APE=90°,∴∠BAO=∠APE ,在△AOB 和△PEA 中BAO APE AOB PEA AB AP ∠∠∠∠===∴△AOB ≌△PEA ,∴PE=AO=2,AE=OB=4,∴0E=AE-AO=4-2=2,即P 的坐标是(2,-2),综合上述:符合条件的P 的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6).(3)如图6,作MF ⊥y 轴于F ,则∠AEM=∠EFM=∠AOE=90°,∵∠AEO+∠MEF=90°,∠MEF+∠EMF=90°,∴∠AEO=∠EMF ,在△AOE 和△EMF 中∵AOE EFM AEO EMF AE EM ∠∠∠∠===∴△AEO ≌△EMF (AAS ),∴EF=AO=2,MF=OE ,∵MN ⊥x 轴,MF ⊥y 轴,∴∠MFO=∠FON=∠MNO=90°,∴四边形FONM 是矩形,∴MN=OF ,∴OE-MN=OE-OF=EF=OA=2.故答案为(1)C (-4,6);(2)存在一点P ,使△PAB 与△ABC 全等,符合条件的P 的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.【点睛】本题考查全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.23. 如图,在ABC 中,90B ∠=︒,16cm AB =,12cm BC =,20cm AC =,P 、Q 是ABC 边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)BP = ______ cm .(用含t 的式子表示)(2)当点Q 在 BC 边上运动时,若PQB △是等腰三角形,则t 的值为多少? (3)当点Q 在AC 边上运动时,若BCQ △是以BC 或BQ 为底边的等腰三角形,则t 的值为多少?【答案】(1)()16cm t −;(2)163; (3)当t 为11秒或12秒时,BCQ △是以BC 或BQ 为底边的等腰三角形.【解析】【分析】(1)根据题意即可用t 可分别表示出BP ;(2)结合(1),根据题意再表示出BQ ,然后根据等腰三角形的性质可得到BP BQ =,可得到关于t 的方程,可求得t ;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分CQ BC =和BQ CQ =三种情况,分别得到关于t 的方程,可求得t 的值.【小问1详解】由题意可知AP t =,2BQ t =,16cm AB = ,()16cm BP AB AP t ∴=−=−,故答案为:()16cm t −;【小问2详解】当点Q 在边BC 上运动,PQB △为等腰三角形时,则有BP BQ =,即162t t −=, 解得163t =,∴当PQB △能形成等腰三角形,163t =; 【小问3详解】 ①当BCQ △是以BC 为底边的等腰三角形时:CQ BQ =,如图1所示,则C CBQ ∠=∠, 90ABC ∠=° ,90CBQ ABQ ∴∠+∠=°.90A C ∠+∠=°,A ABQ ∴∠=∠,BQ AQ ∴=,()10cm CQ AQ ∴==,()22cm BC CQ ∴+=,22211t ∴=÷=;②当BCQ △是以BQ 为底边的等腰三角形时:CQ BC =,如图2所示,则()24cm BC CQ +=, 24212t ∴=÷=,综上所述:当t 为11或12时,BCQ △是以BC 或BQ 为底边的等腰三角形.【点睛】本题考查了等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.。

2020-2021学年河南省实验中学八年级上学期第一次月考数学试卷 (Word版 含解析)

2020-2021学年河南省实验中学八年级上学期第一次月考数学试卷 (Word版 含解析)

2020-2021学年河南省实验中学八年级(上)第一次月考数学试卷一、选择题(共10小题).1.(3分)下列各数:,3.14159265,﹣8,,π,0.,0.8080080008…(相邻两个8之间依次多一个0),其中无理数的个数为()A.1个B.2个C.3个D.4个2.(3分)的平方根是()A.B.﹣C.±D.3.(3分)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.4.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.5.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c26.(3分)如图,数轴上点A所表示的实数是()A.B.C.D.27.(3分)如图,是一扇高为2m,宽为1.5m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号B.②号C.③号D.均不能通过8.(3分)下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个9.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为()A.或B.C.D.或10.(3分)如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°二.填空题(每小题3分,共15分)11.(3分)比较大小3(填“>”、“<”或“=”);12.(3分)若+(3﹣y)2=0,那么y x=.13.(3分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是.14.(3分)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为.三.解下列各题(共75分)16.(10分)计算下列各题.(1);(2)(43)2.17.(8分)先化简,再求值:(x+)(x﹣)﹣x(x﹣6)+9,其中x=﹣1.18.(10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=5千米,CD=千米,AD=4千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)19.(10分)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.20.(8分)问题背景:在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上.思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为,2(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是.21.(9分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.22.(10分)阅读下列运算过程,并完成各小题:;.数学上把这种将分母中的根号去掉的过程称作“分母有理化”,如果分母不是一个无理数,而是两个无理数的和或差,此时也可以进行分母有理化,如:1;.模仿上例完成下列各小题:(1)=;(2)=;(3)=;(4)请根据你得到的规律计算下题:(n 为正整数).23.(10分)如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.参考答案一.选择题(每小题3分,共30分)1.(3分)下列各数:,3.14159265,﹣8,,π,0.,0.8080080008…(相邻两个8之间依次多一个0),其中无理数的个数为()A.1个B.2个C.3个D.4个解:是分数,属于有理数;3.14159265是有限小数,属于有理数;﹣8,是整数,属于有理数;0.是循环小数,属于有理数;无理数有π,0.8080080008…(相邻两个8之间依次多一个0)共2个.故选:B.2.(3分)的平方根是()A.B.﹣C.±D.解:的平方根是±;故选:C.3.(3分)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.解:A、0.32+0.42=0.52,能构成直角三角形,但不是整数,不是勾股数,故本选项不符合题意;B、(32)2+(42)2≠(52)2,不是勾股数,故本选项不符合题意;C、32+42=52,是勾股数,故本选项符合题意;D、()2+()2≠()2,不是勾股数,故本选项不符合题意.故选:C.4.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.解:A、原式为最简二次根式,符合题意;B、原式=6,不符合题意;C、原式=2,不符合题意;D、原式=,不符合题意.故选:A.5.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c2解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.6.(3分)如图,数轴上点A所表示的实数是()A.B.C.D.2解:由勾股定理,得斜线的为=,由圆的性质得:点A表示的数为﹣1+,即﹣1.故选:B.7.(3分)如图,是一扇高为2m,宽为1.5m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号B.②号C.③号D.均不能通过解:因为=2.5,所以木板的长和宽中必须有一个数据小于2.5米.所以选③号木板.故选:C.8.(3分)下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个解:①π不带根号的数,是无理数,原来的说法错误;②任意一个实数都可以用数轴上的点表示是正确的;③无限小数0.是有理数,原来的说法错误;④是17的平方根是正确的.故选:B.9.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为()A.或B.C.D.或解:当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,由勾股定理得,AC===2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2,当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2,则BC的长为2或2,故选:D.10.(3分)如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°解:连接PG,如图所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,AG=PC=3,∵PA=1,PD=2,PC=3,将△PCD剪下,并将它拼到如图所示位置(C与A重合,P 与G重合,D与D重合),∴PD=GD=2,∠CDP=∠ADG,∴∠PDG=∠ADC=90°,∴△PDG是等腰直角三角形,∴∠GPD=45°,PG=PD=2,∵AG=PC=3,AP=1,PG=2,∴AP2+PG2=AG2,∴∠GPA=90°,∴∠APD=90°+45°=135°;故选:B.二.填空题(每小题3分,共15分)11.(3分)比较大小<3(填“>”、“<”或“=”);解:∵3=,<,∴<3,故答案为:<.12.(3分)若+(3﹣y)2=0,那么y x=9.解:∵+(3﹣y)2=0,∴x﹣2=0,3﹣y=0,解得:x=2,y=3,故y x=32=9.故答案为:9.13.(3分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是49.解:由题意可知:3m+1﹣2m﹣3=0,解得:m=2,∴3m+1=7,∴x=72=49,故答案为:49.14.(3分)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是4.解:如图,∵AG=3,AP=AB=5,∴PG=4,∴BG=8,∴PB==4.故这只蚂蚁的最短行程应该是4.故答案为:4.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为或.解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三.解下列各题(共75分)16.(10分)计算下列各题.(1);(2)(43)2.解:(1)原式=﹣+=;(2)原式=4﹣3+2=4﹣3+4=4+.17.(8分)先化简,再求值:(x+)(x﹣)﹣x(x﹣6)+9,其中x=﹣1.解:原式=x2﹣3﹣x2+6x+9=6x+6,当x=﹣1时,原式=6(x+1)=6.18.(10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=5千米,CD=千米,AD=4千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)解:(1)∵∠B=90°,AB=BC=5千米,∴AC===5(千米);(2)∵AC2=(5)2=50,CD2+AD2=()2+(4)2=50,∴AC2=CD2+AD2,则∠D=90°,S四边形ABCD=S△ABC+S△ACD=×5×5+××4=(+2)平方千米.19.(10分)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2;∵,c是的整数部分,∴c=3;(2)3a﹣b+c=15﹣2+3=16,16的平方根是±4.20.(8分)问题背景:在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上.思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为,2(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是a.解:问题背景:S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=.思维拓展:如图作BH⊥AC于H.∵S△ABC=•AC•BH=2a×4a﹣×2a×2a﹣×a×2a﹣×a×4a=3a2,∴×a×BH=3a2,∴BH=a.21.(9分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==20(cm).答:蚂蚁从外壁A处到达内壁B处的最短距离是20cm.22.(10分)阅读下列运算过程,并完成各小题:;.数学上把这种将分母中的根号去掉的过程称作“分母有理化”,如果分母不是一个无理数,而是两个无理数的和或差,此时也可以进行分母有理化,如:1;.模仿上例完成下列各小题:(1)=;(2)=;(3)=2﹣;(4)请根据你得到的规律计算下题:(n 为正整数).解:(1)(1)=;(2)=﹣=﹣=;(3)==2﹣;(4)原式=﹣1+﹣+…+﹣=﹣1.故答案为;;﹣2.23.(10分)如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=12cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=13cm;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.解:(1)∵∠B=90°,AB=16cm,AC=20cm∴BC===12(cm).故答案为:12;(2)∵点P在边AC的垂直平分线上,∴PC=PA=t,PB=16﹣t,在Rt△BPC中,BC2+BP2=CP2,即122+(16﹣t)2=t2解得:t=.此时,点Q在边AC上,CQ=(cm);故答案为:13cm.(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,∴,∴=.∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。

2020-2021学年八年级上学期第一次月考数学试题(含解析答案)

2020-2021学年八年级上学期第一次月考数学试题(含解析答案)

2020-2021八年级上第一次月考数学试卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x > B. 3x ≠ C. 3x o x >≠且 D. 3x x ≥0≠且 5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A.B. C. D. 6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x >32B. x <3C. x<32 D. x >310. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.12. 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为____________.x-2 0 1 y3 p 013. 已知点P(m -3,1-2m)在第三象限,则由所有满足题意的整数m 组成的最大两位数是____. 14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟; ④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg . (1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k-1,k2-1]的一次函数为正比例函数,求k的值;(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),若一次函数的图象过A,B两点,求该一次函数的特征数.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是,点A的坐标;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.2020-2021八年级上第一次月考数学试卷—解析卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限,故选B .2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度 【答案】A【解析】本题考查了平面直角坐标系内点的位置的变化,注意小虫是沿横坐标爬行还是沿纵坐标爬行即可. 分析小虫的爬行路线即可得解.解:从A (2,2),爬行到B (2,4),爬行了4-2=2个单位,再爬行到C (5,4),又爬行了5-2=3个单位,最后爬行到D (5,6),又爬行了6-4=2个单位,所以小虫一共爬行了2+3+2=7个单位.故选A .4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x >B. 3x ≠C. 3x o x >≠且D. 3x x ≥0≠且【答案】D【解析】【分析】 让二次根式的被开方数大于等于0,原式的分母不等于0,列不等式组求解即可解答.【详解】解:根据题意得:x≥0且3-x≠0,∴x 的取值范围是x≥0且x≠0.故选D.【点睛】本题考查二次根式和分式有意义是条件,二次根式的被开方数必须是非负数,分式的分母不能为0.5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A. B. C. D.【答案】B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s 表示客车从霍山出发后与合肥的距离,s 会逐渐减小为0;A 、C 、D 都不符.故选B . 点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示量,然后根据实际情况采用排除法求解.6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 【答案】D【解析】【分析】根据长方形的周长公式,可得y 和x 之间的函数解析式,由x >0,-x+6>0,x >y ,从而可以得出x 的取值范围.【详解】解:∵长方形的周长为12∴y=-x+6∵x >0,-x+6>0,x >y∴3<x <6故选:D【点睛】本题考查了函数关系式,函数自变量的取值范围,利用矩形周长公式得出不等式组是解题关键. 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:分x 是正数和负数两种情况讨论求解.详解:x >0时,1﹣x 可以是负数也可以是正数,∴点P 可以在第一象限也可以在第四象限,x <0时,1﹣x >0,∴点P 在第二象限,不在第三象限.故选C .点睛:本题考查了点的坐标,根据x 的情况确定出1﹣x 的正负情况是解题的关键.8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C【解析】【分析】先根据a 、b 的取值范围,判断出一次函数所过的象限,再根据k 的取值范围,判断出正比例函数所过的象限,那么二者所过的公共象限即为点P 所在象限.【详解】解:∵函数y=ax+b (a<0,b <0)的图象经过第二、三、四象限,y=kx (k>0)的图象过原点、第一、三象限,∴点P 应该位于第三象限.故选C .9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x>32B. x<3C. x<32D. x>3【答案】C【解析】【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【详解】解:将点A(m,3)代入y=2x得,2m=3,解得,m=3 2∴点A的坐标为(32,3),∴由图可知,不等式2x<ax+4的解集为x<3 2故选:C【点睛】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.10. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面【答案】D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.【答案】(3,5)【解析】【分析】根据有序数对的第一个数表示排数,第二个数表示列式解答.【详解】∵5排3列记为(5,3),∴3排5列记为(3,5).故答案为(3,5).【点睛】本题考查的知识点是坐标确定位置,解题的关键是熟练的掌握坐标确定位置. 12. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为____________.【答案】1【解析】一次函数的解析式为y=kx+b(k≠0),∵x=−2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=−x+1,∴当x=0时,y=1,即p=1.故答案为1.13. 已知点P(m-3,1-2m)在第三象限,则由所有满足题意的整数m组成的最大两位数是____.【答案】21【解析】【分析】根据点P(m-3,1-2m)在第三象限,可求出m的取值,再根据m为整数得出m的值,即可解答.【详解】∵点P (m -3,1-2m )在第三象限,∴m -3<0,1-2m <0,解得12<m <3, ∴m 可以求得的整数值为1,2,故所有满足题意的整数m 组成的最大两位数是21,故答案为21. 【点睛】此题主要考查列不等式,解题的关键是熟知坐标系的坐标特点列出不等式.14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.【答案】1【解析】【分析】直接根据一次函数的图象进行解答即可.【详解】解:由一次函数y=kx+b 的图象可知,当x<1时,函数的图象在x 轴上方,∴当y>0时,x<1.故答案为:1.【点睛】本题主要考查一次函数的图像与性质.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 【答案】1或79-; 【解析】 【分析】 点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +,列式:6235a a --=+,6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79 .【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法.16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟;④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);【答案】②③④.【解析】【分析】①由当x=40时,y2=0,可得出兔子比乌龟晚出发40分钟,说法①错误;②由两函数图象的终点纵坐标均为1000,可得出“龟兔再次赛跑”的路程为1000米,说法②正确;③观察y1与x之间的函数图象结合40﹣30=10,可得出乌龟在途中休息了10分钟,说法③正确;④观察y1,y2与x之间的函数图象结合60﹣50=10,可得出兔子比乌龟早10分钟到达终点,说法④正确.综上即可得出结论.【详解】①∵当x=40时,y2=0,∴兔子比乌龟晚出发40分钟,说法①错误;②∵两函数图象的终点纵坐标均为1000,∴“龟兔再次赛跑”的路程为1000米,说法②正确;③∵40﹣30=10(分钟),∴乌龟在途中休息了10分钟,说法③正确;④∵60﹣50=10(分钟),∴兔子比乌龟早10分钟到达终点,说法④正确.综上所述:正确的说法有②③④.故答案为②③④.【点睛】本题考查了一次函数的应用,观察函数图象逐一分析四条结论的正误是解题的关键.三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?【答案】(1)y=-2x-1; (2)在;【解析】【分析】(1)先把点(-2,3)和(1,-3)代入y=kx+b ,得到关于k 、b 的方程,然后解方程组即可;(2)把x=-1代入①中的一次函数中计算出对应的函数值,然后进行判断.【详解】解:(1)设一次函数解析式为y=kx+b ,把(2,3)与(-1,-3)代入得:233k b k b -+=⎧⎨+=-⎩解得:21k b =-⎧⎨=-⎩一次函数解析式为:y=-2x-1(2)一次函数解析式为y=-2x-1,当x=-1时,y=-2x-1=-2×(-1)-1=2-1=1,所以点(-1,1)在直线y=-2x-1上.【点睛】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;(2)将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg .(1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?【答案】(1)100.5y x =+ ;(2)010x ≤≤ ;(3)5kg【解析】【分析】(1)根据题意列出长度y 和挂重x 之间的函数关系式;(2)根据挂重不超过10kg ,得到自变量的取值范围;(3)令125y .=,代入函数解析式求出x 的值.【详解】解:(1)每挂重1kg 就伸长0.5cm ,挂重x kg 就伸长0.5x cm ,100.5y x =+;(2)∵挂重不超过10kg ,∴010x ≤≤;(3)令125y .=,则100.512.5x +=,解得5x =,答:挂重5kg 时,弹簧长度是12.5cm .【点睛】本题考查一次函数的应用,解题的关键是根据题意列出一次函数解析式进行求解.19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.【答案】(1)()()2,0,1,4A B --;(2)见解析;(3)41633y x =+,()41x -≤≤- 【解析】【分析】(1)根据A 、B 所在位置,写出点坐标;(2)根据点的平移画出111A B C △; (3)利用待定系数法求出一次函数解析式并写出自变量的取值范围.【详解】解:(1)根据A 、B 所在位置,写出它们的坐标,()2,0A ,()1,4B --;(2)如图所示:(3)()11,4A -,()14,0B -, 设直线l 的解析式为:y kx b =+,440k b k b -+=⎧⎨-+=⎩,解得43163k b ⎧=⎪⎪⎨⎪=⎪⎩, ()4164133y x x =+-≤≤-. 【点睛】本题考查平面直角坐标系中的点坐标和点坐标的平移以及一次函数解析式的求解,解题的关键是掌握点坐标的平移方法和待定系数法求函数解析式的方法.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;【答案】(1)322y x =+;(2)43【解析】【分析】(1)设()2331y k x -=+,将题目所给的x 和y 的值代入,求出k 的值,得到关系式;(2)求出一次函数与坐标轴的交点坐标,再求出围成的三角形的面积.【详解】解:(1)设()2331y k x -=+,当2x =时,5y =,则()253321k ⨯-=⋅⨯+,解得1k =,∴2331y x -=+,整理得322y x =+; (2)令0x =,得2y =,与y 轴交于点()0,2,令0y =,得43x =-,与x 轴交于点4,03⎛⎫- ⎪⎝⎭, ∴该函数图象与坐标轴围成的三角形面积是1442233⨯⨯=. 【点睛】本题考查正比例的定义,一次函数图象与坐标轴的交点,解题的关键是掌握用待定系数法求解析式的方法和一次函数图象与坐标轴交点坐标的求解方法.21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k -1,k 2-1]的一次函数为正比例函数,求k 的值;(2)在平面直角坐标系中,有两点A (-m ,0),B (0,-2m ),且△OAB 的面积为4(O 为原点),若一次函数的图象过A ,B 两点,求该一次函数的特征数.【答案】(1)-1;(2)[-2,-4]或[-2,4].【解析】分析:(1)根据题意中特征数的概念,可得k ﹣1与k 2﹣1的关系;进而可得k 的值;(2)根据△OAB 的面积为4,可得m 的方程,解即可得m 的值,进而可得答案.详解:(1)∵特征数为[k ﹣1,k 2﹣1]的一次函数为y =(k ﹣1)x +k 2﹣1,∴k 2﹣1=0,k ﹣1≠0,∴k =﹣1;(2)∵A (﹣m ,0),B (0,﹣2m ),∴OA =|﹣m |,OB =|﹣2m |,若S △OBA =4,则12•|﹣m |•|﹣2m |=4,m =±2,∴A (2,0)或(﹣2,0),B (0,4,)或(0,﹣4),∴一次函数为y =﹣2x ﹣4或y =﹣2x +4,∴过A ,B 两点的一次函数的特征数[﹣2,﹣4],[﹣2,4].点睛:本题要理解题目中的定义以及正比例函数的概念,根据正比例函数中的b =0,即可列方程求解.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是 ,点A 的坐标 ;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y (km )与行走时间x (h )的函数关系式.【答案】(1)16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭;(2)20km ;(3)11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩【解析】【分析】(1)根据图象求出小明速度,再得到爸爸的速度,用爸爸追上小明所走的路程求出点A 坐标;(2)设从爸爸追上小明的地点到公园路程为n (km ),列式求出n 的值,再加上16得到整个路程长; (3)用待定系数法求出一次函数解析式,并利用分段函数的形式表示.【详解】解:(1)小明的速度1816/2km h =÷=, 爸爸的速度16232/km h =⨯=, 53321644km ⎛⎫⨯-= ⎪⎝⎭,则5,164A ⎛⎫ ⎪⎝⎭, 故答案是:16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭; (2)设从爸爸追上小明地点到公园路程为n (km ),7.5163260n n -=,解得4n =, ∴小明家到滨湖森林湿地公园的路程16420km =+=;(3)设直线AB 的解析式为:116y x b =+131684b ⨯+=,解得14b =-, ∴直线AB 的解析式为:164y x =-,∴小明行走路程y (km )与行走时间x (h )的函数关系式为:11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩. 【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象分析出运动过程,并结合一次函数的解析式进行求解.。

湖南省广益实验中学2020—2021学年上学期第三次月考八年级数学试题

湖南省广益实验中学2020—2021学年上学期第三次月考八年级数学试题

20秋广益初二第三次月考(教师版)参考答案与试题解析一.选择题(共13小题)1.2020年全国上下抗击疫情,众志成城,下列防疫标志图形中是轴对称图形的是()A.B.C.D.【解答】解:D、是轴对称图形,故此选项符合题意;故选:D.2.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7【解答】解:∵0.00000008=8×10﹣8;故选:A.3.如果分式2xx+y中的x和y都扩大为原来的2倍,那么分式的值()A.扩大2倍B.扩大4倍C.不变D.缩小2倍【解答】解:分式2xx+y中的x和y都扩大为原来的2倍后可得:4x 2x+2y =4x2(x+y)=2xx+y,∴分式的值不变,故选:C.4.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:B、原式=5,所以B选项正确;故选:B.5.如图,在△ABC 中,∠C =90°,点D 在斜边AB 上,且AD =CD ,则下列结论中错误的结论是( ) A .∠DCB =∠BB .BC =BDC .AD =BDD .∠ACD =12∠BDC【解答】解:∵∠C =90°,∴∠A +∠B =90°,∠ACD +∠BCD =90°,∵AD =CD , ∴∠A =∠ACD ,∴∠B =∠BCD ,A 选项结论正确,不符合题意; BC 与BD 不一定相等,B 选项结论错误,符合题意;∵∠B =∠BCD , ∴BD =CD ,∵AD =CD ,∴AD =BD ,C 选项结论正确,不符合题意; ∵∠A =∠ACD ,∴∠BDC =∠A =∠ACD =2∠ACD ,∴∠ACD =12∠BDC ,D 选项结论正确,不符合题意;故选:B .6.已知:a =﹣32,b =(−13)﹣2,c =(−13)0,a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b【解答】解:∵a =﹣32=﹣9,b =(−13)﹣2=9,c =(−13)0=1, ∴a <c <b .故选:B .7.分式x 2−1x+1=0,则x 的值是( )A .1B .﹣1C .±1D .0【解答】解:∵分式x 2−1x+1=0,∴x 2﹣1=0且x +1≠0,解得:x =1.故选:A .8.实数a ,b 在数轴上对应点得位置如图,则化简|a ﹣b |−√a 2的结果是( )A .2a ﹣bB .b ﹣2aC .bD .﹣b【解答】解:由数轴上a ,b 的位置可得:a ﹣b <0,a <0, 故|a ﹣b |−√a 2=−(a ﹣b )﹣(﹣a )=b .故选:C .9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .40×1.25x ﹣40x =800B .800x−8002.25x=40C .800x−8001.25x=40D .8001.25x−800x=40【解答】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800x−8001.25x=40,故选:C .10.等腰三角形的周长是20cm ,一边是另一边的两倍,则底边长( ) A .10cm 或4cmB .10cmC .4cmD .无法确定【解答】解:根据题意设底边长xcm ,则腰长为2xcm . x +2x +2x =20,解得 x =4故底边长为4cm ,故选:C .11.如图,△ABC 是等边三角形,AD =6,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE +PC 的最小值为( ) A .3 B .4C .6D .8【解答】解:如图,连接BE 交AD 于点P ′,∵,△ABC 是等边三角形,AD =6,AD 是BC 边上的高,E 是AC 的中点,∴AD 、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, ∴P ′B =P ′C ,P ′E +P ′C =P ′E +P ′B =BE=AD=6根据两点之间线段最短,点P 在点P ′时,PE +PC 有最小值,最小值即为BE 的长. 所以P ′E +P ′C 的最小值为6.故选:C .12.如图,∠AOB =120°,OP 平分∠AOB ,且OP =10.若点M ,N 分别在射线OA ,OB 上,且△PMN 是边长为整数的等边三角形,则满足上述条件的点M 有(参考数据:√3≈ 1.73)( )A .4个以上B .4个C .3个D .2个【解答】解:在OB 截取OK =OP ,连接PK ,则△OPK 是等边三角形.可以证明当∠MPN =60°时,△PMN 是等边三角形. 理由:∵∠MPN =∠OPB =60°,∴∠OPM =∠NPK ,∵OP =PK ,∠POM =∠PKN ,∴△POM ≌△PKN ,∴PM =PN ,∴△PMN 是等边三角形,当PM ⊥OA 时,PM 的值最小,最小值为5√3, PM 的最大值为10,∴5√3≤PM ≤10,∵PM 是整数, ∴PM 的值有两种可能,对应的点M 有4种可能,故选:B . 二.填空题(共5小题)13.因式分解:a a 163-=)4)(4(-+a a a ;【解答】解:)4)(4(-+a a a ;14.若代数式x211-在实数范围内有意义,则x 的取值范围是 21<x .【解答】解:根据二次根式的意义,被开方数021>-x ,解得21<x ; 15.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m +n 的值是 1 . 【解答】解:∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称, ∴1+m =3、1﹣n =2,解得:m =2、n =﹣1,所以m +n =2﹣1=1, 故答案为:1.16.已知关于x 的二次三项式x 2+2mx +4﹣m 2是完全平方式,则实数m 的值为 ±√2 . 【解答】解:∵x 2+2mx +4﹣m 2是完全平方式,∴4﹣m 2=m 2, 即m 2=2,解得m =±√2.17.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB = 105° . 【解答】解:如图所示:∵MN 垂直平分BC ,∴CD =BD ,∴∠DBC =∠DCB ∵CD =AC ,∠A =50°,∴∠CDA =∠A =50°, ∵∠CDA =∠DBC +∠DCB ,∴∠DCB =∠DBC =25°,∠DCA =180°﹣∠CDA ﹣∠A =80°, ∴∠ACB =∠DCB +∠ACD =25°+80°=105°.故答案为:105°.18.若x ≠﹣1,则把−1x+1称为x 的“和1负倒数”,如:2的“和1负倒数”为−13,﹣3的“和1负倒数”为12,若x 1=23,x 2是x 1的“和1负倒数”,x 3是x 2的“和1负倒数”,…依此类推,则x 2020的值为32【解答】解:∵x 1=23,∴x 2=−11+23=−35,x 3=−11−35=−52, x 4=−11−52=23,……∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x 2020=x 1=23,三.解答题(共8小题) 19.计算题(1)()02224182-+-+--π 【解答】解:(1)原式=14122241+-+-=21-20.先化简式子221(1)2x x x x x ⎛⎫++-÷⎪⎝⎭,再从0,1-3 【解答】解:原式=11+-x x 当x =2时,原式=31. 21.(8分)已知关于x 的方程12111x x -=--的解比2121kx k x x--=-的解多1,求2(3)k +的值。

2020-2021学年合肥三十八中八年级上学期第一次月考数学试卷(含解析)

2020-2021学年合肥三十八中八年级上学期第一次月考数学试卷(含解析)

2020-2021学年合肥三十八中八年级上学期第一次月考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列各曲线表示的y与x之间的关系中,y不是x的函数的是()A. B.C. D.2.如图,小明居住的小区内有一条笔直的小路,有一盏路灯位于小路上M、N两点的正中间,晚上,小明由点M处径直走到点N处,他在灯光照射下的影长y与行走路程x之间的变化关系用图象表示大致是()A. B.C. D.3.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是()A. (0,−1)B. (1,1)C. (2,−1)D. (1,−2)4.已知a、b、c为自然数,且a2+b2+c2+42<4a+4b+12c,且a2−a−2>0,则代数式1a+1 b +1c的值为()A. 1B. 76C. 10D. 115.已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,PA的长为半径的圆的面积最小时,点P的坐标为()A. (1,−1)B. (0,0)C. (1,1)D. (√2,√2)6.下列函数中一次函数的个数为()①y=2x;②y=3+4x;③y=12;④y=ax(a≠0的常数);⑤xy=3;⑥2x+3y−1=0.A. 3个B. 4个C. 5个D. 6个7.如图,∠AOB=α°,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则α的值是()A. 15B. 30C. 45D. 608.不等式组:{2x>−4x−5≤0的解集是()A. x>−2B. −2<x≤5C. x≤5D. 无解9.如图,一次函数y=−x+1的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A开始向点B运动时,则矩形CDOE的周长()A. 不变B. 逐渐变大C. 逐渐变小D. 先变小后变大10.如图,点B、C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为()A. 12B. 23C. 1D. 32二、填空题(本大题共4小题,共20.0分)11.函数y=x−13+x中,自变量x的取值范围是______ .12.如果一次函数y=kx+b的图象如图所示,那么k______0,b______0.13.已知三个非负实数a,b,c,满足3a+2b+c=5,2a+b−3c=1,若s=3a+b−7c的最大值为m,最小值为n,则mn=______ .14.已知直线y=x−a与y=−x+b相交于点(1,0),则不等式x−a≥−x+b的解集是______ .三、计算题(本大题共1小题,共10.0分)15.在平面直角坐标系中,点A、B的坐标分别是(0,−2),(0,2),点C在x轴上,如果S△ABC=6,求点C的坐标.四、解答题(本大题共8小题,共80.0分)16.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=1x的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=13∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设P(a,1a )、R(b,1b),求直线OM对应的函数表达式(用含a,b的代数式表示);(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=13∠AOB;(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).17.如图1,在平面直角坐标系中,点A(0,n),B(m,0)中的m,n满足|m+8|+(m+2n−4)2=0,点C在x轴的正半轴上,且△ABC的面积为33,AB=10,过点A作AD//x轴,过点C作CD⊥AD于点D,动点P从点D出发,以每秒2个单位长度的速度在射线DA上运动,同时另一动点Q从点B出发向终点A运动,速度是每秒3个单位长度,一点停止运动另一点也停止,设运动时间为t秒.(1)求出点A、B、C的坐标;(2)连接PC,请用含t的关系式来表示△PAC的面积S;(3)是否存在某一时刻t,使△PAC的面积等于△BOQ面积的一半?若存在请求出t值,若不存在请说明理由.18.如图,△A′B′C′是△ABC向右平移3个单位长度后得到的,且三个顶点的坐标分别为A′(2,1),B′(5,2),C′(4,4)(1)请画出△ABC,并写出点A,B,C的坐标;(2)画出△A′B′C′绕点O逆时针旋转180°后的图形.19.在初中阶段的函数学习中,我们经历了“确定函数的表达式−利用函数图象研究其性质−应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|√a×|x|+b中,当x=0时,y=1;当x=2时,y=√7.(1)求这函数的表达式______;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质______;(3)结合你所画的函数图象与y=12x+32的图象,直接写出不等式组{√a×|x|+b≤12x+32x≥0的解集.20.已知:P(4,1)为平面直角坐标系中的一点,点A(a,0),点B(0,a)(其中a>0)分别是坐标轴上的动点,若△PAB的面积为3,试求点A的坐标.21.如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/ℎ,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(ℎ)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶______ h后加油,中途加油______ L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?22.已知老师家20164月份用2吨,交水费71元;5月份用水28,水16.自来水销售格污水处价格每户每月用量价:元/吨单:元/吨17及以下a.80超过17不超过0吨的分b.80超过30的部分.000.0[说明:每户产生的污水量等于该户的量,=水费+水处理费]求a、的值;夏天到,用水量将大幅加,老师划把6月份水费控制在家月收入的2,老师家月收入为9200元,则按划张老家6月份最能用多少吨?x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC=AB;23. 如图,直线y=34(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2−PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC//AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【答案与解析】1.答案:C解析:解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.答案:C解析:解:∵小路的正中间有一路灯,小明在灯光照射下的影长y与行走的路程x之间的变化关系,应为当小明走到灯下以前为:y随x的增大而减小,离开灯走到N:y随x的增大而增大∴用图象刻画出来应为C.故选:C.根据中心投影的性质得出小明在灯下走的过程中应长随路程之间的变化,进而得出符合要求的图象.此题主要考查了函数图象以及中心投影的性质,得出l随s的变化规律是解决问题的关键.3.答案:D解析:试题分析:首先根据图形,得到点B的坐标,再根据平移时,坐标的变化规律:左减右加,上加下减,求得点B′的坐标,最后再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.∵点B(−1,2),∴向右平移两个单位后,B′(1,2).∴点B′(1,2)关于x轴对称点的坐标为(1,−2).故选D4.答案:A解析:解:由a2−a−2>0,a为自然数,可知a>2,将化a2+b2+c2+42<4a+4b+12c为(a−2)2+(b−2)2+(c−6)2<2,因为(a−2)2、(b−2)2、(c−6)2都大于0,当a≥4时,上式不成立,所以自然数a只能取值为3.当a=3时,代入上式,得:(b−2)2+(c−6)2<1,所以只能使(b−2)2=0,(c−6)2=0,即b=2,c=6,所以1a +1b+1c=1.故选:A.先由a2−a−2>0得到a>2或a<−1,再变形a2+b2+c2+42<4a+4b+12c为:(a−2)2+ (b−2)2+(c−6)2<2,得到a=3,进而得到(b−2)2+(c−6)2<1,再得到b=2,c=6,故能求得1a +1b+1c的值.本题的关键是把不等式转化成平方的形式,然后分析在什么情况下小于2,从而求出a,b,c的值.5.答案:C解析:解:如图,过点A作AP与直线y=x垂直,垂足为点P,此时PA最小,则以点P为圆心,PA的长为半径的圆的面积最小.过点P作PM与x轴垂直,垂足为点M.在Rt△OAP中,∵∠OPA=90°,∠POA=45°,∴∠OAP=45°,∴PO=PA,∵PM⊥x轴于点M,∴OM=MA=12OA=1,∴PM=OM=1,∴点P的坐标为(1,1).故选:C.本题考查了一次函数图象上点的坐标特征,垂线的性质,等腰直角三角形的判定与性质及对圆的认识,综合性较强,难度适中,得出点P的位置是解题的关键.当PA最小时,以点P为圆心,PA的长为半径的圆的面积最小.根据垂线段最短可知,过点A作AP 与直线y=x垂直,垂足为点P,此时PA最小.6.答案:B解析:解:①y=2x是一次函数;②y=3+4x是一次函数;③y=1,自变量系数为0,不是一次函数;2④y=ax(a≠0的常数)是一次函数;⑤xy=3自变量次数不为1,故不是一次函数;⑥2x+3y−1=0是一次函数.综上可得,①②④⑥是一次函数,共4个.故选:B.根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,判断各式即可.本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.7.答案:B解析:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∠COD,∴OC=OP=OD,∠AOB=12∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=12∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.8.答案:B解析:解:由2x>−4,得x>−2;由x−5≤0,得x≤5,所以−2<x≤5.选B.分别求出两个不等式的解集,再求其公共解集.本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.答案:A解析:解:设点C的坐标为(m,−m+1)(0<m<1),则CE=m,CD=−m+1,∴C矩形CDOE=2(CE+CD)=2,故选:A.根据一次函数图象上点的坐标特征可设出点C的坐标为(m,−m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.10.答案:B解析:解:设正方形的边长为a,则B的纵坐标是a,把点B代入直线y=2x的解析式,设点B的坐标为(a2,a),则点C的坐标为(a2+a,a),把点C的坐标代入y=kx中得,a=k(a2+a),解得k=23,故选:B.设正方形的边长为a ,根据正方形的性质分别表示出B ,C 两点的坐标,再将C 的坐标代入函数中从而可求得k 的值.本题考查的是一次函数图象上点的坐标特征、正方形的性质,掌握一次函数图象上点的坐标特征是解题的关键.11.答案:x ≠−3解析:解:由题意得,3+x ≠0, 解得,x ≠−3, 故答案为:x ≠−3.根据分式有意义的条件列出不等式,解不等式得到答案.本题考查的是函数自变量的取值范围的确定,掌握分式的分母不为0是解题的关键.12.答案:< <解析:解:∵一次函数y =kx +b 的图象经过第二、三、四象限, 又∵当k <0时,直线必经过二、四象限, ∴k <0.∵图象与y 轴负半轴相交, ∴b <0. 故答案为<,<.根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.13.答案:577解析:解:联立{3a +2b =5−c2a +b =1+3c解得:{a =7c −3b =7−11c∵a 、b 、c 都是非负实数,∴{7c −3≥07−11c ≥0c ≥0解得:37≤c≤711∴s=3a+b−7c=3(7c−3)+(7−11c)−7c=3c−2∴当c=711时,s的最大值为:m=−111,当c=37时,s的最小值为:n=−57∴mn=577故答案为:577联立两等式后求出a与b,然后将a与b代入s中,化为一次函数最值问题,利用非负实数求出c的范围即可求出m与n的值.本题考查一次函数的综合问题,解题的关键是列出方程组求出a与b的表达式,然后利用一元一次不等式组求出c的范围,本题属于中等题型.14.答案:x≥1解析:解:已知直线y=x−a与y=−x+b相交于点(1,0),直线y=x−a中y随x的增大而增大,而y=−x+b中y随x的增大而减小,因而不等式x−a≥−x+b的解集是x≥1.故答案为:x≥1.由于直线y=x−a与y=−x+b相交于点(1,0),根据直线y=x−a和y=−x+b的图象的性质可求得不等式x−a≥−x+b的解集.本题主要考查了一次函数的性质,根据性质比较容易解决.15.答案:解:设C点的坐标是(x,0).12×(2+2)x=6x=3.C点的坐标为(3,0)或(−3,0).解析:点C在x轴上,所以可以在右半轴上,也可以在左半轴上,因此有两个解,根据面积为6,可求出解.本题考查三角形的面积为:12×底×高,根据坐标与图形的性质,可求出坐标.16.答案:解:(1)设直线OM的函数关系式为y=kx,P(a,1a )、R(b,1b).则M(b,1a),∴k=1a ÷b=1ab.∴直线OM的函数关系式为y=1abx.(2)∵Q的坐标(a,1b ),满足y=1abx,∴点Q在直线OM上.∵四边形PQRM是矩形,∴SP=SQ=SR=SM=12PR.∴∠SQR=∠SRQ.∵PR=2OP,∴PS=OP=12PR.∴∠POS=∠PSO.∵∠PSQ是△SQR的一个外角,∴∠PSQ=2∠SQR.∴∠POS=2∠SQR.∵QR//OB,∴∠MOB=∠SQR.∴∠POS=2∠MOB.∴∠MOB=13∠AOB.(3)①先做出钝角的一半,按照上述方法先将此钝角的一半(锐角)三等分,进而做出再做一个角与已做得的角相等即可得到钝角的三等分角.②先作钝角的邻补角的三等分角,然后再以得到的三等分角作等边三角形可得钝角的三等分角,在钝角内作做出这个角即可.解析:(1)直线OM是正比例函数,可利用所给的坐标得到M的坐标,代入函数解析式即可;(2)根据所给的点的坐标得到Q 的坐标,看是否符合(1)中的函数解析式;运用矩形的性质,作图过程中的条件,外角与不相邻内角的关系,即可得证;(3)既然能作出锐角的三等分角,先将此钝角的一半(锐角)三等分,再作钝角的三等分角. 过某个点,这个点的坐标应适合这个函数解析式.注意使用作图过程中利用的条件.17.答案:解:(1)∵|m +8|+(m +2n −4)2=0,又∵|m +8|≥0,(m +2n −4)2≥0, ∴{m +8=0m +2n −4=0,解得{m =−8n =6,∴A(0,6).B(−8,0),∵S △ABC =12×BC ×OA =33,∴BC =11, ∴OC =3, ∴C(3,0).(2)由题意,D 的坐标是(3,6), 当0≤t <32时,AP =3−2t ,则S =12⋅AP ⋅CD =12(3−2t)×6=9−6t ; 当32<t ≤103时,AP =2t −3,则S =12×(2t −3)×6=6t −9;(3)作QH ⊥OB 于点H.则BQ =3t ,△BQH∽△BAO , 则BQAB =QHQA,即3t 10=QH 6,解得:QH =95t , 则S △BOQ =12×8×95t =365t.当0≤t ≤32时,9−6t =12×365t ,解得:t =1516; 当32<t ≤103时,6t −9=12×365t ,解得:t =154(舍去),综上所述,满足条件的t 的值为1516. 解析:(1)利用非负数的性质即可解决问题. (2)求得AD 的长是3,则分成0≤t ≤32和32<t ≤103两种情况求得AP 的长,利用三角形的面积公式求解;(3)作QH ⊥OB 于点H.则BQ =3t ,△BQH∽△BAO ,利用相似三角形的性质求得QH 的长,则△OBQ 的面积即可利用t 表示出来,然后分成0≤t ≤32和32<t ≤103两种情况,根据△PAC 的面积等于△BOQ面积的一半即可列方程求解.本题属于三角形综合题,考查了非负数的性质,三角形的面积,路程,速度,时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.答案:解:(1)如图所示:A(−1,1),B(2,2),C(1,4);(2)如图所示,△A″B″C″由△A′B′C′绕O 点逆时针旋转180°而得.解析:(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案. 此题主要考查了旋转变换以及平移变换,根据题意得出对应点位置是解题关键.19.答案:y =√3×|x|+1 关于y 轴对称解析:解:(1)∵在函数y =√a ×|x|+b 中,当x =0时,y =1;当x =2时,y =√7. ∴{√b =1√2a +b =√7,得{a =3b =1,∴这个函数的表达式是y =√3×|x|+1, 故答案为y =√3×|x|+1; (2)∵y =√3×|x|+1, ∴y ={√3x +1(x ≥0)√−3x +1(x <0),列表:x−5−2−10125…y4√7212√74…描点、连线画出该函数的图象如图所示:函数的性质:关于y轴对称,故答案为关于y轴对称;(3)由函数图象可得,y=√3×|x|+1是0≤x≤1.(1)根据在函数y=√a×|x|+b中,当x=0时,y=1;当x=2时,y=√7,可以求得该函数的表达式;(2)根据(1)中的表达式列表、描点,连线可以画出该函数的图象并得到函数的性质;(3)根据图象可以直接写出所求不等式组的解集.本题考查一次函数图象和性质、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.答案:解:过点P作PC⊥x轴于C,作PD⊥y轴于D,则四边形OCPD是矩形,如图1,点C在点A的左边时,a>4,∵P(4,1),点A(a,0),点B(0,a),∴AC=a−4,BD=a−1,△PAB的面积=12×4×(a−1)+12×(a−4)×1+1×4−12×a2=3,整理得,a2−5a+6=0,解得a1=2(舍去),a2=3(舍去),如图2,点C在点A的右边时,a<4,∵P(4,1),点A(a,0),点B(0,a),∴AC=4−a,BD=a−1,△PAB的面积=12×4×(a−1)+4×1−12×(4−a)×1−12×a2=3,整理得,a2−5a+6=0,解得a1=2,a2=3,∴点A的坐标为(2,0)或(3,0),综上所述,若△PAB的面积为3,则点A的坐标为(2,0)或(3,0).解析:过点P作PC⊥x轴于C,作PD⊥y轴于D,可得四边形OCPD是矩形,再分点C在点A的左边和右边两种情况,表示出AC、BD,再利用梯形的面积和三角形的面积表示出△ABP的面积,然后计算即可得解.本题考查了三角形的面积,坐标与图形性质,难点在于分情况讨论并表示出△ABP的面积列出方程.21.答案:解:(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25×80×2100=40,由此可知加油量为:250−(100−40)=190;故答案为2;190;(2)y=100−80×0.25x=−20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b,把k=−20代入,得到y=−20x+b,再把(2,250)代入,得b=290,所以y=−20x+290,当y=10时,x=14,所以14×80=1120km,因此该车从出发到现在已经跑了1120km,用时14h.解析:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题关键.(1)由图象可以直接看出汽车行驶两小时后加油,先计算汽车2小时耗油量,再结合函数图象可计算加油量;(2)根据每百公里耗油量约为25L ,可知每公里耗油0.25L ,根据余油量=出发前油箱油量−耗油量列出函数表达式即可;(3)由于速度相同,因此每小时耗油量也是相同的,可知k 不变,设加油后的函数为y =−20x +b ,代入(2,250)求出b 的值,然后计算剩余油量为10时的行驶时间,计算行驶路程即可.22.答案:解:由题意得{7a +b +21×0.8=117a +11b +0.8=106,设张老师家6用水量为x ,当用量为30时水费为:17×2.+13×4.292元,92%=184元, 由题意:172.234.2+6(x −30)+.x ≤194, ∴老师家六月的用水量超过3吨, 解得:{=2.2b =42,张老师月份最多用水41吨.解析:根据表格收标准,及张45两用水量、水费,可得出程组,解出可; 先判断用量超过30吨,继而再费超过94,可出不等式,解出即.本题考查了元一次方程组及元一次不等式的识答的键是细审题,将实际问题转为数学模型求解.23.答案:解:(1)如图1中,在y = 34 x +6中,令y =0,得x =−8;令x =0,得y =6∴A(−8,0),B(0,6), ∴OA =8,OB =6,过C 作CH ⊥y 轴于H ,则∠BCH +∠CBH =90°, ∵BC ⊥AB ,∴∠ABO +∠CBH =90°, ∴∠BCH =∠ABO ,又∠BHC =∠AOB =90°,BC =AB ,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8−6=2,∴C(6,−2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB= √62+82=10,∴BC=10,∴BF=BD=5,∴PF 2−PC 2=( PG 2+FG 2 )−( PG 2+CG 2 )=FG 2−CG 2=( DF 2−DG 2 )−( DC 2−DG 2 )=DF 2−DC 2=DF 2−BD 2=BF 2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK//MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a−10,勾股定理可得a=103,∵tan∠MNA=tan∠QMT=tan∠BAO=34,∴QT=10,MQ=503,MT=403∴MN//x轴,MQ//y轴,作PS⊥MQ于点S,∴S△PMQ=12MQ⋅PS,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS =PL +LS =t +10,∴S △PMQ =12×503×(t +10),∴s =253t +2503.解析:(1)过C 作CH ⊥y 轴于H ,则∠BCH +∠CBH =90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD 交CF 于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM ,BQ ,过B 作BK ⊥QM 延长线于点K ,延长MA 交QC 于点T ,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA =BK =BC ,MK =MA ,证明Rt △BKQ≌Rt △BCQ(HL),推出QK =QC ,设AM =a ,则QK =QC =6a ,在Rt △QMT 中,MQ =5a ,MT =a +10,QT =6a −10,勾股定理可得a =103,由tan∠MNA =tan∠QMT =tan∠BAO =34,推出QT =10,MQ =503,MT =403,作PS ⊥MQ 于点S ,根据S △PMQ =12MQ ⋅PS ,计算即可.本题属于一次函数综合题,考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

江苏省泰州市姜堰区实验初级中学2020-2021学年八年级上学期12月月考数学试题

江苏省泰州市姜堰区实验初级中学2020-2021学年八年级上学期12月月考数学试题
【详解】
解:A,B,C的图象都满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A、B、C的图象是函数,
D的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D错误;
故选D.
【点睛】
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
(1)求点E的坐标;
(2)求点D的坐标.
25.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.
(1)如图1,A(4,0),在Q1(0,4)、Q2(2,-4)、Q3(1, )中,可以是线段OA的中垂点是;
、由图可知:直线 , , ,
直线 经过二、三、四象限,主要考查了一次函数的图象和性质,掌握一次函数的图象经过的象限和系数的关系是解题的关键.
7.±3
【详解】
∵ =9,
∴9的平方根是 .
故答案为 3.
8.
【分析】
科学记数法的表示形式为 的形式,其中1≤|a|<10,n为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍.
先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,然后算出ab的值即可.
【详解】
∵点M(a,b)与点N(3,-1)关于x轴对称,
∴a=3,b=1,
∴ab=3 1=3,
故答案为:3.
【点睛】
本题主要考查了关于x轴对称点的坐标,关键是掌握关于x轴对称点的坐标特点.
12.

2022-2023学年江苏省扬州市江都区江都区丁沟中学八年级上学期12月月考数学试卷带讲解

2022-2023学年江苏省扬州市江都区江都区丁沟中学八年级上学期12月月考数学试卷带讲解
【详解】点A(﹣4,2)在第二象限.
故选:B.
【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
3.点P(3,-1)关于x轴对称的点的坐标是( )
A.(-3,1)B.(-3,-1)C.(1,-3)D.(3,1)D
【分析】根据无理数的大小估计解答即可.
【详解】因为 的整数部分是3,所以,3≤ <4,所以实数a的范围9≤a<16.
故答案为:9≤a<16.
【点睛】本题考查了无理数问题,关键根据无理数的大小估计.
15.已知 与x成正比例,且 时,y的值为7,求y与x的函数关系式_____.
【分析】设函数关系式为 ,将 时,y值为7代入求出k即可得到答案.
如图2所示:
∵AF与BF分别是∠MAB与∠ABN的角平分线,
∴FH=FG,FG=FE,
∴FH=角平分线上,
∴当BF⊥OF时,BF取最小值,
∵∠MON=90°,OB=4,
∴∠FON= ∠MON=45°,
∴△BOF是等腰直角三角形,
∴BF= OB=2 ;
【详解】设 的坐标为 ,
和 关于点 对称,
, ,
解得 ,
点 的坐标 .
【点睛】本题考查旋转的性质,解题的关键是明确对称点的性质.
17.已知正比例函数 的图像过点 、 ,若 ,则 _____.
10
【分析】把点的坐标代入函数解析式,再变形即可得到答案.
【详解】解: 正比例函数 的图像过点 、 ,
, ,

∵△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,

山东省日照市新营中学2020-2021学年上学期八年级12月月考数学试卷

山东省日照市新营中学2020-2021学年上学期八年级12月月考数学试卷

2020-2021学年度上学期初二数学阶段性检测(三)一、选择题(共12小题,每小题3分,满分36分) 1.下列计算中正确的是()A.a 2+a 3=2a 5B.a 4÷a=a 4C.a 2·a 4=a 8D.(-a 2)3=-a 610.将边长分别为a 和b 的两个正方形如图所示放置,则图中阴影部分的面积是()A. 21b 2B. 21a 2C. 21a 2−21b 2D.21 ab 11.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()的是()A. 0<k <21B.21 <k <1C. 1<k <23D.23 <k <2 二、填空题:(每题4分,共24分)13. 若3x =4,9y =7,则3x −2y 的值为___.14. 当x =______ 时,分式3x 2−3(x −1)(x −3)的值为 0.16若16)3-m 22++x x (是完全平方式,则m 的值等于____。

18.已知,则代数式的值为我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”。

这个三角形给出了(a +b )n (n =1,2,3,4,…)的展开式的系数规律(按a 的次数由大到小的顺序):(3))723)(723--+-y x y x ( (4)[]b a a b a b ab b a a 22322)()(÷----20. 分解因式:(每小题3分,共12分)(1)mn n 9m 3- (2)222y x xy --(2)322344xy y x y x ++ (4)22216)4x x -+(21. 先化简后求值:(8分)(1)012),2()1)(1(2-1-222=-----+a a a a a a a 其中,)((2)若2x-y=10,求代数式[]y y x y y x y x 4)(2)()222÷-+--+(的值。

南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题(含解析)

南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题(含解析)

南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm 6. 如图,已知∠CAE =∠BAD ,AC =AD ,增加下列条件:①AB =AE ;②BC =ED ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A. 1个B. 2个C. 3个D. 4个7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 49. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.11. 11+=_________.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______. 14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____. 三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W 元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.27. 如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P 是直线AB上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;(3)当△ABP为等腰直角三角形时,请直接写出点P的坐标.答案与解析一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心【详解】解:A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、不是中心对称图形,故本选项不合题意.故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根【答案】C【解析】【分析】一个数的平方等于a,那么这个数叫做a 的平方根.即如果x 2=a ,那么 x 叫做a 的平方根.根据平方根的定义依次进行判断即可.【详解】解:A. 1的平方根是±1,故该选项错误,B. 负数没有平方根,故该选项错误,C. 0的平方根是0,故该选项正确,D. 0.1是0.01的一个平方根,故该选项错误,故选C.【点睛】本题考查了平方根的定义,熟练掌握相关定义是解题关键.3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】由k=1>0,b=4>0,利用一次函数图象与系数的关系可得出一次函数y=x+4的图象经过第一、二、三象限,结合点P 在一次函数y=x+4的图象上,即可得出结论.【详解】解:∵k=1>0,b=4>0,∴一次函数y=x+4的图象经过第一、二、三象限.又∵点P 在一次函数y=x+4的图象上,∴点P 一定不在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k >0,b >0⇔y=kx+b 的图象在一、二、三象限”是解题的关键.4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=【答案】D【解析】【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、∵a 2=b 2−c 2,∴a 2+c 2=b 2,∴此三角形是直角三角形,故本选项不符合题意;B 、∵62+82=102,∴此三角形是直角三角形,故本选项不符合题意;C 、∵∠A +∠B +∠C =180°,∠A =∠B +∠C ,∴∠A =90°,∴此三角形是直角三角形,故本选项不符合题意;D 、设∠A =3x ,则∠B =4x ,∠C =5x ,∵∠A +∠B +∠C =180°,∴3x +4x +5x =180°,解得x =15°,∴∠C =5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;故选:D .【点睛】本题考查的是勾股定理的逆定理及三角形内角和定理,熟知以上知识是解答此题的关键. 5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm【答案】B【解析】【分析】因为DE垂直平分线段AB,根据线段垂直平分线的性质得到AD=BD,由此得到△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,又因为AB=AC=20cm,BC=15cm,由此即可求出△DBC的周长.【详解】解:DE垂直平分AB,∴AD=BD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC又AB=AC=20cm,BC=15cm,△BCD的周长=20+15=35(cm).故△BCD的周长为35cm.故选B.【点睛】此题主要考查了等腰三角形的性质和线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等.6. 如图,已知∠CAE=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B =∠E.其中能使△ABC≌△AED的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】先由∠CAE=∠BAD得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【详解】解:①由∠CAE=∠BAD,得∠CAB=∠DAE,增加AB=AE,那么AB=AE,∠CAB=∠DAE,AC=AD,根据“SAS”推出△ABC≌△AED,故①符合题意;②由∠CAE =∠BAD ,得∠CAB =∠DAE ,添加BC =ED ,△ABC 与△AED 不一定全等,故②不符合题意;③由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠C =∠D ,那么∠C =∠D ,∠CAB =∠DAE ,AC =AD ,根据“ASA ”推出△ABC ≌△AED ,故③符合题意;④由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠B =∠E ,那么∠B =∠E ,∠CAB =∠DAE ,AC =AD ,根据“AAS ”推出△ABC ≌△AED ,故④符合题意;综上分析可知:符合题意的有①③④,共3个,故C 正确.故选:C .【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°【答案】C【解析】 【详解】如图,作//EF AB∴1β∠=∠30ABD BDC ∠=∠=︒//AB CD ∴//EF CD ∴2α∴∠=∠1290∠+∠=︒1290αβ∴∠+∠=∠+∠=︒37α∠=︒53β∴∠=︒故选C【点睛】本题考查了平行线的性质与判定,三角尺中角度问题,掌握平行线的性质与判定是解题的关键. 8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴,从而得到a >0,b <0,故①②正确;再由直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.可得方程ax +2=mx +b 的解是x =﹣2,故③正确;然后观察图象可得当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,可得不等式ax +2>mx +b 的解集为x >﹣2,故④正确,即可求解.【详解】解:根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴, ∴a >0,b <0,故①②正确;∵直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.∴当x =﹣2时,ax +2=mx +b ,∴方程ax +2=mx +b 的解是x =﹣2,故③正确;∵ax ﹣b >mx ﹣2,∴ax +2>mx +b ,∵当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,∴不等式ax +2>mx +b 的解集为x >﹣2,即不等式ax ﹣b >mx ﹣2的解集是x >﹣2.故④正确∴正确的结论为①②③④,共有4个.故选:D【点睛】本题主要考查了一次函数的交点问题,熟练掌握一次函数的图象和性质是解题的关键. 9. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-【答案】D【解析】 【分析】根据第一象限中点的特征,探究规律,利用规律解决问题.【详解】解:由题意,第一象限的点P 1(1,1),P 5(3,3),P 9(5,5),…,P 2021(1011,1011), P 2022的纵坐标与P 2021的纵坐标相同,∴P 2022(-1011,1011),故选:D .【点睛】本题考查坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法.二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.【答案】-3【解析】【分析】根据y 轴上的点的特点为,横坐标=0求解即可.【详解】解:∵点()3,3P m m +-在y 轴上,∴30m +=3m ∴=-故答案为:3-【点睛】本题考查了y 轴上的点的特点,掌握y 轴上的点的特点是解题的关键.11. 11+-=_________.【解析】 【分析】根据数的符号去掉绝对值,然后计算即可.【详解】解:∵1<,∴10<,∴111111+=+=故答案为【点睛】此题主要考查了二次根式的计算,正确判断数的符号,去绝对值是解题的关键.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.【答案】4或254 【解析】【分析】点B 在x 轴上,所以90AOB ∠≠︒ ,分别讨论,90∠=︒ABO 和90OAB ∠=︒两种情况,设(),0B x ,根据勾股定理求出x 的值,即可得到OB 的长.【详解】解:∵B 在x 轴上,∴设(),0B x ,∵()4,3A ,∴5OA == ,①当90∠=︒ABO 时,B 点横坐标与A 点横坐标相同,∴4x = ,∴()14,0B ,∴4OB = ,②当90OAB ∠=︒时,222OA AB OB += ,∵点A 坐标为()4,3,(),0B x ,∴()222243825AB x x x =-+=-+ ,∴2225825x x x +-+= , 解得:254x = , ∴225,04B ⎛⎫ ⎪⎝⎭, ∴254OB = , 故答案为:4或254. 【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______.【答案】()5,16【解析】【分析】根据题中规定的意义写出一对有序实数对.【详解】解:∵电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,∴“5排16号”记作(5,16).故答案为(5,16).【点睛】本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.【答案】100°【解析】【分析】先证明ADE BEF ≌,可得∠AED =∠BFE ,从而得∠BFE +∠BEF =140°,进而即可求解.【详解】解:∵△ABC 中,AC =BC ,∴∠A =∠B ,∵AD =BE ,AE =BF ,∴ADE BEF ≌,∴∠AED =∠BFE ,∵∠DEF =40°,∴∠AED +∠BEF =180°-40°=140°,∴∠BFE +∠BEF =140°,∴∠B =∠A =40°,∴∠C =180°-40°-40°=100°.故答案是:100°.【点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理以及等腰三角形的性质,证明ADE BEF ≌是解题的关键.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.【答案】x <3【解析】【分析】把y =﹣1代入y =﹣13x ,得出x =3,进而利用图象可以知道,当x =3时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式kx +b >﹣13x 的解集. 【详解】解:把y =﹣1代入y =﹣13x , 解得:x =3, 由图象可以知道,当x =3时,两个函数的函数值是相等的,所以不等式kx +b >﹣13x 的解集为:x <3, 故答案为:x <3.【点睛】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 【答案】12013##3913 【解析】【分析】作AF BC ⊥于F ,根据等腰三角形三线合一的性质得出152BF CF BC ===,然后根据勾股定理求得12AF =,再根据垂线段最短和三角形面积公式即可求解.【详解】解:根据垂线段最短,当CP AB ⊥时,CP 取得最小值,作AF BC ⊥于F ,∵AB AC =, ∴152BF CF BC ===,∴12AF ==. ∴1113101222CP ⨯⨯=⨯⨯, 解得12013CP =. 故答案为:12013. 【点睛】本题主要考查了等腰三角形的性质,三角形的面积,关键是理解“等腰三角形三线合一的性质”.17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.【答案】0.4##25【解析】 【分析】利用超过100面的部分的费用除以超出的页数,即可求解.【详解】解:根据题意得:复印超过100面的部分,每面收费为70500.4150100-=-元.故答案为:0.4【点睛】本题主要考查了函数的图象,解题的关键是仔细观察图象,并从图象中整理出进一步解题的有关信息.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____.【答案】0或2【解析】【分析】作PM BC ⊥于M ,证明BMP 是等腰直角三角形,求得1CM BC BM =-=,证明()SAS ABP CBP ≌,推出AP CP =,据此即可求解.【详解】解:作PM BC ⊥于M ,如图所示:∵四边形ABCD 是正方形,∴4BC DC AB ===,90BCD ABC ∠=∠=︒,45ABD CBD ∠=∠=︒,∴BD ==∵PD =∴BP BD PD =-=∵PM BC ⊥,∴BMP 是等腰直角三角形,∴32BM PM BP ===, ∴1CM BC BM =-=,在△ABP 和△CBP 中,AB CB ABP CBP BP BP =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABP CBP ≌,∴AP CP =,∵AP PE =,∴PE CP =,∵PM BC ⊥,∴1EM CM ==,∴22CE CM ==;当点E 与C 重合时,0CE =;综上所述,CE 的长为0或2;故答案为:0或2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭【答案】(1)2+(2)2+【解析】【分析】(1)直接利用绝对值的性质、二次根式的性质分别化简,进而得出答案;(2)直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、立方根的性质分别化简,进而计算得出答案.【小问1详解】解:|2|-2=+2=【小问2详解】解:)1011|2|5-⎛⎫-++ ⎪⎝⎭1252=-+-2=【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.【答案】(1)32x =±(2)12x =-【解析】 【分析】(1)利用求平方根解方程;(2)利用求立方根解方程.【小问1详解】解:2490x -=,249x =,294x =, 32x =±; 【小问2详解】解:()381270x +﹣= ()3﹣127x =-,()32718x =-﹣ 312x -=-, 12x =-. 【点睛】本题考查平方根与立方根,熟练掌握利用求平方根与立方根解方程是解题的关键.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.【答案】(1)9-(2)4【解析】【分析】(1)根据平方根和立方根的定义求出a ,b 的值即可得出答案;(2)求出代数式的值,再求它的立方根即可.【小问1详解】解:∵某正数的两个平方根分别是314a -和2a +,∴31420a a -++=,∴3a =,∵15b -的立方根为3-,∴()315327b -=-=-,∴12b =-,∴3129a b +=-=-;【小问2详解】当312a b ==-,时, 5313a b -+5331213=⨯+⨯+153613=++64=,∴5313a b -+的立方根为4.【点睛】本题考查了平方根和立方根,掌握一个正数的平方根有2个,它们互为相反数是解题的关键. 22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.【答案】(1)见解析;(2)∠3=55°.【解析】【分析】(1)先由∠BAC=∠DAE ,就可以得出∠1=∠EAC ,就可以得出△ABD ≌△ACE ;(2)由(1)得出∠ABD=∠2,就可以由三角形的外角与内角的关系求出结论.【详解】(1)证明:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠1=∠EAC ,在△ABD 和△ACE 中,1=AB AC EAC AD AE =⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)解:∵△ABD ≌△ACE ,∴∠ABD =∠2=30°,∵∠1=25°,∴∠3=∠1+∠ABD =25°+30°=55°.【点睛】此题考查全等三角形的判定与性质,三角形的外角和与内角和,解题关键在于掌握判定定理. 23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.【答案】(1)7米;(2)8m【解析】【分析】(1)由题意得25AB DE ==米,24AC =米,根据勾股定理AC 2+BC 2=AB 2,可求出梯子底端离墙有多远.(2)由题意得此时CD =20米,DE =25米,由勾股定理可得出此时的CE ,继而可求BE .【详解】(1)由题意知25AB DE ==米,24AC =米,4=AD 米,在直角△ABC 中,∠C =90°∴222BC AC AB +=∴7BC =米,∴这个梯子底端离墙有7米(2)∵4=AD 米,∴24420CD AC AD =-=-=(米),在直角△CDE 中,∠C =90°∴222BD CE DE +=∴15CE =(米),15BE =米7-米8=米.答:梯子的底部在水平方向滑动了8m .【点睛】本题考查勾股定理的应用,有一定难度,注意两问线段的变化.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.【答案】(1)y =2x -4;(2)m =1;(3)不在,理由见解析【解析】【分析】(1)可设y +6=k (x +1),将x 、y 值代入求出k 值即可求解;(2)将点(m ,﹣2)代入(1)中函数关系式中求解即可;(3)根据一次函数图象上定的坐标特征进行判断即可.【详解】解:(1)根据题意,可设y +6=k (x +1),∵当x =3时,y =2,∴()2631k +=+解得:k =2,∴y +6=2(x +1),即y =2x -4;,∴y 与x 的函数关系式为y =2x -4;(2)将点(m ,﹣2)代入y =2x -4得:224m -=-,解得:1m =;(3)当x =1时,2423y =-=-≠-,则点(1,−3)不在此函数的图象上.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上的点的坐标特征、解一元一次方程,熟练掌握相关知识的运用是解答的关键.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.【答案】(1)见解析 (2)5(3)点P 见解析,7,04P ⎛⎫⎪⎝⎭【解析】 【分析】(1)根据()()()2,51,14,3A B C ,,找到其关于y 轴对称的对称点的坐标()()()1112,51,14,3A B C ---,,,一次连接即可;(2)采用割补法即可求解;(3)作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,再求出直线2B C 的解析式为4733=-y x ,即可作答.【小问1详解】如图,111A B C △即为所求.【小问2详解】111A B C △的面积为:111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=;【小问3详解】作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,如图,点P 即为所求.证明:根对称性可知:2B P BP =,即:2BP CP B P CP +=+,即当2B 、P 、C 三点共线时22B P CP B C +=,即点P 即为所求.∵()1,1B ,∴()21,1B -,∵()21,1B -,()4,3C ,设直线2B C 的解析式为:y kx b =+,即有:143k b k b +=-⎧⎨+=⎩, 解得:4373k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线2B C 的解析式为4733=-y x , 令0y =,得到47033x =-,解得:74x =, ∴7,04P ⎛⎫ ⎪⎝⎭.【点睛】此题考查了轴对称图形的性质和作图,三角形面积的求法,解题的关键是熟练掌握轴对称图形的性质和作图,三角形面积的求法.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.【答案】(1)普通口罩和N95口罩的售价分别是2元/个,10元/个;(2)①W=-3x+4000,(x≥800);②购进普通口罩800个,N95口罩200个,最大利润是1600元.【解析】【分析】(1)根据题意和表格中的数据,可以列出二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)①根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍,可以求得普通口罩数量的取值范围;②根据一次函数的性质,即可求出最大利润.【详解】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,则5004005000 6003004200a ba b+=⎧⎨+=⎩,解得,210 ab=⎧⎨=⎩,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)①由题意可知,W=(2-1)x+(10-6)×(1000-x)=-3x+4000,∴W=-3x+4000,∵普通口罩的数量不低于N95口罩数量的4倍,∴x≥4×(1000-x),解得,x≥800,∴W=-3x+4000,(x≥800);②在W=-3x+4000,(x≥800)中,∵-3<0,∴W随x的增大而减小,∴当x=800时,W 取得最大值,此时W=-3×800+4000=1600,1000-x=200,因此为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩800个,N95口罩200个,最大利润是1600元.【点睛】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.27. 如图,在平面直角坐标系中,直线AB :y =kx +1(k ≠0)交y 轴于点A ,交x 轴于点B (3,0),点P 是直线AB 上方第一象限内的动点.(1)求直线AB 的表达式和点A 的坐标;(2)点P 是直线x =2上一动点,当△ABP 的面积与△ABO 的面积相等时,求点P 的坐标;(3)当△ABP 为等腰直角三角形时,请直接写出点P 的坐标.【答案】(1)y =13-x +1,点A (0,1) (2)点P 的坐标是(2,43) (3)点P 的坐标是(4,3)或(1,4)或(2,2)【解析】【分析】(1)把B 的坐标代入直线AB 的解析式,即可求得k 的值,然后在解析式中,令0x =,求得y 的值,即可求得A 的坐标;(2)过点A 作AM PD ⊥,垂足为M ,求得AM 的长,即可求得BPD ∆和PAD ∆的面积,二者的和即可表示PAB S ∆,在根据ABP ∆的面积与ABO ∆的面积相等列方程即可得答案;(3)分三种情况:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,由()APN PBM AAS ∆≅∆,可得1AN PN +=①,3PN AN +=②,即得(2,2)P ;当A 为直角顶点时,过P 作PK y ⊥轴于K ,由APK BAO ∆≅∆,可得(1,4)P ,当B 为直角顶点时,过P 作PR x ⊥轴于R ,同理可得(4,3)P .【小问1详解】 解:直线:1(0)AB y kx k =+≠交y 轴于点A ,交x 轴于点(3,0)B ,13k ∴=-, ∴直线AB 的解析式是113y x =-+. 当0x =时,1y =,∴点(0,1)A ;【小问2详解】解:如图1,过点A 作AM PD ⊥,垂足为M ,则有2AM =,设(2,)P n ,2x =时,11133y x =-+=,1(2,)3D ∴, P 在点D 的上方,13PD n ∴=-, 11112()2233APD S AM PD n n ∆∴=⋅=⨯⨯-=-, 由点(3,0)B ,可知点B 到直线2x =的距离为1,即BDP ∆的边PD 上的高长为1,11111()()2323BPD S n n ∆∴=⨯⨯-=-, 3122PAB APD BPD S S S n ∆∆∆∴=+=-; ABP ∆的面积与ABO ∆的面积相等, ∴31113222n -=⨯⨯, 解得43n =,4(2,)3P ∴; 【小问3详解】解:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,如图2:ABP ∆为等腰直角三角形,AP BP ∴=,90NPA BPM PBM ∠=︒-∠=∠,90ANP BMP ∠=∠=︒,()APN PBM AAS ∴∆≅∆,BM PN ∴=,PM AN =,90NOB ONM OBM ∠=∠=∠=︒,∴四边形OBMN 是矩形,3MN OB ∴==,1BM ON AN PN ==+=①,3PN PM PN AN ∴+=+=②,由①②解得2PN =,1AN =,2ON OA AN ∴===,(2,2)P ∴;当A 为直角顶点时,过P 作PK y ⊥轴于K ,如图3:ABP ∆为等腰直角三角形,AP AB ∴=,90KAP OAB ABO ∠=︒-∠=∠,而90PKA AOB ∠=∠=︒,()APK BAO AAS ∴∆≅∆,3AK OB ∴==,1PK OA ==,4OK OA AK ∴=+=,(1,4)P ∴,当B 为直角顶点时,过P 作PR x ⊥轴于R ,如图4:同理可证()AOB BRP AAS ∆≅∆,1BR OA ∴==,3PR OB ==,(4,3)P ∴,综上所述,P 坐标为:(2,2)或(1,4)或(4,3).【点睛】本题考查一次函数综合应用,解题的关键是作辅助线,构造全等三角形,利用全等三角形对应边相等解决问题.。

四川省成都市龙泉驿区向阳桥中学2020-2021学年八年级数学上期12月月考试卷

四川省成都市龙泉驿区向阳桥中学2020-2021学年八年级数学上期12月月考试卷


25.(4分)矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C
落在点C′处,当△BEC′为直角三角形时,BE的长为

26.(10分)某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就 发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公 路上行走)如图是两人离家的距离y(米)与小丽出发的时间x(分)之间的函数图象,请根据图象信 息回答下列问题: (1)求线段BC的解析式; (2)求点F的坐标,并说明其实际意义; (3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.
( 下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)
进行了统计,绘制了两幅不完整的统计图(如图所示).
(1)请补全两幅统计图;本次所抽取学生九月份“读书量“的众数为
本;中位数为________
本;
(2)求本次所抽取学生九月份“读书量”的平均数;
(3)已知该校八年级有500名学生,请你估计该校八年级学生中,九月份“读书量“为5本的学生人
第4页共6页
B卷(50分)
5 1
21.(4分)比较大小:
2
1
(填“>”“<”“=”).
2
22.(4分)如图,数轴上点A表示的数为a,化简: a a2 4a 4 =

23.(4分)关于x,y的方程组
䜭٬ 䜭榔⺅
榔 ⺅9 榔9
的解x与y满足条件x+y≤2,则4m+3的最大值是

24.(4分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市慈溪市慈溪市附海初级中学2020-2021学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,点(3,—4)在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列四个图案中,是轴对称图形的是( ) A .B .C .D .3.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cmD .2cm ,3cm ,6cm4.命题“锐角小于90度”的逆命题是( ). A .如果这个角是锐角,那么这个角小于90度 B .不是锐角的角不小于90度C .不小于90度的角不是锐角D .小于90度的角是锐角5.下列命题中,真命题是( )A .直角三角形只有一条高线B .任何一个角都比它的补角小C .等角的余角相等D .一个锐角与一个钝角的和等于一个平角6.一次函数y =﹣2x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.若等腰三角形的一边长为3,另一边长为6,则它的周长为 ( ) A .9B .12C .15D .12或158.已知 36a b >- ,则下列不等式一定成立的是( ) A .a+1>﹣2b+1 B .﹣a <bC .3a+6b <0D .ab>﹣2 9.已知点A 的坐标为(a +1,3﹣a ),下列说法正确的是( ) A .若点A 在y 轴上,则a =3B .若点A 在一三象限角平分线上,则a =1C .若点A 到x 轴的距离是3,则a =±6D .若点A 在第四象限,则a 的值可以为﹣210.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9 11.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+52;④若s=60,则b=32.其中说法正确的是()A.①②③B.②③④C.①②④D.①③④12.如图,在△ABC中,∠B>90°,CD为∠ACB的角平分线,在AC边上取点E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,则()A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣1 2βC.∠AED=90°﹣α+βD.∠AED=90°+α+1 2β二、填空题13.在直角△ABC中,∠A=35º,则∠B=_________º.14.用不等式表示“x的2倍与3的和不大于2”为________________ .15.在平面直角坐标系内,把(5,2)P--,先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是_________.16.小聪用刻度尺画已知角的平分线,如图,在∠MAN两边上分别量取AB=AC,AE=AF,连接FC,EB交于点D,作射线AD,则图中全等的三角形共有________对.17.如图,在△ABC 中,AD 垂直平分BC ,交BC 于点E ,CD ⊥AC ,若AB =8,CD =6,则BE =________.18.如图,直线 y=x+1 与 y 轴交于点 A 1,以 OA 1为边,在 y 轴右侧作正方形 OA 1B 1C 1,延长 C 1B 1交直线 y=x+1 于点 A 2,再以 C 1A 2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A 1,A 2,A 3,…,A n ,则点 B n 的坐标为_______.三、解答题19.解不等式组:31233122x x x x +<+⎧⎪⎨->⎪⎩,并把它的解集用数轴表示出来.20.如图,△ABC 的顶点均在格点上. (1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.21.一种手机卡的月缴费方式为:每月必须缴纳月租费18元,另外每通话1分钟需缴费0.2元.(注:不足1分钟的部分按1分钟算)(1)如果每月通话时间为x 分钟,每月缴费为y 元,请用含x 的代数式表示y ; (2)在这个问题中,哪些是常量?哪些是变量? 22.解决下列两个问题:(1)如图1,在△ABC 中,AB =3,AC =4,BC =5.EF 垂直且平分BC .点P 在直线EF 上,直接写出P A +PB 的最小值,并在图中标出当P A +PB 取最小值时点P 的位置; 解:P A +PB 的最小值为 .(2)如图2.点M 、N 在∠BAC 的内部,请在∠BAC 的内部求作一点P ,使得点P 到∠BAC 两边的距离相等,且使PM =PN .(尺规作图,保留作图痕迹,无需证明) 23.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?24.如图,在△ABC 中,AD 是△ABC 的高线,CE 是△ABC 的角平分线,它们相交于点P .(1)若∠B =40°,∠AEC =75°,求证:AB =BC ;(2)若∠BAC =90°,AP 为△AEC 边EC 上中线,求∠B 的度数.25.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,点E 是BC 延长线上的一点,且BD =DE .点G 是线段BC 的中点,连结AG ,交BD 于点F ,过点D 作DH ⊥BC ,垂足为H .(1)求证:△DCE 为等腰三角形;(2)若∠CDE =22.5°,DC ,求GH 的长;(3)探究线段CE ,GH 的数量关系并用等式表示,并说明理由.26.如图1,在ABC 中, 90ACB ∠= ,AC=BC , AD CE ⊥ , BE CE ⊥ ,垂足分别为D ,E .(1)若AD=2.5cm,DE=1.7cm,求BE的长.(2)如图2,在原题其他条件不变的前提下,将CE所在直线旋转到ABC的外部,请你猜想AD,DE,BE三者之间的数量关系,直接写出结论:________.(不需证明)(3)如图3,若将原题中的条件改为:“在ABC中,AC=BC,D,C,E三点在同一条∠=∠=∠=,其中α为任意钝角”,那么(2)直线上,并且有BEC ADC BCAα中你的猜想是否还成立?若成立,请予以证明;若不成立,请说明理由.参考答案1.D【解析】试题分析:∵点的横坐标3>0,纵坐标﹣4<0,∴点P(3,﹣4)在第四象限.故选D考点: 点的坐标2.D【解析】【分析】根据轴对称图形的定义,即可得到答案.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.3.B【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,不能够组成三角形;D、2+3<5,不能组成三角形.故选B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.D【分析】交换命题的题设和结论后即可进行判断.【详解】解:命题“锐角小于90度”的逆命题是“小于90度的角是锐角”.故选D.【点睛】本题考查了互逆命题的知识,掌握定义,分清原命题的题设和结论是解题关键.5.C【分析】利用真命题的定义,对各选项逐一判断:任何一个三角形都有三条高,可对A作出判断;一个锐角的补角是钝角,一个钝角的补角是锐角,一个直角的补角是直角,可对B作出判断;利用补角的性质,可对C作出判断;根据平角等于180°,可对D作出判断.【详解】解:A、直角三角形有三条高,原命题是假命题,故A不符合题意;B、任何一个角不一定比它的补角小,可能大于它的补角,也可能等于它的补角或小于它的补角,原命题是假命题,故B不符合题意;C、等角的余角相等,此命题是真命题,故C符合题意;D、一个锐角与一个钝角的和等于一个平角,此命题是假命题,故D不符合题意;故答案为:C.【点睛】本题考查了命题的相关概念,正确理解各命题是解题的关键.6.C【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限. 7.C 【解析】三边长是3,3,6 但不构成三角形,或者三边长是3,6,6,可以构成三角形,周长是6+6+3=15,选C. 8.A 【分析】利用不等式的性质,对各选项逐一判断,可得出正确的选项. 【详解】 解:∵3a >-6b ,∴3a+6b >0,故C 不符合题意; ∴a >-2b∴a+1>-2b+1,故A 符合题意;当b >0时,2ab> , 故D 不符合题意; ﹣a 和b 的大小不能确定,故B 不符合题意; 故答案为:A . 【点睛】本题考查了不等式的性质,掌握不等式的性质是解题的关键. 9.B 【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论. 【详解】解:A .若点A 在y 轴上,则a +1=0,解得a =﹣1,故本选项错误;B .若点A 在一三象限角平分线上,则a +1=3﹣a ,解得a =1,故本选项正确;C .若点A 到x 轴的距离是3,则|3﹣a |=3,解得a =6或0,故本选项错误;D .若点A 在第四象限,则a +1>0,且3﹣a <0,解得a >3,故a 的值不可以为﹣2; 故选B . 【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0. 10.D 【分析】先利用正比例函数解析式,确定A 点坐标;然后利用函数图像,写出一次函数y=kx+b (k≠0)的图像,在正比例函数图像上方所对应的自变量的范围. 【详解】解:把A (m ,﹣3)代入y =13x 得13m =﹣3,解得m =﹣9, 所以当x >﹣9时,kx +b >13x , 即kx ﹣13x >﹣b 的解集为x >﹣9. 故选D . 【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合. 11.D 【分析】①利用速度=路程÷时间可求出两车的速度差,结合快车的速度即可求出a 值,结论①正确;②利用时间=两车之间的距离÷两车速度差可得出b 值,由s 不确定可得出b 值不确定,结论②不正确;③利用两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和可得出c 值,结论③正确;④由②的结论结合s=60可得出b 值,结论④正确.综上,此题得解. 【详解】①两车的速度之差为80÷(b +2﹣b )=40(km /h ), ∴a =100﹣40=60,结论①正确; ②两车第一次相遇所需时间10060s =40s(h ),∵s 的值不确定,∴b 值不确定,结论②不正确;。

相关文档
最新文档