初中培优竞赛 第4讲 因式分解

合集下载

八年级数学竞赛培优讲义

八年级数学竞赛培优讲义

1、用提公因式法把多项式进行因式分解【知识精读】假如多项式的各项有公因式,依据乘法分派律的逆运算,能够把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分派律。

多项式的公因式确实定方法是:(1)当多项式有同样字母时,取同样字母的最低次幂。

(2)系数和各项系数的最大条约数,公因式能够是数、单项式,也能够是多项式。

下边我们经过例题进一步学惯用提公因式法因式分解【分类分析】1.把以下各式因式分解(1)a2 x m 2abx m 1acx m ax m3(2)a(a b) 32a2 (b a) 22ab(b a)分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解: a 2 x m 2abx m 1acx m ax m 3ax m (ax 2bx c x 3 )(2)有时将因式经过符号变换或将字母从头摆列后可化为公因式,如:当 n 为自然数时,(a b) 2n(b a) 2n; (a b) 2n 1(b a) 2 n 1,是在因式分解过程中常用的因式变换。

解: a(a b)3 2a 2 (b a) 2 2ab(b a)2. 利用提公因式法简化计算过程987 987 987 987 例:计算 1232684565211368136813681368分析:算式中每一项都含有987,能够把它当作公因式提拿出来,1368再算出结果。

解:原式987 (123 268 456 521)13683. 在多项式恒等变形中的应用例:不解方程组2x y 3 ,求代数式 (2 xy)(2 x3y) 3x( 2x y) 的5x 3y2值。

分析:不要求解方程组,我们能够把2xy 和 5x 3y 当作整体,它们的值分别是 3 和2 ,察看代数式,发现每一项都含有2x y ,利用提公因式法把代数式恒等变形,化为含有 2x y 和 5x 3y 的式子,即可求出结果。

因式分解(竞赛培训资料)

因式分解(竞赛培训资料)

因式分解把一个多项式化成几个整式的积的形式,叫做多项多式的因式分解。

因式分解是整数质因数分解的发展,实质是多项式乘法的逆运算。

它是多项式的一种重要的变化方法,是解决许多数学问题的有力工具。

在几何、三角等解题与证明中扮演着重要角色,因式分解方法灵活,技巧性强,有利于培养学生的解题技能,发展学生思维能力。

它主要包括以下几个方面的内容:(1) 因式分解的对象是多项式,无论是被分解式还是分解后的每个因式都必须是多项式或单项式。

(2) 因式分解的过程是多项式的恒等变形,每一步都必须保持前后两式相等。

(3) 要注意因式分解的范围是在实数范围几因式分解,还是在有理数范围内因式分解。

(4) 因式分解的结果都是整式的乘积的形式,每一个多项式都要在规定范围内分解到不能再分解为止。

主要方法:提公因式法、公式法、分组分解法、十字相乘法、拆项添项法、待定系数法等。

重要公式及结论:()3223333b ab b a a b a ±+±=± ()()3322b a b ab a b a ±=+±()bcac ab c b a c b a 2222222+++++=++()()()()c a c b b a c b a c b a +++-++=++33333 ()()()b x a x ab x b a x ++=+++2()()122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数)()()122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数)()()122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数)待定系数法因式分解的依据是: n n n n n n n n n n b a b a b a b x b x b x b a x a x a x a ===⇔++++=++++----,,,110011101110 因式定理:如果多项式()001110≠++++--a a x a x a x a n n n n 当a x =时,它的值为0,那么它有因式a x -。

初二培优----因式分解及配方

初二培优----因式分解及配方

初二培优---------配方与因式分解龙泉市育才学校 方伟民内容提要配方:指的是在代数式恒等变形中,把二次三项式a 2±2ab+b 2写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a 2+b 2配上2ab , ②由2 ab 配上a 2+b 2, ③由a 2±2ab 配上b 2 例、22(1)9x k x --+若是完全平方式,求k 的值例、2223,411()x y xy x y x y x y +==+=+=-=已知,求一、因式分解及其运用441、对于多项式x +4,请你配上适当的项,使它成为完全平方式,并对多项式x +4进行因式分解2、322213,,228a b ab a b a b ab +==++已知求的值3、若3256x x x x a ++++有一因式1x +。

求a 的值4、已知( a+1)4=a 4+4a 3+6a 2+4a+1, 若S=(x -1)4+4(x -1)3+6(x -1)2+4x -3. 则S 等于( )(A) (x -2)4 . (B) (x -1)4 . (C) x 4 . (D) (x+1)4.5、22若多项式kx -6xy-8y 可分解写成(2mx+2y)(x-4y),求k,m 的值6、n 是自然数,如果n+20和n-21都是完全平方数,求n 的值7、222244ABC ∆∆已知a,b,c 是的三边长,且满足a c -b c =a -b ,试ABC 判断的形状二、配方(1)求代数式的最大(小)值,方法之一是运用实数的平方是非负数,零就是最小值 1、求代数式a 2+2a -2 的最值.2、求下列代数式的最大或最小值:221x 求y=x ++2010的最小值(2)运用几个非负数的和等于零,则每一个非负数都是零. 3、求方程x 2+y 2+2x-4y+5=0 的解x, y.4、223894613x y x xy y x y -+-++、为实数,说明的值恒为非负数的理由 (3)其它222,,333,,a b c a b c πππ5、设为实数,x=a -2b+,y=b -2c+,z=c -2a+则中至少有一个值( )A 、大于0 B 、等于0 C 、不大于0 D 、小于06、2已知,求x -2x-3的值(3)合理运用典型公式()()()22222212a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦1、例4.已知a=1999x+2000, b=1999x+2001,c=1999x+2002,则多项式222a b c ab bc ca ++---的值为( )A. 0B. 1C. 2D. 32、.已知x-y=a, z-y=10,则代数式222x y z xy yz zx ++---的最小值为( )A.75B.80C.100D.1053、如果a+2b+3c=12,且222a b c a b b c c a ++=++则23a bc ++=( )A.12B.14C.16D.18三、配方与因式分解综合运用1、直角三角形的周长是24cm ,斜边上的中线长为5cm ,求此三角形的面积2、在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++=求证:a c b +=23、 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足x y x xy y --+-+=22220,求长方形的面积。

8年级(下)培优课程【4】因式分解

8年级(下)培优课程【4】因式分解

【4】因式分解考点一:应用因式分解恒等变形求值例1.若多项式x2﹣x+a可分解为(x+1)(x﹣2),则a的值为.例2.已知二次三项式x2+ax﹣1可分解为(x﹣2)(x+b),则a+b的值为.变式1:若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=,b=.变式2:若x2+2(m﹣3)x+16=(x+n)2,则m=.考点二:待定系数法、赋值法在因式分解中的运用例1.若多项式x2﹣px+q(p、q是常数)分解因式后,有一个因式是x+3,则3p+q的值为.变式1:已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m、n 的值.变式2:因为(x+2)(x﹣1)=x2+x﹣2,所以(x2+x﹣2)÷(x﹣1)=x+2,这说明x2+x﹣2能被x﹣1整除,同时也说明多项式x2+x﹣2有一个因式为x﹣1,另外当x=1时,多项式x2+x﹣2的值为0.利用上述阅读材料求解:(1)已知x﹣2能整除x2+kx﹣16,求k的值;(2)已知(x+2)(x﹣1)能整除2x4﹣4x3+ax2+7x+b,试求a、b的值.考点三:根据完全平方公式求值(配方法)例1.已知x2﹣2(m﹣3)x+25是完全平方式,则m=;若关于x、y的多项式9x2﹣kxy+4y2是一个完全平方式,则常数k的值为.变式:若多项式x2+(m﹣1)x+25是一个完全平方式,那么m=.考点四:根据完全平方公式求值(知二求二)例1.已知(a+b)2=7,(a﹣b)2=4,求a2+b2和ab的值.变式:(1)已知a﹣b=6,a2+b2=10,求ab,(a+b)2的值;(2)x+=3,求x2+.(3)已知(a+b)2=7,(a﹣b)2=3,求a2+b2与ab的值;(4)若a+b=﹣3,ab=2,求a2+b2与(a﹣b)2的值.考点五:运用配方法求最值例1.阅读材料题:我们知道a2≥0,所以代数式a2的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用a2±2ab+b2=(a+b)2来求一些多项式的最小值.例如,求x2+6x+3的最小值问题.解:∵x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6,又∵(x+3)2≥0,∴(x+3)2﹣6≥﹣6,∴x2+6x+3的最小值为﹣6.请应用上述思想方法,解决下列问题:(1)求代数式x2+4x+2020最小值.(2)求代数式3x2﹣4xy+4y2+16x+7的最小值,并求出此时xy的值.(3)设a>0,求a2+的最小值,并求出此时a的值.(4)仿照上述方法求代数式﹣x2﹣14x+10的最大(或最小)值,并写出相应的x的值.考点五:几何图形面积中运用因式分解例1.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片,如图C:①若要拼出一个面积为(3a+b)(a+2b)的矩形,则需要1号卡片张,2号卡片张,3号卡片张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为6a2+7ab+2b2,并利用你画的图形面积对6a2+7ab+2b2进行因式分解.变式:我们知道,对于一个图形通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2,请解答下列问题:(1)写出图2所表示的数学等式:;(2)已知a+b+c=12,ab+bc+ac=40,利用(1)中所得结论.求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片、若干个长为b宽为a 的长方形纸片,选用这些纸片拼出一个图形,使得它的面积是2a2+7ab+3b2.画出该图形,并利用该图形把多项式2a2+7ab+3b2分解因式.DM AP课堂练习1.下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.2.x2﹣5x+k中,有一个因式为(x﹣2),则k的值为()A.3 B.﹣3 C.6 D.﹣63.不等式组:的解集是x>4,那么m的取值范围是()A.m≥4 B.m≤4 C.m<4 D.m=44.如图7,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<06.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图9所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定7.如图10,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA,点M是OP的中点,则DM的长是()A.2 B. C. D.8.若x2+mx﹣n能分解成(x﹣1)(x+4),则m= ,n= .9.若x同时满足不等式2x+3>0与x﹣2<0,则x的取值范围是.10.已知:x2﹣y2=8,x ﹣y=4,则x+y= .11.已知21012a b-=,20232024ab=,则2224a b ab-的值为.12. 已知12-=m , 则2023202220212m m m +-的值是 .13.在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为52°,则底角B 的大小为 .14.如图,已知一次函数y kx b =+(k ,b 为常数,且0k ≠)的图象与x 轴相交于点A (3,0).若正比例函数y mx =(m为常数,且0m ≠)的图象与一次函数的图象相交于点P ,且点P 的横坐标为1,则关于x 的不等式()0k m x b -+>的解集为 ,关于x 的不等式组0,0mx kx b <⎧⎨-<⎩的解集为 .15.若关于x 的不等式组的所有整数解的和是﹣9,则m 的取值范围是 .16.已知关于x 的不等式组只有4个整数解,则a 的取值范围是 .17.解不等式组,并把解集在所给数轴上表示出来.253(2)(1)123x x x x 523(1)(2)131522x x x x18. 分解因式.(1)4x 2(y ﹣2)+9(2﹣y ) (2)4﹣m 2+2mn ﹣n 2(3) 321025x x x -+; (4)()()224292m n m n ---.19.我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.物资种类 A B C每辆汽车运载量(吨)12 10 8每吨所需运费(元/吨)240 320 20020.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,已知AC=10,OA=8.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.21.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P 与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°(2)如图2、3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=120°,∠ACP=15°,且AC=6,求BQ的长.22.背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC =∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB =;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.。

【八年级】人教版数学八年级培优和竞赛教程4用分组分解法进行因式分解

【八年级】人教版数学八年级培优和竞赛教程4用分组分解法进行因式分解

【关键字】八年级4、用分组分解法进行因式分解【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。

使用这种方法的关键在于分组适当,而在分组时,必须有预见性。

能预见到下一步能继续分解。

而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。

下面我们就来学习用分组分解法进行因式分解。

【分类解析】1. 在数学计算、化简、证明题中的应用例1. 把多项式分解因式,所得的结果为()分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

解:原式故选择C例2. 分解因式分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。

解法1:解法2:2. 在几何学中的应用例:已知三条线段长分别为a、b、c,且满足证明:以a、b、c为三边能构成三角形分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”证明:3. 在方程中的应用例:求方程的整数解分析:这是一道求大概方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解解:4、中考点拨例1.分解因式:_____________。

解:说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:____________解:说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:____________解:说明:分组的目的是能够继续分解。

5、题型展示:例1. 分解因式:解:说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。

数学竞赛中的因式分解问题.doc

数学竞赛中的因式分解问题.doc

数学竞赛中的因式分解问题市郊中心学校 李英1 引言因式分解是指把一个多项式分解为几个整式的积的形式,即和差化积.它是中学数学中最重要的恒等变形之一,被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用,学习它,既可以复习整式四则运算,又为学习分式打好了基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力.分解因式与整式乘法互为逆变形.因式分解的应用较为广泛,可应用于多项式除法、高次方程的求根以及分式的运算.因式分解在中学数学里占有十分重要的地位,它是学习其他知识的一座桥梁,在分式的运算中,它是通分和约分的基础知识;在解高次方程与不等式时,它又是一种重要的解法;在数的运算中,它是进行简便运算的重要方法;在代数式与三角式的恒等变形中,它又是一种重要的手段;它对整式的运算也起到巩固的作用;它是整式乘法的逆变形,对学生的逆向思维能力、观察能力的培养也起着积极的作用.在各类数学竞赛中,它是命题的热点.2 数学竞赛中常见的因式分解方法2.1 分组分解法[1]当多项式的项数较多时,可将多项式进行合理分组,然后再直接提公因式或运用公式进行因式分解.例如:要把多项式am an bm bn +++分解因式,可以先把它前两项分成一组,并提出公因式a ,再把它后两项分成一组,并提出公因式b ,从而得到()()a mn b m n +++,又可以提出公因式()m n +,从而得到()()a b m n ++ .例1分解因式2222224y x 565x 24y 30y y y x x x --+-++-(全国“希望杯”数学竞赛题)分析 本题如是按照一般的分组分解方法难以进行,若将它整理成x 或y 的二次三项式再分组,问题就变得简单了.解 原式=()()()22224545645x y y x y y y x -++-+--+=()()22456y x y x -++-=()()()23245x x y y +--+2.2 待定系数法[2]待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n 个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数,从而把多项式因式分解.待定系数法是数学常用方法,用途十分广泛.2.2.1用待定系数法解题的依据用待定系数法解题的依据主要是多项式恒等定理:(1) 多项式()()x g x f ≡的充要条件是两个多项式的同类项的系数对应相等.(2) 如果()()x g x f ≡,则对于任意一个值a ,都有()()a g a f ≡.2.2.2用待定系数法解题的一般步骤(1)用适当的待定系数表示问题的一般形式.(2)根据多项式恒等定理列出方程(组).(3)解方程(组),确定待定系数的值.2.2.3待定系数法在数学竞赛中的应用例2分解因式:226136xy x y y x +-++-(第十届缙云杯初二数学竞赛) 解 由于原式是二元二次式,且只可能分解成两个二元一次式之积,考虑到226xy y x +-=()()y x y x 23-+ 故可设226136xy x y y x +-++-=()()b y x a y x +-++23=226xy y x +-()()32a b x b a y ab +++-+比较恒等式两边同类项系数,得⎪⎩⎪⎨⎧-==-=+613231ab a b b a ②由于①、②解得,3,2=-=b a 代入③,适合.所以,226136xy x y y x +-++-=()()3223+--+y x y x说明 高次多项式的因式分解一般较难,如果能判定它含有某些因式后再分解就相对容易些.所以,在分解高次式之前,我们可以用因式定理“如果(),0=a f 则()x f 必含有因式a x =”来寻找()x f 的因式.例3 分解因式:()()()876321⨯⨯-+++x x x (1987,四川省初中数学竞赛) 解 设()=x f ()()()876321⨯⨯-+++x x x显然,().05=f由因式定理知()x f 有因式().5-x所以可设()()()⨯⨯-+++76321x x x 8= ()5-x ()b ax x ++2取,1-=x 得()b a +--=⨯⨯-16876;取,2-=x 得=⨯⨯-876().247b a +--解得.66,11==b a说明(1)有几个独立的待定系数,就必须列出几个独立的方程.当方程个数多余未知数的个数时,可选择其中适当的方程求解,而把多余的方程作检验用,当解得的未知数适合所有方程时,这些未知数的值即为所求.(2)在设多项式可能的分解形式时,应充分利用已知条件和多项式的有关性质,尽量减少待定系数的个数,这样可减少方程个数,降低解方程组的难度.(3)当分解后的可能形式不止一种而又不能确定哪一种正确时,就要逐个试探.在试探过程中,如能充分利用已知信息和解题经验,则可减少探索过程,少走弯路.2.3 换元法[3]换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并引入一个新的字母变量替代这个整体来运算,从而使运算过程简明清晰.达到简化原式结构的目的.有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.种方法对于某些特殊的多项式因式分解可以起到简化的效果.换元法是一种重要的数学方法.注意:换元后勿忘还元.例4 方程组⎪⎪⎩⎪⎪⎨⎧=+=+71328123y x xy y x xy 的解是=x =y (第十一届‘五羊杯’初中数学竞赛题)分析 如果把已知方程两边都取倒数,那么可得,732,823=+=+xyy x xy y x 即,732,823=+=+xy x y 这就可以用换元法来解这个方程组.解 设,1,1v yu x == 则原方程可化为⎩⎨⎧=+=+732823u v v u 解这个方程组得⎩⎨⎧==21v u.21,1==∴y x2.4 十字相乘法[4]2.4.1q px x ++2的因式分解由乘法公式知:()()()2x a x b x a b x ab ++=+++令,,ab q b a p =+=则有q px x ++2=()()b x a x ++凡是如q px x ++2的形式的二次三项式,如果可以分解成两个一次因式,那么每个因式有两个项,它们的第一项都是x ,第二项a 和b 可以由一次项的系数p 和常数项q 确定.(1)确定a 和b 的符号:①如果q 是正数,p 也是正数,那么a 和b 都是正数;②如果q 是正数,p 是负数,那么a 和b 都是负数;③如果q 是负数,p 是正数,a 、b 中绝对值大的是正,小的是负; ④如果q 是负数,p 也是负数,a 、b 中绝对值大的是负,小的是正;(2)确定a 和b 的绝对值,可以先把q 得绝对值分解成所有可能的一对因数的积,然后看:①如果a 、b 同号的话,哪一对因数的和等于p 的绝对值,那么这一对因数就是a 和b 的绝对值;②如果a 、b 异号的话,哪一对因数的差等于p 的绝对值,那么这一对因数就是a 和b 的绝对值;2.4.2 n mx lx ++2的因式分解由乘法可以得到关于x 的两个二项式b ax +和d cx +相乘的结果:()()()bd x bc ad acx d cx b ax +++=++2.如果令,,,bd n bc ad m ac l =+==得公式:n mx lx ++2=()()d cx b ax ++. 具体步骤:(1)把l 分解成两个正因数a 和c (如果l 是负数,可以先提出公因式-1,这样括号里2x 项的系数就是正数3),把a 、c 分成上下行写在左列.(2)把n 的绝对值分解成两个因数b 和d ,分上下行写在右列.(3)交叉相乘,得到两个积ad 和bc 的值,如下式:(4)如果n 是正数,那么ad 和bc 的绝对值的和必须等于m 的绝对值才适合,如果n 是负数,那么ad 和bc 的绝对值的差必须等于m 才合适.(5)确定ad 和bc 的符号,而ad 的符号就是d 的符号,bc 的符号就是b 的符号.把符号补到竖式里去,最后把确定了的a 、b 、c 、d 分别填入两个因式()b ax +和()d cx +中去.例5 已知方程()222238213150a x a a x a a --+-+=(其中a 是非负整数)至少有一整数根,那么a =分析 考虑到151322+-a a =()()325--a a 且十字相乘之积的和正好等于一次项系数a a 832+-.解 原方程用十字相乘法对左端分解因式得()()523ax a ax a ----⎡⎤⎡⎤⎣⎦⎣⎦,,32,5121ax a x -=-=∴ 要使1x 或2x 是整数,只要a =1, 3,5.答:a 可取1, 3,5.2.4.3 双十字相乘法[5]在分解二次三项式时,十字相乘法是常用的方法,对于比较复杂的多项式,尤其是二次六项式,也可以运用十字相乘法分解因式,其具体步骤为:(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图.(2)把常数项分解成两个因式填在第二个十字的右边且使这个两个因式在第二个十字中交叉之积等于原式中含y 的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含x 的一次项.例6 分解因式224522-+++-y x y xy x .解 这是一个二次六项式,可考虑使用双十字相乘法进行因式分解,如下图:所以,原式=()()124--+-y x y x .2.5 对称式的因式分解[6]2.5.1对称多项式如果对换多项式()n x x x f ,...,,21的任意两个字母的位置,多项式恒不变,那么()n x x x f ,...,,21叫做n 元对称多项式.例如()333231321,.,x x x x x x f ++=,()221221323121,x x x x x x x x f +++=分别为三元,二元对称多项式,并且都是三次齐次式.三次齐次对称式的标准形为()()Cxyz x z x z yz z y xy y x B z y x A +++++++++22222223332.5.2对称式的因式分解根据对称多项式的特点和因式定理,可利用待定系数法对它进行因式分解. 例:分解因式Q =()()()()3333z y x y x z x z y z y x -+--+--+-++解:由于交换x 、y 、z 之中的任意两个字母,原多项式不变,所以原式为对称式.设0x =,那么有()()()()33330.y z y z z y y z +-+----=由因式定理可知,Q 含有因式x ,又Q 是关于x 、y 、z 的对称式,所以它还有因式y 和z .又由于Q 是三次式,xyz 也是三次式,所以Q =A xyz (A ≠0),A 是待定系数. 确定A 的值,有两种方法:(1) 因为Q =A xyz 是恒等式,所以只要任取x 、y 、z 的一组值,就可以确定A 的值. 设x =1,y =-1, z =1,左边=-24,右边=-A ;∴A =24,即Q =24xyz .(2)因为Q =A xyz 是恒等式,所以只要求出Q 的展开式中xyz 的系数,就是A的值.()3z y x ++的展开式中,xyz 的系数是6,其余三个式子的展开式中xyz 的系数是-6,所以Q 的展开式中xyz 的系数是24,即A =24.3 因式分解在数学竞赛中的应用因式分解是初中代数中重要的一中恒等变形,其特点是把和差化积的形式.作为一种数学方法,它在解题中的应用较广,有些问题,若能恰当使用,可使解题过程显得简捷明了,收到事半功倍的效果.3.1 用于计算[7]例7 计算:19961995199519931995219952323-+-⨯-(北京市中学生数学竞赛初二赛题) 解 原式=()()2219952199319951995119961995--+-=()()22199311995199611995-- =19961993 例8 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22221011411311211 (天津市初二数学竞赛题) 解 原式=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-10111011411411311311211211 =101110991098454334322321⨯⨯⨯⨯⨯⨯⨯⨯ =20113.2 用于求值[7]例9 若n 为正整数,且4216100n n -+是质数,那么n = (希望杯初二数学竞赛试题)解 原式=()4221610036n n n -+- =()2223610n n -+ =()()22610610n n n n ++-+ 因为()()22610610n n n n ++>-+, 所以()2610n n -+=1, 所以()230n -=,所以3n =.例10 已知:0=+bd ac ,则()()2222b a cd d c ab +++得值等于 (武汉市初中数学竞赛初二试题)解 原式 =2222cdb cda abd abc +++=()()bd ac ad bd ac bc +++=()()ac bd bc ad ++0=+bd ac ∴原式=03.3 用于解决有关方程问题[7]例11 若方程2214,28,xy y xy x y x ++=++=,则x y +的值为 (TI 杯全国初中数学竞赛试题)解 把两个方程左右两边分别相加得:22242,xy x y y x ++++=移项并整理得:()()2420x y x y +++-=方程左边因式分解得:()()670x y x y +-++=所以,7,6-=+=+y x y x 或.例12 已知方程()()22221120x y x y +-+-=,则y x 、的平方和是 (孝感市英才杯初中数学竞赛试题) 解 原方程变形得,()()01222222=-+-+y x y x ,()()2222340x y x y ∴+++-= 0322>++y x ,0422=-+∴y x ,∴422=+y x3.4 用于二次根的化简[7]例13 化简2356101528-+--+的结果是 (山东省初中数学竞赛试题) 解 原式=()()235352352-++-+==35+例14 化简=+++--+2115141021151410 (武汉、重庆市初中数学竞赛题)解 原式=()()()()753752753752++++-+= =3232+- =562-3.5 用于判断整除问题[8]例15 多项式1261x x -+除以21x -的余式是 (1993,全国初中数学竞赛)解 设商式为()x g .因为除式是二次式,则余式最多是一次式,故可设1261x x -+=()()21g x ax b x -++取,1=x 得b a +=1,取,1-=x 得b a +-=1.解得1,0==b a .所以,余式是1.例16 知多项式1323+++bx ax x 能被12+x 整除,且商式是13+x ,那么()b a -的值是 (第五届河南省初二数学竞赛)解 据多项式恒等式,得()()32231131x ax bx x x +++=++.取1=x 得84=++b a .取1-=x 得42-=--b a .解得3,1==b a .()()113-=-=-∴b a .3.6 用于确定大小关系[9]例17 知c b a >>,a c c b b a M 222++=,222ca bc ab N ++=,则M 与N 的大小关系是 (第十三届“希望杯”初二)解 为c b a >>,所以N M -=()()()22222b c a c b a b c bc -+-+-=()c b -()ab ac bc a --+2=()c b -()()0a c a b -->所以M N >.3.7 用于解不定方程[9]例18 足不等式2003200320032003=+--+xy y x y x y x 的正整数对()y x ,的个数是 2 (2003年全国初中数学联赛试题)解 m =n =,k =2003,则222n m km kn mnk m n k +--+=,所以()()20m n mn k mn m n k ++--+=,()()0k mn k m n -++=.因为0k m n ++>,所以0k mn -=,即=2003xy .由x 、y 都是正整数且2003是质数,易求x 与y 的值.3.8 其他应用[9]例19 个指教三角形的边长都是整数,它的面积与周长的数值相等,试确定这个直角三角形的三边的长.(2003年北京市中学生数学竞赛初中二年级复赛试题)解 两直角边分别为a 、b ,斜边为a bc >,由于a 、b 、c 全是正整数,所以b a ≠.依题意有++b a 22b a +=2ab . 移项,平方,整理得0242222=+--ab ab b a b a , 因为ab 0≠,两边同除以abc ,得024=+--b a ab , 可化为()()4281844⨯=⨯==--b a .因为a 、b 都为正整数,a b >,则⎩⎨⎧=-=-1484b a 或 ⎩⎨⎧=-=-2444b a 分别得a =12,b =5,c =13或a =8,b =6,c =10.答:三边长为12、5、13或8、6、10.例20 甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现购甲、乙、丙各一件,共需多少元?(1985,全国初中数学竞赛)解 购甲1件需x 元,乙一件需y 元,丙一件需z 元,则购甲、乙、丙各一件需()z y x ++元.由已知条件得:15.373=++z y x20.4104=++z y x设z y x ++()()z y x b z y x a +++++=10473()()()z b a y b a x b a +++++=10743比较等式两边同类项系数,得 ⎪⎩⎪⎨⎧=+=+=+11107143b a b a b a解得3=a ,2-=b .05.120.4215.33=⨯-⨯=++∴z y x .。

七年级(上)数学培优班--第4讲 因式分解--(配方、拆添项、双十字、主元)---学生版

七年级(上)数学培优班--第4讲 因式分解--(配方、拆添项、双十字、主元)---学生版

第四讲因式分解(拆添项、配方、双十字、主元)拆添项一、拆项与添项:拆项:把代数式中的某项拆成两项或几项的代数和,叫做拆项,如22232a a a =-; 添项:在代数式中填上两个相反项,叫做添项,如221221a a a a +=+-+. 拆项和添项都是代数式的恒等变形.在对所给多项式直接分组难以进行因式分解时,常常可以通过拆项或添项的变形,创造出提取公因式或运用乘法公式进行因式分解的条件,使原式的某些项之间能够建立起联系,便于采用分组法进行因式分解.这种通过拆项或添项来进行因式分解的方法,形式多样,技巧性较灵活,因此具有一定的难度,需要同学们通过多做练习来掌握.【铺垫1】 ★★☆☆☆分解因式:387x x -+【例题1】 ★★★☆☆分解因式:(1)32x x +-(2)414x x --(3)42201820172018x x x +++配方法二、配方法:(1)定义:在代数式中,利用添项的方法,将原多项式配上某些需要的缺项,使添项后的多项式的一部分成为一个完全平方式,这种方法叫做配方法.(2)方法:配方主要是配中项2ab ,或配一个平方项2b (或2a ).如何配方依赖于对题目特点的观察和分析.应用配方法进行因式分解时,常将多项式配成平方差公式22A B -的形式,使多项式可分解为()()A B A B -+的形式.【铺垫2】 ★☆☆☆☆分解因式:421x x ++【例题2】 ★★☆☆☆分解因式:(1)444x y + (2)4259x x ++ (3)422423a a b b -+【例题3】 ★★★☆☆4322321x x x x ++++【悬赏题】 ★★★★☆分解因式:51x x ++【悬赏题】 ★★★★☆分解因式:()444x y x y +++双十字相乘双十字相乘法:⑴适用范围:双十字相乘法适用于对形如FEyDxCyBxyAx+++++22的二次多项式进行因式分解.⑵条件:①21aaA=,21ccC=,21ffF=②Bcaca=+1221,Efcfc=+1221,Dfafa=+1221即:1a x1c y1f2a x2c y2f则=+++++FEyDxCyBxyAx22111222()()++++a x c y f a x c y f⑶步骤:①用十字相乘法分解二次三项式()()221122Ax Bxy Cy a x c y a x c y++=++,用十字交叉线表示(共两列);②用十字相乘法分解二次三项式()()21122Cy Ey F c y f c y f++=++,继续用十字交叉线表示,即把常数项F分解成两个因式填在第三列上.③用十字相乘法分解二次三项式2Ax Dx F++,检验是否等于()()1122a x f a x f++,若相等,则双十字相乘法分解因式成功.(4) 特殊情况:形如432Ax Bx Cx Dx E++++一元四次五项式.即:21a x1c x1e22a x2c x2e其中,12A a a=,1221B a c a c=+,1221D c e c e=+,12E e e=,特别的,121221C c c a e a e=++.【铺垫3】★☆☆☆☆分解因式:22232543x xy y yz zx z+++++.模块三【例题4】 ★★☆☆☆双十字相乘法分解因式: (1)226136x xy y x y ---+-(2)2221076142712x xy y xz yz z ---+-【例题5】 ★★☆☆☆双十字相乘法分解因式: (1)2256x y x y -++- (2)225624x xy y y -++-【例题6】 ★★★☆☆双十字相乘法分解因式: (1)4322656x x x x ++++ (2)432273108x x x x +++-注:关于x 的四次五项式的因式分解方法很多,个人理解,一般以系数的特征来区分用法, 如43222533x x x x ++++,一二项系数相同,四五项系数也相同,而第三项系数等于前后系数之和的,直接选用拆中项分组分解,得()()4322222333x x x x x +++++;如4325251x x x x ++++,一三五可配方,选用分组分解,得()()4232155x x x x ++++;如4323266x x x x -++-,系数相加为0,选用试根法,根为1,具体在后面讲次会讲解; 再比如还有待定系数法解决一般的四次五项式,不过所有方法中,相对而言双十字相乘法会更加便捷的解决一般的四次五项式,建议在这着重练习.主元十字主元十字法实际上属于分组分解法中的一类,方法是以某个字母为主(看作主元),把这个多项式看成关于主元的二次三项式,再用十字相乘法进行因式分解.【铺垫4】 ★★☆☆☆分解因式:32221a b a b ab a ++++.【例题7】 ★★★☆☆用主元法分解因式:(1)222a bc ac acd abd cd d ++--- (2)2222222x y y z z x x z y x z y xyz -+-++-模块四【例题8】 ★★★☆☆分解因式:()()()2211221y y x x y y +++++..【悬赏题】 ★★★★☆分解因式:()()()()()2222221ab x y a b xy a b x y ---+-++【练习1】 分解因式:(1)332x x -+ (2)3212x x +- (3)3231x x -+【练习2】 分解因式:(1)32212x x x ---(2)32201820182017x x x +++ (3)42676x x x ---【练习3】 分解因式:(1)4414x y +(2)422416x x y y -+ (3)42204x x -+【练习4】 分解因式:224443x x y y --+-【练习5】 分解因式:4422222221x y x y x y +---+【练习6】 分解因式:43241x x x x +-++【练习7】 分解因式:(1)222332x xy y x y +++++ (2)22215196x xy y x y +-+-- (3)2220918183314x xy y x y +--+- (4)22xy y x y ++--【练习8】 分解因式:(1)432391112x x x x ++++ (2)432922x x x x --++11 【练习9】 ★★★☆☆分解因式:(1)432223816x x x x +--+ (2)4212312224x x x -+-【练习10】 分解因式:(1)322232b ab a b ac c ++++ (2)222324x y xy x xy y +++-- (3)23322222a x ax ax x ax +++--。

初中八年级数学竞赛培优讲义全套专题04 和差化积----因式分解的方法(2)

初中八年级数学竞赛培优讲义全套专题04 和差化积----因式分解的方法(2)

专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法 1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法. 2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l 】xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .()()()z x y x z y -+-B .()()()z x y x z y +--C .()()()z x y x z y +-+D .()()()z x y x z y -++(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1)bc ac ab c b a 54332222+++++;(“希望杯”邀请赛试题)(2)z y xy xyz y x z x x 222232242-++--.(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式1)12()12(2223-+-++++a x a a x a x .(“希望杯”邀请赛试题)解题思路:因a 的最高次数低于x 的最高次数,故将原式整理成字母a 的二次三项式.【例4】k 为何值时,多项式k y x y xy x +++-+108222有一个因式是?22++y x(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式12544234+-+-x x x x 写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是44x ,因此二次三项式的一般形式为b ax x ++22,求出b a 、即可.【例6】如果多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +,)(c x +的乘积(c b ,为整数),则a 的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于a c b ,,的方程组,通过消元、分解因式解不定方程,求出a c b ,,的值.能力训练A 级1.分解因式:222449c bc b a -+-=___________________________.(“希望杯”邀请赛试题)2.分解因式:22635y y x xy x ++++=_______________________(河南省竞赛试题)3.分解因式:)(3)(322y x y y x x -+-+++=____________________________.(重庆市竞赛试题)4.多项式78622++-+y x y x 的最小值为____________________.(江苏省竞赛试题)5.把多项式822222--++-y x y xy x 分解因式的结果是( )A .)2)(4(+---y x y xB .)8)(1(----y x y xC . )2)(4(--+-y x y xD .)8)(1(--+-y x y x6.已知122-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ).A .3 个B .4 个C .5 个D .6个 7.若4323+-kx x 被13-x 除后余3,则k 的值为( ). A .2 B .4 C .9 D .10(“CASIO 杯”选拔赛试题)8.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值是( ). A .92 B .32 C .54D .0(大连市“育英杯”竞赛试题)9.分解因式:(1)ac bc ab b a 2222++--;(吉林省竞赛试题)(2)))((4)(2b ac b a c ----;(昆明市竞赛试题)(3)a x a x x 2)2(323-++-;(4)12267222--++-y x y xy x ;(四川省联赛试题)(5)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy(天津市竞赛试题)10.如果1)4)((---x a x 能够分割成两个多项式b x +和c x +的乘积(c b 、为整数),那么a 应为多少?(兰州市竞赛试题)11.已知代数式24322-+---by x y xy x 能分解为关于y x ,的一次式乘积,求b 的值.(浙江省竞赛试题)B 级1.若k x x x +-+3323有一个因式是1+x ,则k =_______________.(“希望杯”邀请赛试题)2.设y kx xy x x 42323---+可分解为一次与二次因式的乘积,则k =_____________.(“五羊杯”竞赛试题)3.已知4+-y x 是4322+++-y mx y x 的一个因式,则m =________________________. (“祖冲之杯”邀请赛试题) 4.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值为__________.5.若823+++bx ax x 有两个因式1+x 和2+x ,则b a +=().A .8B .7C . 15D .21E .22(美国犹他州竞赛试题)6.多项式251244522+++-x y xy x 的最小值为( ). A .4 B .5 C .16 D .25(“五羊杯”竞赛试题)7.若136498322++-+-=y x y xy x M (y x ,为实数),则M 的值一定是().A .正数B .负数C .零D .整数(“CASIO 杯”全国初中数学竞赛试题) 8.设n m ,满足016102222=++++mn n m n m ,则),(n m =()A .(2,2)或(-2,-2)B .(2,2)或(2,-2)C .(2,-2)或(-2,2)D .(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:222444)(2)(b ab a b a b a ++=+++.(北京市竞赛试题)11.已知整数c b a ,,,使等式)1)(11()10())((+-=-+++x x x c b x a x 对任意的x 均成立,求c 的值.(山东省竞赛试题)12.证明:对任何整数y x ,,下列的值都不会等于33.543223451241553y xy y x y x y x x ++--+(莫斯科市奥林匹克试题)。

因式分解培优题(超全面、详细分类)资料讲解

因式分解培优题(超全面、详细分类)资料讲解

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:( 1)提公因式法;( 2)公式法;( 3)十字相乘法;( 4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) a2-b2=(a+b)(a-b);(2) a2±2ab+b2=(a±b)2;(3) a3+b3=(a+b)(a2-ab+b2);(4) a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5) a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6) a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7) a n—b n=(a—b)(a n_ 1+a n_2b+a n「3b2+…+ab n—2+b n_ 1),其中n 为正整数;(8) a n—b n=(a+b)(a n—1—a n—2b+a n—3b2—…+ab n—2—b n—1),其中n 为偶数;(9) a n+b n=(a+b)(a n—1—a n—2b+a n—3b2—…一ab n—2+b n—1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题 1 分解因式:(1) —2x5n—1y n+4x3n—1y n+2—2x n—1y n+4;(2) x3—8y3—z3—6xyz;(3) a2+b2+c2—2bc+2ca—2ab;(4) a7—a5b2+a2b5—b7.例题2 分解因式:a3+b3+c3—3abc.例题 3 分解因式:x15+x14+x13+…+x2+x+1.对应练习题分解因式:x 9y10 . 5(2) x +x —2(3) x4 2x2y2 4xy3 4x3y y2(4 x2 3 y2)4(4) (x5+x4+x3+x2+x+1)2—x5(5) 9(a- b)2+12(a2- b2)+4(a+b)2⑹(a- b)2- 4(a- b- 1)(7) (x+y)3+2xy(1 —x—y) —1二、分组分解法(一)分组后能直接提公因式例题 1 分解因式:am an bm bn分析:从“整体” 看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系. 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题 2 分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y 1(二)分组后能直接运用公式例题 3 分解因式:x2 y2 ax ay例题 4 分解因式:a2 2ab b22 c对应练习题分解因式:3、x2 x 9y2 3y4、22yz 2yz1) x 32 xy 2 xy 3y3) x 26xy 9y 2 16a 28a 1综合练习题 分解因式: 222) axbx bx ax a b224) a 26ab 12b 9b 2 4a5) a 4 2a 3 a 2 9 2 2 2 26) 4a x 4a y b x b y7) 2 x 2xy xz 2 yz y 9) y(y 2) (m 1)( m 1) 228) a 22a b 2 2b 2ab 110) (a c)(a c) b(b 2a)11)a 2(b c) b 2 (a c) c 2(a b) 2abc 4 3 2 2 3 412)a 2a b 3a b 2ab b .2213) ( ax by) ( ay bx)14) xyz(x 3 y 3 z 3) y 3z 3 z 3 x 3 x 3y 34 2 215) x 4 2ax 2x a 2a16) x 3 3x 2 (a 2) x 2a17) (x 1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式2直接利用公式--- x (p q)x pq (x p)(x q)进行分解.特点:(1)二次项系数是1 ;(2)常数项是两个数的乘积;(3)—次项系数是常数项的两因数的和例题1 分解因式:x2 5x 6例题2分解因式:x2 7x 6对应练习题分解因式:(1) x214x 24 ⑵a215a 36 ⑶x24x 52⑷x x 2 ⑸y22y 15 ⑹x210x 24(二)二次项系数不为1的二次三项式-ax bx c条(1)a a〔a? a C1件:(2)c C1C2 a2- C2(3)b a〔C2 a2 G b a© a2&分解结果:ax2 bx c =(a1x G)(a2x c2)例题3分解因式:3x211x 10 对应练习题分解因式:(1)5x2 7x 6 (2)3x2 7x 2(3)10x217x 3 2(4) 6y 11y 10(三)二次项系数为1的齐次多项式 例题4 分解因式:a 2 8ab 128b 2分析:将b 看成常数,把原多项式看成关于 a 的二次三项式,利用十字相乘法进行分解8b+( — 16b)= — 8b对应练习题分解因式:2 2 (1) x 3xy 2y2 2(2) m 6mn 8n⑶a 3 ab 6b 2(四)二次项系数不为1的齐次多项式 例题5分解因式:2x 2 7xy 6y 2对应练习题分解因式:(1) 15x 2 7xy 4y 22 2(2) a x 6ax 8综合练习题分解因式:2 2(2) 12x 11xy 15y2(4) (a b) 4a 4b 33 (x y)2 3(x y) 10(5) x 2 y 2 5x 2y 6x 28b —16b例题6 分解因式:x 2y 2 3xy 2(1) 8x 6 7x 312 2(6) m 4mn 4n 3m 6n 2(7) x 2 4xy 4y 2 2x 4y 3 (8) 5(a b)2 23(a 2 b 2) 10(a b)2(9) 4x 2 4xy 6x 3y y 210 2 2 (10) 12(x y) 11(x 2 2 y ) 2(x y) 思考:分解因式: abcx 2 (a 2b 2 c 2)x abc 2、双十字相乘法定义:双十字相乘法用于对Ax 2 Bxy Cy 2 Dx Ey F 型多项式的分解因式 条件:(1) A a 1a 2, (2) a 1c 2 a 2c ! 即:C C 1C 2,B , c f 2C 1F ff c 2 f 1 E , a f2 a ? f. C 2 a 〔C 2 a 2c i B , c 2f 1 E ,a 1 f 2 a 2 f 1 D 则Ax 2 Bxy Cy 2 Dx Ey F (ax Gy gy f 2)例题7 分解因式: (1) 2 x 3xy 10y 2 x 9y 2(2) 2 x xy 6y 2 x 13y 6解: (1) 2 x 3xy 1 0y 2 x 9y 22 a 2应用双十字相乘法: x 2xy •••原式=(x 5yx 5xy 2)(x 5y 2y 3xy , 5y 4y 9y , x 2x x2y 1) 23xy 2xy xy , 4y 9y 13y , 2x 3x x •原式=(x 2y3)( x 3y 2)对应练习题分解因式:(1) x 2 xy 2y 2 x 7y 62 2 2(2) 6x 7xy 3y xz 7yz 2z3、十字相乘法进阶例题8 分解因式:y(y 1)(x2 1) x(2y2 2y 1)例题9 分解因式:ab(x222 y ) (a b2)(xy 1) (a2 b2)(x y)四、主元法例题分解因式:x2 3xy 10y2 x 9y 2对应练习题分解因式:22(1) x xy 6y x 13y 622(3)6x2 7xy 3y2 x 7y 222(4) a2 ab 6b2 5a 35b 3622(2) x xy 2y x 7y 6五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,代这个整体来运算,从而使运算过程简明清晰.例题 1 分解因式:(x2+x+1)(x2+x+2)-12.例题 2 分解因式:(x2 4x 8)2 3x(x2 4x 8) 2x2例题 3 分解因式:(x 1)(x 1)(x 3)(x 5) 9 分析:型如abcd e 的多项式,分解因式时可以把四个因式两两分组相乘例题 4 分解因式:(x2 7x 6)(x2 x 6) 56 .例题 5 分解因式:(x2+3x+2)(4x2+8x+3) -90.例题 6 分解因式:4(3x2x 1)(x22x 3) (4x2x 4)2提示: 可设3x2x 1 A,x22x 3 B ,则4x2x 4 A例题7 分解因式:x6 28x3 27例题8 分解因式:(a b)4 (a b)4 (a2 b2)2例题9 分解因式:(y 1) 4 (y 3)4 272并用一个新的字母替B.例题9 对应练习分解因式:a4 44 (a 4)4例题10 分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y, v=xy,用换元法分解因式.例题11 分解因式:2x4 x3 6x2 x 2分析:此多项式的特点一一是关于x的降幕排列,每一项的次数依次少1,并且系数成“轴对称” . 这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11 对应练习分解因式:6x4+7x3-36x2-7x+6.例题11 对应练习分解因式:x4 4x3 x2 4x 1对应练习题分解因式:(1)X4+7X3+14/+7X+1(2)x4 2x3 x2 1 2(x x2)(3)2005x2(20052 1)x 2005(4)(x 1)(x 2)(x 3)( x 6) x2(5)(x 1)(x 3)(x 5)(x 7) 15(6)(a 1)(a 2)( a 3)(a 4) 24(7)(2 a 5)(a29)(2a 7) 91(8)(x+3)(x2—1)(x+5) —20(9)(a2 1)2 (a2 5)2 4(a2 3)2(10) (2x2—3x+1)2—22X2+33X— 1(11) (a 2b c)3(a b)3(b c)31 2(12) xy(xy 1)(xy3) 2(x y (x y 1)(13) (a b 2ab)(a b 2) (1 ab)六、添项、拆项、配方法因式分解是多项式乘法的逆运算. 在多项式乘法运算时, 整理、 化简常将几个同类项合 并为一项, 或将两个仅符号相反的同类项相互抵消为零. 在对某些多项式分解因式时, 需要 恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项, 或者在多项式中 添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能 用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的 是要依靠对题目特点的观察, 灵活变换, 因此拆项、 添项法是因式分解诸方法中技巧性最强 的一种.例题 1 分解因式: x 3- 9x+8.例题 2 分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.2 2 22) x 2 2(a b)x 3a 2 10ab 3b 24 2 24) x 4 x 2 2ax 1 a 222 2 2 22 4 4 4( 6) 2a b 2a c 2b c a b c8)x 4-11x 2y 2+y 2 10)x 4-12x+323(12) x 3-11x + 20;(14) x 2 y 2 4x 6y 5(15) (1 a 2)(1 b 2) 4ab对应练习题 分解因式:(1) x 3 3x 2 4 (3) x 4 7x 2 1 (5) x 4 y 4 (x y )4(7)x 3+3x 2-4 (9)x 3+9x 2+26x+24 (11)x 4+x 2+1;(13)a 5+a +1七、待定系数法例题 1 分解因式: x 2 xy 6y 2 x 13y 6分析:原式的前3项x 2 xy 6y 2可以分为(x 3y)(x 2y),则原多项式必定可分为(x 3y m)(x 2y n)对应练习题 分解因式:(1)6x 2 7xy 3y 2 x7y 2(2)2x 2+3xy -9y 2+14x -3y +20(3) x 2 3xy 10y 2 x9y 2(4) x 2 3xy 2y 2 5x 7y 61) 当 m 为何值时,多项式 x 2 y 2 mx322) 如果 x 3 ax 2 bx 8 有两个因式为 x3y 2 6x 14y p 能分解成两个一次因式之积, 求常数 p 并且分解因22xy ky 2 3x 5y 2 能分解成两个一次因式的乘积,并分解此多项例题 25y 6 能分解因式,并分解此多项式1和x 2,求a b 的值•(3) 已知: x 2 2xy 式• (4) k 为何值时, x 2式•八、余式定理(试根法)1、f x的意义:已知多项式f X,若把x用c带入所得到的值,即称为f x在x = c的多项式值,用f c表示.2、被除式、除式、商式、余式之间的关系:设多项式 f x除以g x所得的商式为q x ,余式为r x,则:f x = g x x q x + r xb3、余式定理:多项式f (x)除以x b之余式为f (b);多项式f (x)除以ax b之余式f(—).a 例如:当f(x)=x2+x+2 除以(x -1)时,则余数=f(1)=1 2+1+2=4.2 1 1 2 1当f(x) 9x 6x 7 除以(3x 1)时,则余数=f( —)9(—) 6(-)7 8.3 3 34、因式定理:设a,b R , a 0, f (x)为关于x的多项式,则x b为f(x)的因式bf (b) 0 ; ax b 为f (x)的因式f(—) 0.a整系数一次因式检验法:设f(x) = C n X n C n 1X n 1c^ c°为整系数多项式,若ax七为f(x)之因式(其中a , b为整数,a 0 ,且a , b互质),则(1)ac n, be。

因式分解培优精华

因式分解培优精华

因式分解知识要点:因式分解:把一个多项式化为几个整式的积,(分解因式要进行到每一个因式都不能再分解为止)。

注意: (1)因式分解与整式乘法是相反方向的变形。

(2)因式分解是恒等变形,因此可以用整式乘法来检验。

因式分解的常用方法有:1、公因式:一个多项式各项都含有公共的因式,叫做这个多项式的公因式。

2、提公因式法:把一个多项式中的公因式提出来,从而将多项式化成几个因式乘积的形式。

即:),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式。

最大公约数:几个数公有的约数,叫这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

3、公式法:即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果。

4、十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如有,则;))((2b x a x q px x ++=++“拆分常数项,验证一次项”。

对于一般的二次三项式),0(2≠++a c bx ax 寻找满足a a a c c c 1212==,并且a c a c b 1221+=的 a c a c 1122,,,;如果有a c a c 1122,,,的值存在,则))((22112c x a c x a c bx ax ++=++。

5、分组分解法:把各项适当分组,先使因式分解能分组进行,再使因式分解在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

如:am+ an+ bm+ bn=a(m+n)+b(m+n)=(a+b)(m+n)。

6、求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么))((212x x x x a c bx ax --=++。

初二数学培优因式分解4大培优方法

初二数学培优因式分解4大培优方法

初二数学培优因式分解4大培优方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!第一节传统方法。

在初二数学学习中,因式分解是一个非常重要的知识点。

初中八年级数学竞赛培优讲义全套专题04 和差化积——因式分解的方法(2)答案[精品]

初中八年级数学竞赛培优讲义全套专题04 和差化积——因式分解的方法(2)答案[精品]

专题04 和差化积-------因式分解的方法(2)例1. A 提示 将原式重新整理成关于x 的二次三项式例2. (1) (23)()a b c a b c ++++ 提示 原式222(34)(352)a b c a c bc b =+++++(2) 2()(2)x y x z -- 提示 原式2232(2)(24)(2)x z y xz x y x x z =-+-+-例3. 原式223222(1)(22)(1)(1)(2(1)(1)(1)x a x x a x x x x a x x a x x =+++++--=+++++-22(1)(21)(1)(1)(1)x a ax x x x a x a =+++-=++++-例4. 12k = 提示 222(2)()x xy y x y x y +-=+- ∴可设原式(22)()x y x y n =++-+展开比较对应项系数得28,2210,2,n n k n +=⎧⎪-=⎨⎪=⎩解得=12.例5 原式=()2221x x -+. 例6 设2-(a +5)+5a -1=(+b )(+c )=2+(b +c )+bc .∴()5,5 1.b c a bc a +=-+⎧⎪⎨=-⎪⎩①② ①×5+2得bc +5(b +c )=-26,bc +5(b +c )+25=-1,(b +5)(c +5)=-1.∴51,51b c +=⎧⎨+=-⎩或51,5 1.b c +=-⎧⎨+=⎩ ∴4,6b c =-⎧⎨=-⎩或6,4.b c =-⎧⎨=-⎩故a =5. A 级1.(3a +2b -c )(3a -2b +c )2.(+3y )(+2y +1)3.(+y +1)(-y +3)4.-185.C6.D7.D8.D9.(1)(2a +b )(a -b +c );(2)(a +c -2b )2;(3)(-2)(2-+a );(4)(-2y +3)(2-3y -4);(5)(+1)(y +1)(-1)(y -1).10.提示:由题意得4,4 1.b c abc a+=--⎧⎨=-⎩①②①×4+②,得(b+4)(c+4)=-1,推得3,5bc=-⎧⎨=-⎩或5,3,bc=-⎧⎨=-⎩故a=4.11.∵2-3y-4y=(+y)(-4y),∴可设原式=(+y+m)(-4y+n),展开比较对应项系数得b=-6或9.B级1.=-52.-2 提示:原式=(2+3-)-2y(+2),令=-2.3.5提示:令原式=(-y+4)·A,取一组,y的值代入上式.4.-35.C 提示:=-1,=-2是方程3+a2+b+8=0的解.6.C 提示:原式=(-2y)2+(2+3)2+167.A 提示:原式=2(-2y)2+(-2)2+(y+3)2≥0,且这三个数不能同时为零,M>0.8.C9.=-3 提示:因2+3+2=(+1)(+2),故可令原式=(+my+1)·(十ny+2),展开比较对应项系数求出.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开2+(a+b+c)+ab-l0c=2-10-11.∴10,1011.a b cab c++=-⎧⎨-=-⎩①②①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴101,1011.ab+=⎧⎨+=-⎩或101,1011.ab+=-⎧⎨+=-⎩或1011,10 1.ab+=⎧⎨+=-⎩或1011,10 1.ab+=-⎧⎨+=⎩∴9,21ab=-⎧⎨=-⎩或11,1ab=-⎧⎨=⎩或1,11ab=⎧⎨=-⎩或21,9.ab=-⎧⎨=-⎩代入①得c=0或20.12.原式=(5+34y)-(53y+152y3)+(4y4+12y5)=4(+3y)-52y2(+3y)+4y4(+3y)=(+3y)(4-52y2+4y2)=(+3y)(2-4y2)=(+3y)(+y)(-y)(+2y)(-2y).当y=0时,原式=5≠33;当y≠0时,+3y,-y,-2y,+2y,+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当取任意整数,y取不为0的任意整数,原式≠33.。

(完整)初中数学竞赛因式分解专题.doc

(完整)初中数学竞赛因式分解专题.doc

初中数学竞赛专题——因式分解多式的因式分解是代数式恒等形的基本形式之一,它被广泛地用于初等数学之中,是我解决多数学的有力工具.因式分解方法灵活,技巧性,学些方法与技巧,不是掌握因式分解内容所必需的,而且于培养学生的解技能,展学生的思能力,都有着十分独特的作用.初中数学教材中主要介了提取公因式法、运用公式法、分分解法和十字相乘法.本及下一在中学数学教材基上,因式分解的方法、技巧和用作一步的介.1.运用公式法在整式的乘、除中,我学若干个乘法公式,将其反向使用,即因式分解中常用的公式,例如:(1)a 2-b2=(a+b)(a -b) ;(2)a 2± 2ab+b2=(a ± b) 2;(3)a 3 3 2 2 +b =(a+b)(a -ab+b ) ;(4)a 3 3 2 2 -b =(a -b)(a +ab+b ) .下面再充几个常用的公式:(5)a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a -b)(a n-1 +a n-2 b+a n-3b2+⋯ +ab n-2 +b n-1 ) 其中 n 正整数;(8)a n n n-1 n-2b+an-3 2 n-2n-1) ,其中 n 偶数;-b =(a+b)(a -a b -⋯ +ab -b(9)a n+b n=(a+b)(a n-1 -a n-2 b+a n-3 b2 -⋯ -ab n-2+b n-1) ,其中 n 奇数.运用公式法分解因式,要根据多式的特点,根据字母、系数、指数、符号等正确恰当地公式.例 1 分解因式:(1)-2x5n-1 y n+4x3n-1 y n+2-2x n-1 y n+4;(2)x 3-8y3-z3-6xyz ;(3)a 2+b2+c2-2bc+2ca -2ab;7 5 2 2 57(4)a -a b +a b -b .解(1) 原式 =-2x n-1 y n(x 4n-2x2ny2+y4)=-2x n-1 y n[(x 2n) 2 -2x 2ny2+(y 2) 2]=-2x n-1 y n(x 2n-y2) 2n-1 nn 2 n 2=-2x y (x -y) (x +y) .(2) 原式 =x3+( -2y) 3+( -z) 3-3x( -2y)( - Z)=(x -2y-z)(x 2+4y2+z2+2xy+xz -2yz) .(3) 原式 =(a 2 -2ab+b 2)+( -2bc+2ca)+c 21=(a -b) 2+2c(a -b)+c 2=(a -b+c) 2.本小可以稍加形,直接使用公式(5) ,解法如下:原式 =a2+( - b) 2+c2+2( -b)c+2ca+2a( -b)=(a -b+c) 2(4) 原式 =(a 7 5 2 2 5 7 -a b )+(a b -b )=a 5(a 2-b2)+b 5(a 2-b2) =(a 2-b2)(a 5+b5)=(a+b)(a4 3 2 2 3 4 - b)(a+b)(a -a b+a b -ab +b )2 43 2 2 3 4=(a+b) (a - b)(a - a b+a b -ab +b )例2 分解因式: a3+b3+c3-3abc.本上就是用因式分解的方法明前面出的公式(6) .分析我已知道公式(a+b) 3=a3+3a2b+3ab2+b3的正确性,将此公式形3 3 3a +b =(a+b) -3ab(a+b) .个式也是一个常用的公式,本就借助于它来推.3 3解原式 =(a+b) -3ab(a+b)+c -3abc= [ (a+b)3+c 3] -3ab(a+b+c)=(a+b+c) [ (a+b) 2 -c(a+b)+c 2] -3ab(a+b+c)=(a+b+c)(a 2+b2+c2 -ab-bc -ca) .明公式 (6) 是一个用极广的公式,用它可以推出很多有用的,例如:我将公式 (6) 形3 3 3a +b +c -3abc3 3 3;当 a+b+c> 0 3 3 3 3 3 3然,当 a+b+c=0 , a +b +c =3abc , a +b +c -3abc ≥ 0,即 a +b +c ≥3abc,而且,当且当 a=b=c ,等号成立.如果令x=a3≥ 0, y=b3≥ 0, z=c3≥ 0,有等号成立的充要条件是 x=y=z .也是一个常用的.例 3 分解因式: x15 +x14+x13+⋯+x2+x+1.2分析个多式的特点是:有 16 ,从最高次 x15开始, x 的次数次减至 0,由此想到用公式 a n -b n 来分解.解因x16-1=(x -1)(x 15+x14+x 13+⋯ x2+x+1) ,所以明在本的分解程中,用到先乘以(x -1) ,再除以 (x -1) 的技巧,一技巧在等式形中很常用.2.拆、添法因式分解是多式乘法的逆运算.在多式乘法运算,整理、化常将几个同合并一,或将两个符号相反的同相互抵消零.在某些多式分解因式,需要恢复那些被合并或相互抵消的,即把多式中的某一拆成两或多,或者在多式中添上两个符合相反的,前者称拆,后者称添.拆、添的目的是使多式能用分分解法行因式分解.例4 分解因式: x3 -9x+8.分析本解法很多,里只介运用拆、添法分解的几种解法,注意一下拆、添的目的与技巧.解法 1 将常数8 拆成 -1+9.33=(x -1) - 9x+92=(x -1)(x +x+1) -9(x -1)2=(x -1)(x +x-8) .解法 2 将一次 -9x 拆成 -x-8x .原式 =x3-x-8x+83=(x -x)+( -8x+8)=x(x+1)(x -1) -8(x -1)2解法 3 将三次x3拆成 9x3-8x3.原式 =9x 3 3-8x -9x+8=(9x 3 3+8)- 9x)+( -8x2=9x(x+1)(x -1) - 8(x -1)(x+x+1)2=(x -1)(x +x-8) .3解法 4 添加两项 -x 2+x 2. 原式 =x 3 -9x+8322=x -x +x -9x+8 =x 2 (x - 1)+(x -8)(x -1) =(x -1)(x 2+x-8) .说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规, 主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2 -1)+4mn ;(3)(x+1)4+(x 2-1) 2+(x -1) 4;(4)a 3b-ab 3+a 2+b 2 +1.解 (1) 将 -3 拆成 -1-1-1.96 3原式 =x +x +x - 1- 1-1=(x 963-1)+(x -1)+(x -1)=(x 363333-1)(x +x +1)+(x -1)(x +1)+(x-1)=(x 3-1)(x6+2x3+3)=(x -1)(x 2+x+1)(x 6+2x 3+3) . (2) 将 4mn 拆成 2mn+2mn .22原式 =(m -1)(n -1)+2mn+2mn2 222=mn -m-n +1+2mn+2mn2222=(m n +2mn+1)-(m -2mn+n)=(mn+1) 22-(m-n)=(mn+m-n+1)(mn -m+n+1).(3) 将 (x 2-1) 2 拆成 2(x 2-1) 2-(x 2-1) 2.原式 =(x+1) 4+2(x 2222+(x -1) 4 -1) -(x -1)=[ (x+1) 422422+2(x+1) (x -1) +(x -1) ] - (x -1)=[ (x+1) 22222+(x - 1) ] -(x -1)22222+1)(x 2+3) .=(2x +2) -(x - 1) =(3x (4) 添加两项 +ab-ab .332 2原式 =a b-ab +a +b +1+ab-ab=(a 3b- ab 3)+(a 2-ab)+(ab+b 2+1)=ab(a+b)(a -b)+a(a -b)+(ab+b 2+1)42=a(a -b) [ b(a+b)+1]+(ab+b+1)2=[a(a -b)+1](ab+b+1)=(a 2 2+ab+1) .-ab+1)(b说明 (4) 是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式: (x 2+x+1)(x 2+x+2) -12.分析将原式展开,是关于x 的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y 来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设 x2+x=y,则原式 =(y+1)(y+2)- 12=y2+3y-10=(y -2)(y+5)=(x2+x-2)(x2+x+5)=(x -1)(x+2)(x2+x+5).说明本题也可将2看作一个整体,比如今2x +x+1 x +x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3) -90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式 =(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x 2+5x+3)(2x 2+5x+2) -90.令y=2x2+5x+2,则原式 =y(y+1) -90=y 2+y-90=(y+10)(y -9)=(2x 2+5x+12)(2x 2+5x-7)=(2x 2+5x+12)(2x+7)(x -1) .说明对多项式适当的恒等变形是我们找到新元(y) 的基础.例 8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.解设 x2+4x+8=y ,则5原式 =y2+3xy+2x 2=(y+2x)(y+x)=(x 2+6x+8)(x 2 +5x+8)=(x+2)(x+4)(x 2+5x+8) .说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9 分解因式: 6x4+7x3-36x2-7x+6.解法 1 原式 =6(x 4+1) + 7x(x 2 -1) -36x24 2 2 2 2=6[(x -2x +1)+2x ] +7x(x -1) -36x=6[(x 2 2]+7x(x2 2 - 1)2+2x -1) -36x=6(x 2 2+7x(x2 2 -1) -1) -24x=[2(x 2- 1) -3x][ 3(x 2-1)+8x]=(2x 2 -3x-2)(3x 2+8x-3)=(2x+1)(x -2)(3x -1)(x+3) .2说明本解法实际上是将 x -1 看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法 2原式 =x2 [6(t 2+2)+7t -36]=x2 (6t 2+7t -24)=x 2(2t - 3)(3t+8)=x2 [2(x -1/x) -3][3(x - 1/x)+8]2 2+8x-3)=(2x - 3x-2)(3x=(2x+1)(x -2)(3x -1)(x+3).例10 分解因式: (x 2+xy+y 2) -4xy(x 2+y2 ) .分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令 u=x+y ,v=xy ,用换元法分解因式.解原式 =[(x+y) 2 2 2.令 x+y=u, xy=v ,则-xy] -4xy[(x+y) -2xy]2 2 2原式 =(u -v) -4v(u -2v)=u4-6u2v+9v22 2=(u -3v)6=(x 2+2xy+y 2 -3xy) 2=(x 22 2.-xy+y )7。

七年级数学竞赛讲座:因式分解(含答案详解)

七年级数学竞赛讲座:因式分解(含答案详解)

初中数学竞赛辅导资料因式分解甲内容提要和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。

下面再介紹两种方法1.添项拆项。

是.为了分组后,能运用公式(包括配方)或提公因式例1因式分解:①x4+x2+1②a3+b3+c3-3abc①分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-ac-bc)例2因式分解:①x3-11x+20②a5+a+1①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。

(注意这里16是完全平方数)②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)2.运用因式定理和待定系数法定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a⑵若两个多项式相等,则它们同类项的系数相等。

例3因式分解:①x 3-5x 2+9x -6 ②2x 3-13x 2+3①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。

七年级数学竞赛辅导讲义之-因式分解

七年级数学竞赛辅导讲义之-因式分解

学科教师辅导讲义 学员编号: 年 级:初一 课 时 数:3学员姓名: 辅导科目:数学 学科教师:授课类型T 待定系数法因式分解 T 利用非负性质 T 综合提高授课日期及时段 教学内容待定系数法因式分解在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法。

常用的因式分解公式:ab x b a x b x a x +++=++)())((2 2222)(b ab a b a +±=±3223333)(b ab b a a b a ±+±=± ))((22b a b a b a +-=-))((2233b ab a b a b a +±=± ac bc ab c b a c b a 222)(2222+++++=++例1.分解因式:3542322+++++y x y xy x分析:由于))(2(2322y x y x y xy x ++=++若原式可以分解因式,那么它的两个一次项一定是m y x ++2和n y x ++的形式,应用待定系数法即可求出m 和n ,使问题得到解决。

解:设))(2(3542322n y x m y x y x y xy x ++++=+++++ mn y n m x n m y xy x +++++++=)2()(2322比较两边对应项的系数,则有解之得3=m ,1=n 。

所以原式=)1)(32(++++y x y x例2.分解因式:744272234+---x x x x分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式。

中考数学一轮培优第四节 代数式及整式(含因式分解).pptm.

中考数学一轮培优第四节 代数式及整式(含因式分解).pptm.

四川其他地市真题
10.(2019达州8题3分)a是不为1的有理数,我们把 1 称为a的差倒数,如2的差倒
1a
数为
1 1
2=-1,-1的差倒数为
1= 1 (-1)
1 2
,已知a1=5,a2是a1的差倒数,a3是a2
的差倒数,a4是a3的差倒数,…,依此类推,a2019的值是( D )
A. 5 B. - 1 C. 4
公式法
a2-b2 噲垐因整垐式式垐分乘解法垎垐 _(_a_+___b_)_·_(_a_-___b_)_ a2±2ab+b2 噲垐因整垐式式垐分乘解法垎垐 _(_a_±___b_)_2
1.如果多项式各项有公因式,应先提取公因式 2.如果各项没有公因式,考虑用公式法:若含有两项且符号相反, 用平方差公式;若含有三 项,用完全平方公式 3.检查因式分解是否彻底
D. 4
4.(2018绵阳17题3分)已知a>b>0,且
2 a

1 b

b
3
a
=0,则
b a
3-1 =___2_____.
四川其他地市真题
5.(2018乐山8题3分)已知实数a,b满足a+b=2,ab= 3 ,则a-b=( C )
A. 1
B. - 5 C. 5 D. ±1
4
2
2
6.(2019雅安7题3分)若a∶b=3∶4,且a+b=14,则2a-b的值是( A )
3 a b c -1
2…
命题点 2 整式的相关概念(绵阳:2019.15)
13.(2019绵阳15题3分)单项式x-|a-1|y与 2x b1 y是同类项,则ab=__1____.
命题点 3 整式的运算(绵阳:4考;眉山:必考)

专题4 因式分解方法的应用(含答案)

专题4 因式分解方法的应用(含答案)

专题4 因式分解方法的应用知识解读在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,它是研究代数式、方程和函数的基础.因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础.现阶段,因式分解在数值计算、代数式的化简求值、不定方程(组)的求解、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力及探究能力得到提高.因此,有人说因式分解是学好代数的基础之一.培优学案典例示范一、因式分解在代数式化简中的应用例1 (希望杯试题)若0=++c b a ,则3223b c b abc c a a ++-+的值是 . 【提示】将3223b c b abc c a a ++-+变形,设法凑c b a ++. 【技巧点评】本题已知0=++c b a ,在对3223b c b abc c a a ++-+变形的时候,需要设法凑c b a ++,凑得的c b a ++就用0代替. 跟踪训练11.已知2=+b a ,则b b a 422+-的值是 ( ) A.2 B.3 C.4 D.6 二、利用因式分解进行简便计算 例2 计算下列各题:(1))220162013()2107)(285)(263)(241()220172014()2118)(296)(274)(252(+⨯⋅⋅⋅+⨯+⨯+⨯+⨯+⨯⋅⋅⋅+⨯+⨯+⨯+⨯;(2)20162015201520132015220152323-+-⨯-【提示】观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律. 【解答】【技巧点评】当计算的式子中数值较大,且彼此有联系的时候,常考虑用字母代替这些较大的数值进行计算,这样做的目的是简化运算过程.跟踪训练2 2.计算: (1))201611)(201511()411)(311)(211(22222--⋅⋅⋅---; (2)(华杯赛试题))6435)(6427)(6419)(6411)(643()6439)(6431)(6423)(6415)(647(4444444444++++++++++.三、应用因式分解推理证明例3 若ABC ∆的三边长分别是a ,b ,c .(1)当ac c ab b 2222+=+时,试判断ABC ∆的形状; (2)判断代数式ac c b a 2222-+-值的符号.【提示】(1)由边长判断三角形形状,这个三角形可能是等腰(等边)三角形,也可能利用勾股定理逆定理,证明这个三角形是直角三角形.可将右边的各项移到方程的左边,然后因式分解;(2)先考虑将ac c b a 2222-+-因式分解. 【解答】【技巧点评】因式分解是代数变形的有力工具.跟踪训练33.(北京市竞赛试题)已知0)()()(222=-+-+-b a c a c b c b a .证明:a ,b ,c 三个数中至少有两个相等. 拓展延伸例4 两个小孩的年龄分别是x ,y ,且992=+xy x ,试求这两个小孩的年龄.【提示】本题的突破口是两个小孩的年龄应该是正整数,且xy x +2可因式分解为)(y x x +,由于x ,y 是正整数,因此x ,)(y x +也是正整数,且x <)(y x +,接下去只需考虑99可分解成哪两个正整数的乘积即可. 【解答】【技巧点评】当已知条件中出现一个方程两个未知数,常需考虑将这个方程化成两个方程,或者分类讨论所有可能,化一个方程为两个方程,常用的办法就是因式分解. 跟踪训练44.设a 是一个无理数,且a ,b 满足1=-+b a ab ,则b = . 竞赛链接例5(1)(上海竞赛试题)求方程07946=--+y x xy 的整数解;(2)(希望杯试题)设y x ,为正整数,096422=-++y y x ,求xy 的值. 【提示】(1)结合方程的特点对其因式分解,将不定方程转化为方程组求解; (2)将等式左边适当变形后进行配方,利用y x ,为正整数的特点,结合不等式求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.
(2 、 3) (数学、初中数学竞赛、因式分解、解答题)
若x 3 +3x2 − 3x + k 有一个因式是 x + 1, 求 k 的值 分析:因为x 3 +3x2 − 3x + k有一个因式是x + 1,那么我们分组分解,保证每一个组里都含 有因式x + 1. 详解: x 3 +3x2 − 3x + k = x 3 + x 2 +2x2 + 2x − 5x − 5 + 5 + k = x 2 x + 1 + 2x x + 1 = (x + 1)(x2 + 2x − 5) + (k + 5). 所 以 k = −5. 技巧:原式有一个因式,那么我们保证含有未知数的几组中都含有这个因式,得解.
2 3 n 2
= =
n 2n2 + 3n + 1 2
n(n+1)(2n+1) 2
.因
因为 n, n+l 是连续自然数,必有一个是偶数,所以 N 一定是整数 . (2) 当n = 3k(k 是自然数)时,N 是 3 的倍数;当n = 3k + 1(k 是自然数)时, 2n + 1 = 3(2k + 1),N 是 3 的倍数;当n = 3k + 2(k 是自然数)时, n + 1 = 3(k + 1),N 是 3 倍 数. 综上所述,对任何自然数 n , N 都是 3 的倍数 . 技巧:我们把原式因式分解,再分情况讨论,能很简便解题.
答案:B 技巧:此题我们可以先移项,再通过合并同类项从而因式分解,然后根据题意分析. 易错点:得到结果后,x、y 的结果可以互换,所以答案不能为 A.
4. (3 、 4)
(数学、初中数学竞赛、因式分解、 填空题) .
把(a + b + c + d)(b + c − a − d)(c + a − b − d)(a + b − c − d) + 16abcd 因 式 分 为 原式= (a + b)
2
−1
= (2006 × 2007 + 1)2 ,则 m 也是完全平方数. 答案:A 技巧:观察题意,用添项法组成完全平方公式解题.
2.
(1 、 2)
(数学、初中数学竞赛、因式分解、 选择题) ( )
பைடு நூலகம்
若 M = 3x2 −8xy + 9y 2 − 4x + 6y + 13(x, y是实数 ) ,M 的 值 一 定 是 A.正 数 B.负 数 C.零 D.整 数
1. (1 、 2)
(数学、初中数学竞赛、因式分解、 选择题) ( )
若 m = 20062 +20062 × 20072 +20072 ,则 m A. 是 完 全 平 方 数 , 还 是 奇 数 C. 不是完全平方数,但是奇数 B. 是 完 全 平 方 数 , 还 是 偶 数 . D. 不是完全平方数,但是偶数
3. (2 、 3)
(数学、初中数学竞赛、因式分解、选择题)
满足等式 x y + y x − 2003x − 2003y + 2003xy = 2003的 正 整 数 对 ( x , y ) 的 个 数是 A. 1 B.2 C.3 D.4 ( )
证明:原等式通过移项可化为 ( xy − 2003)( x + y + 2003) = 0, 又因为 x + y + 2003>0,故 xy − 2003 = 0, 所以 xy = 2003.又因为 2003 为质数,所 以必有 x=1 x = 2003 或 y = 2003 y = 1
分 析 : 因为20062 的个位数字为偶数,20072 的个位数字为奇数,所以 m 为奇数, 原式 = 20062 − 2 × 2006 × 2007 + 20072 +20062 × 20072 + 2 × 2006 × 2007 + 1 − 1 = (2006 − 2007)2 + 2006 × 2007 + 1
5. (1)
(数学、初中数学竞赛、因式分解、 填空题) .
在实数范围内分解因式:x 4 +x 3 −3x2 − 4x − 4 = 详解:原式= x 2 x2 + x + 1 − 4 x2 + x + 1 = x2 − 4 x2 + x + 1 = x + 2 x − 2 x2 + x + 1 技巧:根据各项的系数,增补分组进行因式分解。
6.
(2 、 3) (数学、初中数学竞赛、因式分解、填空题) .
分解因式: 2x 2 −xy − 6y 2 + 7x + 7y + 3 = 分 析 : 因 为 2x2 −xy − 6y 2 = (x − 2y)(2x + 3y), 所 以 可 设
2x 2 −xy − 6y 2 + 7x + 7y + 3 = (x − 2y + a)(2x + 3y + b), a, b为待定系数, 因此有2a + b = 7,3a − 2b = 7, ab = 3. 解 得 a = 3, b = 1,所 以 原 式 = (x − 2y + 3)(2x + 3y + 1). 答案:2x2 −xy − 6y 2 + 7x + 7y + 3 = (x − 2y + 3)(2x + 3y + 1) 技巧:因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后 解方程组即可求出待定系数的值 .
9. (2 、 3) (数学、初中数学竞赛、因式分解、解答题) 如果 x 3 + α x 2 + bx + 8有两个因式 x+1 和 x + 2 , 求 a + b 的 值 分析: 因为x + 1, x + 2是x 3 +ax2 + hx + 8的因式, 所以当x = −1和−2时, x 3 +ax 2 + bx + 8的 值为 0.代入解方程即可得解. 详解: 因为原式含有 x+1 和 x + 2 两个因式, 所以 x = −1和x = −2, 是x 3 + α x 2 + bx + 8=0 的两个解,即: −1 + a − b + 8 = 0 a=7 .解得 . b = 14 −8 + 4a − 2b + 8 = 0 所以a + b = 21. 答:a + b 的 值 为 2 1 . 技巧:如果原式中有已知的因式,那么当因式等于 0 时,那么原式也等于 0. 易错点:解方程要仔细认真,不要出错.
8.
(2 、 3) (数学、初中数学竞赛、因式分解、解答题)
3 1
证明n3 + 2 n2 + 2 n对于: (1) 任何自然数 n 都是整数; (2) 任何自然数 n 都是 3 的倍数. 分析:为了证明结论,我们先对原式进行因数分解,再观察即可解题. 证明: (1) 设 N = n3 + n2 +
分 析 : 因 为 M = 3x 2 −8xy + 9y 2 − 4x + 6y + 13 = 2(x − 2y)2 + (x − 2)2 + (y + 3)2 ≥ 0, 因为 x − 2y, x − 2, y + 3这三个数不能同时为 0,所以 M > 0. 答案:A 技巧:用裂项法,把原式拆为 3 个完全平方式即可解题。
相关文档
最新文档