量子力学期末复习

合集下载

量子力学期末复习资料

量子力学期末复习资料

简答第一章 绪论什么是光电效应爱因斯坦解释光电效应的公式。

答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。

这些逸出的电子被称为光电子用来解释光电效应的爱因斯坦公式:221mv A h +=ν第二章 波函数和薛定谔方程1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c +=(1c ,2c 是复数)也是这个体系的一个可能状态。

答,由态叠加原理知此判断正确4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗为什么答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态1、 经典波和量子力学中的几率波有什么本质区别答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1)()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数是否描述同一态分别写出它们的位置几率密度公式。

答:是描述同一状态。

)()()()(1*1211x x x x W ψψψ== 212*22*22)()()()()()(x x x dx x x x W ψψψψψ==⎰ 213*33)()()()(x x x x W ψψψ==第三章 量子力学中的力学量2能量的本征态的叠加一定还是能量本征态。

量子力学期末试题及答案

量子力学期末试题及答案

(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜

2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜

2⎟

i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3

量子力学最后复习

量子力学最后复习

第一章 量子力学的诞生1.光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

试验发现光电效应有两个突出的特点:(1)存在临界频率(最低频率)0ν;只有当光的频率大于某一定值0ν时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有电子产生。

光的这一频率0ν称为临界频率。

(2)光电子动能只与ν有关,与光强I 无关; (3)弛豫时间为零2.Planck-Einstein 关系式:假定:与一定能量 E 和动量 p 的实物粒子相联系的波(他称之为“物质波”)的频率和波长分别为:νh E =,λ/h p =光电效应方程:当光照射到金属表面时,能量为hv 的光子被电子所吸收,电子把这份能量的一部分用来克服金属表面对它的吸引A ,另一部分用来提供电子离开金属表面时的动能221mm v 。

其能量关系可写为:Ah m m -=ν221v由上式明显看出,能打出电子的光子的最小能量是光电子0V =时由该式所决定,即 0h A ν-=,0/V A h =可见,当0V V < 时,电子不能脱出金属表面,从而没有光电子产生。

上式亦表明光电子的能量只与光的频率 v 有关,光的强度只决定光子的数目,从而决定光电子的数目。

这样一来,经典理论不能解释的光电效应得到了正确的说明。

3.Bohr 量子化假设:(1)定态假设:原子能够,而且只能够稳定地存在于分立值能量 12,,........n E E E 相应的状态中。

(2)跃迁假设(频率条件)原子处于定态时不辐射,但是因某种原因,电子可以从一个能级 En 跃迁到另一个较低(高)的能级m E ,同时将发射(吸收)一个光子。

光子的频率为m n E E h -=ν(3) 角动量量子化条件 ,3,2,1,==n n J推广的量子化条件,即⎰== ,3,2,1,d k k kk n h n q p4.de Broglie 物质波假设:Einstein--de Broglie 关系式:hmc hE m h ph 2,====νυλ第二章 波函数与Schrödinger 方程1.微观粒子的状态用波函数),(t r ψ完全描述。

《量子力学》期末复习用 典型例题与解答

《量子力学》期末复习用 典型例题与解答

λ= h p
He 原子受热,由能均分定理,其平均动能为
由此,
E
=
3 2
kBT
=
p2 2m
=
h2 2mλ 2
T
=
h2 3kBmλ 2
≈ 39K
所以,用 He 原子作衍射源的代价高。
(1.19) (1.20) (1.21)
第二章 典型例题分析 2003.12.8
2.1
粒子在一维势V
(
x)
=
⎧0 ⎨⎩V0
ψ '(a+ ) −ψ '(a− ) = C ψ (a) a
而ψ (x) 应是连续的。除了 x=0,a 两个奇点外,Schrodinger 方程为
(2.29) (2.30) (2.31)
ψ ''+ k 2ψ = 0
(2.32)
特解为ψ = e±ikx 。如取入射波为 eikx ,则总波函数可表为
⎧eikx + Re−ikx
解:
设, k = 2mE / = , C = 2maV0 / =2 ,Shrodinger 方程可写成 ψ ''+ k 2ψ − C [δ (x) + δ (x − a)]ψ = 0 a
在 x=0 附近几分,可得ψ ' 跃变条件
x=a 处,
ψ '(0+ ) −ψ '(0− ) = C ψ (0) a
(2.2) (2.3)
在 x=0 处,
c1
cos
k0a

c2
sin
k0a
=

k k0
c−e−ka
c1
=
k k0

量子力学期末考试复习重点、复习提纲

量子力学期末考试复习重点、复习提纲

量子力学期末考试复习重点、复习提纲量子力学期末考试复习重点、复习提纲第一章绪论1、了解黑体辐射、光电效应和康普顿效应。

2、掌握玻尔—索末菲的量子化条件公式。

3、掌握并会应用德布罗意公式。

4、了解戴维逊-革末的电子衍射实验。

第二章波函数和薛定谔方程1、掌握、区别及计算概率密度和概率2、掌握可积波函数归一化的方法3、理解态叠加原理是波函数的线性叠加4、掌握概率流密度矢量5、理解定态的概念和特点6、掌握并会应用薛定谔方程求解一维无限深方势阱中粒子的波函数及对应能级7、掌握线性谐振子的能级8、定性掌握隧道效应的概念及应用。

第三章量子力学中的力学量1、会算符的基本计算2、掌握厄米算符的定义公式,并能够证明常见力学量算符是厄米算符。

3、了解波函数归一化的两种方法4、掌握动量算符及其本征方程和本征函数5、掌握角动量平方算符和z分量算符各自的本征值,本征方程6、掌握三个量子数n,l,m的取值范围。

7、了解氢原子体系转化为二体问题8、掌握并会求氢原子处于基态时电子的最可几半径9、掌握并会证明定理属于不同本征值(分立谱)的两个本征函数相互正交10、力学量算符F的本征函数组成正交归一系的表达式(分立谱和连续谱)11、理解本征函数的完全性,掌握波函数按某力学量的本征函数展开(分立谱),会求展开系数,理解展开系数的意义。

12、掌握两个计算期望值的公式,会证明其等价性,能应用两公式计算期望值13、掌握坐标、动量算符之间的对易关系,掌握角动量算符之间的对易关系。

14、掌握并会证明定理如果两个算符有一组共同本征函数,而且本征函数组成完全系,则两个算符对易15、掌握不确定关系不等式。

第四章态和力学量的表象(4.1~4.3节)1、理解和掌握什么是表象2、理解不同表象中的波函数描写同一状态。

3、理解态矢量和希尔伯特空间4、了解算符F在Q表象中的表示形式,算符在其自身表象中的表示形式。

大学量子力学期末复习

大学量子力学期末复习

薛定谔方程: 薛定谔方程:
六、微扰 定态微扰: 定态微扰: (1)、在未加入微扰时,能级非简并,加入微扰 (1)、在未加入微扰时,能级非简并, 后能级发生移动,上升或下降; 后能级发生移动,上升或下降; (2)、在未加入微扰时,能级简并, (2)、在未加入微扰时,能级简并,加入微扰后 能级发生分裂(部分或全部分裂)。 能级发生分裂(部分或全部分裂)。 能级简并部分或全部消除
பைடு நூலகம்En
二维 三维
ˆ ˆ H x + H y ~ ψ nx ( x)ψ ny ( y )
E = E nx + E ny
E = E nx + E ny + E nz
ˆ ˆ ˆ H x + H y + H z ~ ψ nx ( x)ψ ny ( y )ψ nz ( z )
四、氢原子 <0时 1、氢原子体系中当E<0时
ˆ ˆ 在 S 2 , S z 表象中
h 0 1 ˆ sx = 2 1 0
h 0 −i ˆy = s 2i 0
h 1 0 ˆ sz = 2 0 −1
3h 2 1 0 ˆ s = 0 1 4
2
3、全同粒子的特点:(1)固有性质完全相同; 全同粒子的特点: 固有性质完全相同; 不可区分性。 (2)不可区分性。 4、全同性原理: 全同性原理: 全同粒子所组成的体系中, 全同粒子所组成的体系中,二全同粒 子互相代换不引起体系物理状态的改变。 子互相代换不引起体系物理状态的改变。 全同粒子体系的波函数只能是对称的或反对称。 5、全同粒子体系的波函数只能是对称的或反对称。 对称: 对称:玻色子 , 遵循玻色统计规律 反对称: 反对称: 费米子, 费米子,遵循费米统计规律

量子力学 期末考试复习题

量子力学 期末考试复习题

量子力学考研模拟题(1) 一、(30分)回答下列问题: (1)何谓微观粒子的波粒两象性?(2)波函数(,)r t ψ 是用来描述什么的?它应该满足什么样的自然条件?2(,)r t ψ的物理意义是什么?(3)分别说明什么样的状态是束缚态、简并态与负宇称态? (4)物理上可观测量应该对应什么样的算符?为什么?(5)坐标x 分量算符与动量x 分量算符ˆx p是对易关系是什么?并写出两者满足的不确定关系。

(6)厄米算符ˆF 的本值nf 与本征矢|n >分别具有什么性质? 二(20分)设氢原子处于211031102111111(,,)()(,)()(,)()(,)222r R r Y R r Y R r Y ψθϕθϕθϕθϕ-=--的状态上,求能其量、角动量平方及角动量Z 分量的可能取值与相应的取值概率,进而求出它们的平均值。

三、(25分)设厄米算符ˆH的本征矢为n,{}n 构成正交归一完备函数系,定义一个算符n m n m U=),(ˆ(1)计算对易ˆˆ,(,)H U m n ⎡⎤⎣⎦(2)证明ˆˆˆ(,)(,)(,)nqU m n U p q U m p δ+= (3)计算阵迹ˆˆr kT F k Fk =<>∑ (4)若算符ˆA 的矩阵元为ˆ,mnA m An =<>证明 ,ˆˆ(,)mn m nA A Um n =∑{}),(ˆˆq p U AT A r pq +=四、(25分)自旋为2,固有磁矩为=u s γ(其中γ为实常数)的粒子,处于均匀外磁场0ˆˆ=BB k 中,设t=0时粒子处于2x s =的状态。

(1)求出t>0时的波函数;(2)求出t>0时ˆx s与ˆz s 的可测值及相应的取值概率。

五、(25分)已知二维谐振子的哈密顿算符为)(212ˆˆ22220y x M Mp H ++=ω,对其施加微扰xy Wλ-=ˆ后,利用微扰论求W H H ˆˆˆ0+=基态能量至二级修正、第二激发态能量至一级修正。

量子力学期末复习

量子力学期末复习

相关的结论须记住! 解题要注意 步骤!
1、在一维无限深势阱中运动的粒子,势阱的宽度为a,如 果粒子的状态由函数 ψ ( x) = Ax(a − x) 描写,A为归一化常数, 求粒子能量取值的几率分布和能量的平均值。 解:粒子能量的本征函数和本征值为
2 nπ sin x, ψ n( ) a x a 0,
(0 ≤ x ≤ a )
ψ 1( 0 ) = 0
能量一级修正为
( x < 0, x > a )
E
(1) 1
= ∫ψ
(0) 1
* H ′ψ
(0) 1

dx
2 a /2 x 2π 2 a x 2 π = ∫ 2λ sin xdx + ∫ 2λ (1 + ) sin xdx a 0 a a a a /2 a a
1 E = ℏω 2
α 2 x2
H n (αx)]dx = − p = 0
• • 由不确定关系得
(∆x)2 = x2 ; (∆p)2 = p2;
(∆p)2 1 2 E= + µω (∆x)2; 2µ 2
2
ℏ2 (∆p) = ; 2 4(∆x)
• • • 将此式对 (∆x)2 求最小值,得 求最小值,
ℏ2 1 E= + µω 2 (∆x) 2 ; 8 µ ( ∆x ) 2 2
1 R 21 ( r )Y11 (θ , ϕ ) ψ = 2 3 R 21 ( r )Y10 (θ , ϕ ) − 2
解: 将波函数改写为: 1 0 1 3 ψ = R21 (r )Y11 (θ , ϕ ) − R21 (r )Y10 (θ , ϕ ) 2 0 2 1
1 3 = R21 (r )Y11 (θ , ϕ ) χ 1 ( S z ) − R21 (r )Y10 (θ , ϕ ) χ 1 ( S z ) − 2 2 2 2

量子力学复习题及答an答案比较全

量子力学复习题及答an答案比较全

量子力学期末考试辅导一、简答题1. 束缚态、非束缚态及相应能级的特点。

答:束缚态:粒子在一定范围内运动,∞→r 时,0→ψ。

能级分立。

非束缚态:粒子的运动范围没有限制,∞→r 时,ψ不趋于0。

能级分立。

2. 简并、简并度。

答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为简并。

把对应于同一能级的不同状态数称为简并度。

3. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在立体角Ωd 中被测到的几率。

解:()⎰∞Ω=022,,dr r r d P ϕθψ4. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在球壳()dr r r +,中被测到的几率。

解:()ϕϕθψθθππd r d dr r P ⎰⎰=2022,,sin5. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。

写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。

解: ()⎰Ω=adr r r d P 022,,ϕθψ6. 一粒子的波函数为()()z y x r ,,ψψ=,写出粒子位于dx x x +~间的几率。

解:()⎰⎰+∞∞-+∞∞-=2,,z y x dz dy dx P ψ7. 写出一维谐振子的归一化波函数和能级表达式。

解:!2,)()(2/22n A x H eA x nn n x n n ⋅==-πααψα,2,1,0,21=⎪⎭⎫⎝⎛+=n n E n ω8. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为 ⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ 9. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。

量子力学期末复习

量子力学期末复习

由于 是任意的波函数
ˆ ˆ ˆˆ ˆ ˆ [ x, Px ] xPx Px x i
轨道角动量
角动量算符
ˆ rp ˆ L
及其对易关系
ˆ r p ˆ Li ijk j k
ˆ ˆ ˆ Lx , Ly iLz ˆ ˆ ˆ Ly , Lz iLx ˆ ˆ ˆ Lz , Lx iLy
(2) 光量子具有“整体性”。
爱因斯坦光电效应方程:
1 2 eV m um h A 2
0
玻尔原子模型
1913年 玻尔把量子论推广到原子系统:
(1) 定态条件:电子绕核作圆周运动,但不辐射能量
(经典轨道+定态);
(2)当原子从某一能量状态跃迁到另一能 量状态时服
从频率条件h =E2-E1; (3) 角动量量子化条件mv· =nħ r
当 A 0 B 0 ,有 cos ka 0
n kn 2a
(n为奇数)
当 A 0 B 0 ,有 sin ka 0
n kn 2a
上两式可统一写成
(n为偶数)
n kn , 2a
2mE k 2
2
n 1, 2,3,
n 2 2 2 本征能量: En 8ma 2
2 d 2 2m dx 2 ( x) E ( x) 2 2 d ( x) ( x) E ( x) 2m dx 2
-a
U(x)
0
a
无限深势阱
x a x a
(1) (2)
因 (x) 及 E 有限,由(2)
( x) 0 x a
波函数的统计解释:
(r,t)的物理意义在于: 模的平方(波的强度)代表(r, t)点处,单位体积元中微观粒子出现的概率。

量子力学期末复习题

量子力学期末复习题

一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ====; 。

3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。

这是量子力学的基本原理之一。

波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。

5.波函数的标准条件为:连续性,有限性,单值性 。

6. , 为单位矩阵,则算符 的本征值为:1± 。

7.力学量算符应满足的两个性质是 实数性和正交完备性 。

8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。

即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或 。

9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。

10. i ; ˆx i L ;0。

11.如两力学量算符 有共同本征函数完全系,则 _0__。

12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。

自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。

14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

15. 为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。

16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。

量子力学期末考试题库含答案22套

量子力学期末考试题库含答案22套

量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明)ˆˆ(22x x p x x p i -是厄密算符 (5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x pˆ之间的测不准关系。

(6分)二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在B 表象中算符Aˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。

三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021ϕθϕθϕθψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2Lˆ和z L ˆ的取值几率和平均值; 2、0>t 时体系的波函数,并给出此时体系的E 、2Lˆ和z L ˆ的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=C C C H000000200030001ˆ 这里,H H H'+=ˆˆˆ)0(,C 是一个常数,1<<C ,用微扰公式求能量至二级修正值,并与精确解相比较。

五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态⎪⎪⎭⎫ ⎝⎛=+0121和⎪⎪⎭⎫ ⎝⎛=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -⋅=ψ2、定态:定态是能量取确定值的状态。

【课后习题】量子力学期末复习专题(仅供参考)

【课后习题】量子力学期末复习专题(仅供参考)

量子力学期末复习专题(仅供参考)第一章 量子理论基础1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么epE μ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmmm E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

第二章 波函数和薛定谔方程2.1证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m 2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i**Et iEt i**Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见tJ 与 无关。

2.5 求一维谐振子处在激发态时几率最大的位置。

解:222122)(x xex ααπαψ-⋅=222223222112 24)()(xxex ex x x ααπαπααψω--⋅=⋅⋅==22]22[2 )(3231xex x dxx d ααπαω--=令0 )(1=dxx d ω,得 ±∞=±==x x x 10α由)(1x ω的表达式可知,±∞==x x 0,时,0)(1=x ω。

量子力学期末复习题

量子力学期末复习题

一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰ ,(n=1,2,3,....),2.德布罗意关系为:h E h p k γωλ==== ; 。

3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。

这是量子力学的基本原理之一。

波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。

5.波函数的标准条件为:连续性,有限性,单值性 。

6.,为单位矩阵,则算符的本征值为:1±。

7.力学量算符应满足的两个性质是 实数性和正交完备性 。

8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。

即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或 。

9.设为归一化的动量表象下的波函数,则的物理意义为:表示在()r t ψ ,所描写的态中测量粒子动量所得结果在p p dp →+ 范围内的几率。

10.i ; ˆxi L ;0。

11.如两力学量算符有共同本征函数完全系,则_0__。

12.坐标和动量的测不准关系是:()()2224x x p ∆∆≥ 。

自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。

14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

15.为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。

16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。

量子力学期末复习

量子力学期末复习
e 1 2 [ n | aˆ | n n | aˆ | n ]
e 1 2 [ n n | n 1 n 1 n | n 1 ]
0
x 1 2 [aˆ aˆ ]
aˆ | n n | n 1
aˆ | n n 1 | n 1
6、表象变换
1
7、近似方法的应用(微扰、变分)
8、电子体系考虑自旋时的态函数、泡利算符
9、含时微扰(跃迁概率)
三、几个重要模型
1、一维无限深势阱(宽为 a、2a;对称、非对称)
2、线性谐振子
3、氢原子
相关的结论须记住!
4、双电子体系(不考虑自旋间的相互作用)
四、常见题型
1、薛定谔方程
2、算符理论
3、表象理论
(0)
(0)
En En 1
En En 1
e 2 2

2 2
由于势场不再具有空间反射对称性,所以波函数没
有确定的宇称。这一点可以从下式扰动后的波函数ψn

时再加上沿x方向的较弱的磁场 = ( , , ),从而
= + = ( , , ),求 > 时粒子的自旋态,以
及测得自旋“向上”( =1)的几率。
解: (1)在 表象中,H的矩阵表示为:
ˆ
ˆ
ˆ
H m B
mˆ mB (ˆ x ex ˆ y ey ˆ z ez )
2
21
能量二级修正:
E n( 2 )
mn
2
1
2
|

e

[
n


n

1

]

(完整版)量子力学期末考试题及解答

(完整版)量子力学期末考试题及解答

一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。

2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。

解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。

量子力学期末考试试题整理

量子力学期末考试试题整理

量子力学期末考试试题整理一、 填空1. 波尔磁子:2429.274102B e e A m m cμ-==⨯⋅2. 回转磁比率:2zZe e L m cμ=-3. 薛定谔方程表达式:22121(,,)2ni n i iiU r r r t t m ψψψ=∂=-∇+⋅⋅⋅⋅⋅⋅∂∑ 4. 算符对易的定义:ˆˆˆˆˆˆ[,]A B ABBA =- 5. 在量子力学中,如果在散射过程中两粒子之间只有动能交换,粒子内部运动状态并无改变,则这种散射称为弹性散射。

如果在散射过程中粒子内部运动状态有所改变,则称为非弹性散射。

6. 散射粒子的方向与入射粒子的方向间的夹角,称为散射角。

7. 我们称质量、电荷、自旋、同位旋以及其他所有内禀固有属性完全相同的例子为全同粒子。

全通粒子的不可区分性,在量子力学中称为全同性原理。

8. 全同粒子的不可区分性:在两个波重叠在一起的区域,无法区分那个是第一个粒子的波,哪个是第二个例子的波。

也就是说,无法区分哪一个是第一个粒子,哪个是第二个粒子,因此,全同离子在量子力学中是不可区分的。

9. 自旋为2奇数倍的粒子称为费米子。

在量子力学中,由费米子组成的体系称为费米—狄拉克统计。

自旋为整数倍的粒子称为波色子。

在量子力学中,由波色子组成的体系称为波色—爱因斯坦统计。

10. 克莱因-戈尔登方程:22222221()0m c ctψψψ∂∇--=∂11. 狄拉克方程:2[]i H i c mc tψψαβψ∂==-⋅∇+∂12. 被填满的负态称为费米海。

如果空穴的能量为0p E +>,质量为0m +>,电荷为0e +>,这种空穴称为正电子。

13. 波函数的量子化称为二次量子化。

14. 概率流守恒定律:0J t ω∂+∇⋅=∂,概率流的定义:**()2i J mψψψψ=-∇-∇15. 光电效应的实验结果表明(1)存在临界频率0ν:当入射光的频率0νν<时,无论光强度多大,都无光电子逸出,只有在0νν≥时,即使光强度较弱,但只要光照到金属面上,几乎在910-s的极短时间内,就能观测到光电子。

量子力学期末复习题

量子力学期末复习题

K ∇ • A = 0) 方程推导此时的概率流密度矢量。 (注意:
3、 求角动量的 z 分量的本征值及对应的归一化的本征函数。
4、 在 一 维 无 限 深 势 阱 ( 0-a ) 中 运 动 的 粒 子 , 设 t=0 时 , 粒 子 的 状 态 为 :
ψ ( x ,0 ) =
4
⎛π ⎞ ⎛π ⎞ (1)此时粒子是否出于定态?粒子此时的能 sin⎜ x ⎟ cos 2 ⎜ x ⎟ ,求: a ⎝a ⎠ ⎝a ⎠
填空题:
1、 黑体辐射的问题是普朗克(Planck)在1900年引进量子概念后才得到解决的。 普朗克假定, 黑体以 hγ 为能量单位不连续地发射和吸收频率为 γ 的辐射,而不是像经典理论所要求的那 样可以连续地发射和吸收辐射能量。能量单位 hγ 称为能量子, h 是普朗克常数,它的数值 是 h =6.62559(16)X10 焦耳·秒。基于这个假定,普朗克得到了与实验结果符合得很好的 黑体辐射公式。第一个完全肯定光除了波动性之外还具有微粒性的是爱因斯坦(Einstein)。 他认为电磁辐射不仅在被发射和吸收时以能量为 hγ 的微粒形式出现,而且以这种形式以速 度 c 在空间运动。这种粒子叫作光量子或光子。用这个观点能成功地解释了光电效应。康普 顿效应的发现,进一步证实了光具有粒子性。这样,光就具有微粒和波动的双重性质,这种 性质称为波粒二象性。
e= = ±M B 2μ e= =± = ±M B 2 μc
M Sz = ± M Sz
(SI ) (CGS)
M B —玻尔磁子
电子自旋的回转磁比率等于轨道运动回转磁比率的两倍
(SI ) (CGS)
M Sz e =− Sz μ M Sz e =− Sz μc
M Lz e =− Lz 2μ M Lz e =− Lz 2μc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.量子力学的研究对象和适用范围是什么?量子力学(Quantum Mechanics)是研究微观粒子(分子、原子、原子核、基本粒子等)运动变化规律的科学。

量子力学规律同时适用于微观世界与宏观世界,即全部物理学都是量子物理学。

2.什么是量子现象?在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象。

凡是普朗克常数h在其中起重要作用的现象都可以称为量子现象。

3. 黑体:能够全部吸收各种波长的辐射,完全不发生反射和透射,且能发射各种波长的热辐射能的物体称为绝对黑体(黑体)。

如:空腔上的小孔、烟煤、太阳。

4.普朗克量子假说“能量子”假设:能量是分立的,不是连续的。

物体吸收或发射电磁辐射时,辐射的能量不是连续的,而是分立的,它的取值只能是能量子ε=hν的整数倍。

5.什么是光电效应?它有哪两个突出的特点?写出爱因斯坦的光电效应方程。

金属被光(紫外光)照射时,有电子从金属表面逸出,这种现象称为光电效应。

这种电子称之为光电子。

突出特点:①存在临界频率v0:只有当光的频率大于一定值v0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

光电效应方程:其中m e为电子质量,υm为电子的最大初速度,ν为光子的频率,W0为电子挣脱原子束缚所需做的逸出功。

6.爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E =hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。

7.什么是康普顿效应?为什么用X射线来进行实验?X射线投射到石墨上发生散射,在散射的X射线中,不但存在与入射光波长相同的X射线,同时还存在波长大于入射光波长的X射线,且波长增量随散射角增大而增大。

这一波长改变的散射称为康普顿效应。

因为X 射线的能量远大于原子中电子的束缚能,光子的能量只能部分地被电子吸收,能够观察到散射的X 射线。

8.光电效应和康普顿效应的异同。

相同点:都涉及光子与电子相互作用不同点:光电效应中,入射光为可见光或紫外线,光子能量为eV 量级,与原子中电子的束缚能相差不远,光子能量全部交给电子使之逸出,并具有初动能。

康普顿散射中,入射光为X 射线或γ射线,光子能量为104eV 量级,甚至更高,远大于原子中电子的束缚能,原子中的电子可视为自由电子,光子能量只被电子吸收一部分并发生散射。

9.玻尔假定的基本内容。

(1)原子具有能量不连续的定态的概念。

电子在原子中只能沿着一组特定的轨道运动,此时原子处于稳定的状态(定态);原子的稳定状态只可能是某些具有一定分立值能量 E1,E2,......, En 的状态。

处于这些状态时电子不吸收也不发出辐射;而处于基态(能量最低态)的原子,则不放出光子而稳定的存在着。

(2)量子跃迁。

原子处于定态时不辐射,但是因某种原因,电子可以从能量为 Em 的定态跃迁到另一个较低(高)的能量为 En 的定态,同时将发射(吸收)一个光子。

光子的频率为:10.德布罗意关系。

(光和实物粒子的波粒二象性)其中p 和E 为表现微观粒子粒子性的动量和能量,h 为普朗克常数,ω、ν、λ和k 分别表示微观粒子波动性的圆频率、频率、波长和波矢。

11.戴维逊-革末实验和汤姆逊实验证明了什么? 证明电子具有波动性,证明了德布罗意波的存在。

12.已知微观粒子的能量求其德布罗意波长。

(课后习题1.2,1.3)电场加速获得能量的电子:h p λ=n mmn E E hν-=λ=≈A E h hp n kνωλ====2222h k n n c πνπωπνπλ====第二章 波函数和薛定谔方程1.量子力学的波函数与经典的波场有何本质性的区别?答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。

2.波函数的统计解释是什么?特性是什么?标准条件和归一化条件分别是什么?波函数的统计解释:波函数在空间中某一点的强度(波函数模的平方)和在该点找到粒子的概率成比例。

描写粒子的波是几率波。

特性:常数因子不定性和相因子不定性。

标准条件:单值性、连续性、有限性。

波函数的归一化条件 )7-1.2( 1),,,( 2⎰=ψ∞τd t z y x3.写出量子力学的态叠加原理。

若Ψ1 ,Ψ2 ,...,Ψn ,...是体系的一系列可能的状态,则这些态的线性叠加Ψ= C 1Ψ1 + C 2Ψ2 + ...+ C n Ψn + ... (其中 C 1 , C 2 ,...,C n ,...为复数)也是体系的一个可能状态。

处于Ψ态的体系,部分的处于 Ψ1态,部分的处于Ψ2 态...,部分的处于Ψn 态, ... ,这导致叠加态下观测结果的不确定性。

4. 量子力学基本假定 I :微观粒子的状态由波函数完全描述,由波函数可以得出体系的所有性质。

波函数一般应满足单值性、连续性、有限性三个条件。

量子力学基本假定 II :波函数随时间的演化遵从 Schrödinger 方程。

5.求解定态问题的步骤 求解定态薛定谔方程分四步: (1)列出各势域上的薛定谔方程;(2)求解薛定谔方程;(3)利用波函数的标准条件(单值、有限、连续)定未知数和能量本征值; (4)由归一化条件定出最后一个待定系数(归一化常数)。

6.分别写出薛定谔方程和定态薛定谔方程,各自的适用条件是什么?,,,,,,,2121n n E E E ψψψ,本征函数本征值:22()]()()2∇+ψ=ψU r r E r m/(,)()n iE t n n r t r e ψ-ψ=一般(含时)薛定谔方程:22(,)[(,)](,)2∂ψ=-∇+ψ∂i r t U r t r t t m适用于一切量子力学系统定态薛定谔方程:22()]()()2U r r E r mψψ∇+= 适用于势能不含时间的系统7.本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。

常数f n 为该算符的第n 个本征值。

波函数ψn 为f n 相应的本征波函数。

8.什么是定态?定态的性质什么?写出定态一维无限深势阱和线性谐振子薛定谔方程的解。

定态:微观体系处于具有确定的能量值的状态称为定态。

描述定态的波函数称为定态波函数。

定态的性质:(1)能量有确定值,不随时间改变; (2)粒子在空间概率密度与时间无关; (3)概率流密度与时间无关;(4)任何不含t 的力学量期望值与时间无关。

一维无限深势阱的薛定谔方程的解为(-a<x<a )):222, (, (2,3,)n iE t n x t ma -ψ线性谐振子薛定谔方程的解为2121(), ()e () (0,1,2,)2n n n n N H n ξωψξξ-=+== x9.什么是隧道效应?粒子能够穿透比它能量更高的势垒的现象。

它是粒子具有波动性的生动表现。

这种现象只在一定条件下才比较显著。

10.透射系数:透射波几率流密度与入射波几率流密度之比。

反射系数:反射波几率流密度与入射波几率流密度之比。

11.束缚态:在无穷远处为零的波函数所描述的状态。

体系的势能在无穷远处为无限大,则波函数在无穷远处为0,使得体系的能级是分立的,属于束缚态。

体系的波函数在无穷远处为有限,则粒子可以在无穷远处出现,波函数在无穷远处不为0,此时体系能量可以为任意值,组成连续谱,属于散射态。

基态:体系能量最低的态。

12.证明:定态中,概率和概率流密度与时间无关。

(课后习题2.1)13.一质量为m 的粒子在一维无限深势阱中运动求粒子的能量本征值和本征函数。

(课后习题2.3)14.已知波函数的形式求概率分布函数,并给出几率最大或最小的位置。

(课后习题2.5)15.一维无限深势阱中粒子定态波函数为()n n xx aπψ=,试求(1)粒子处于基态和第一激发态时,在x =0和x =a /3之间找到粒子的概率(2)概率密度最大值及其相应的位置。

16.已知粒子一维矩形无限深势阱中运动的波函数为3()()2xx a x a aπψ=-<<,则(1)粒子在x=5a/6处的概率密度(2)发现粒子概率最大的位置?第三章 量子力学中的力学量1.算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

厄米算符:如果算符F ˆ满足下列等式()ˆ ˆdx F dx F φψφψ**⎰⎰=,则称F ˆ为厄米算符。

式中ψ和ϕ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。

量子力学中表示力学量的算符都是线性、厄米算符。

2.证明:厄米算符的性质:(1)厄米算符的本征值是实数。

(2)厄米算符属于不同本征值的本征函数彼此正交。

3.算符与力学量的关系:当体系处于算符Fˆ的本征态ϕ时,力学量F有确定值,这个值就是算符Fˆ在ϕ态中的本征值λ。

力学量在一般的状态中没有确定的数值,而有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。

每个可能值都以确定的几率出现。

4.什么是箱归一化?将粒子限制在三维箱中运动,同时加上周期性边界条件,则可以将动量的连续谱变为分立谱,用一般的归一化方法来归一,这种方法称为箱归一化。

5.写出量子力学的第三条和第四条基本假定。

基本假定III:若体系的状态波函数ψ用算符Fˆ的本征函数ϕn展开为:()ˆ∑n n n n nψφφλφ==c Fn则在ψ态中测量力学量F 时,得到结果为λn的概率为2n c。

即测量得到的所有可能值,都是相应的线性厄米算符的本征值。

基本假设IV:量子力学中表示力学量的算符是厄米算符,且它的本征函数构成完备系。

如果经典力学中相应的力学量是坐标r和动量p的函数,则把经典表达式中的坐标保持不变,动量换为动量算符就构成了量子力学中相应的力学量算符。

6.几个常见的力学量算符的本征函数和本征值。

7.写出一般求解力学量算符平均值的两个公式。

8.算符对易关系:[]A B B A B ,Aˆˆˆˆˆˆ-≡ 。

可对易算符:如果[]0ˆˆ=B ,A,则称算符A ˆ与B ˆ是可对易的; 不对易算符:如果[]0ˆˆ≠B ,A,则称算符A ˆ与B ˆ是不对易的。

当两个算符不对易时,它们不能同时有确定值 9.一组力学量同时具有确定值的条件是什么?如果一组力学量算符有共同的本征函数,而且这些共同本征函数组成完全系,则这组算符中的任何一个和其余算符对易。

这个定理的逆定理也成立。

或:一组力学量算符具有共同完备本征函数系(即同时具有确定值)的充要条件是这组算符两两对易。

相关文档
最新文档