平方根与立方根练习题及答案

合集下载

平方根、立方根 同步分层训练(含答案)

平方根、立方根 同步分层训练(含答案)
10.若|a-2|+ =0,则a2-b=__________.
11.求下列各式的值:(1) ;(2) ;
(3) ;(4) .
12.已知一个正数的平方根是3x-2和5x-14,请你求出这个正数.
13.一个长方体容器长20 cm,宽15 cm,在这个容器内放一立方体铁块,盛满水取出铁块后,水面下降了5 cm,求这个立方体铁块的棱长.(精确到0.01 cm)
8. 的值是().
A. B. C. D.无法确定
9.一个正方体的体积变为原来的8倍,它的棱长变为原来的__________倍;体积变为原来的27倍,它的棱长变为原来的__________倍;体积变为原来的1 000倍,它的棱长变为原来的__________倍;体积变为原来的n倍,它的棱长变为原来的__________倍.
平方根、立方根练习
1.64的平方根是().
A.±8 B.±4C.±2D.
2.9的算术平方根是().
A.±3 B.3C.-3 D.
3.下列语句正确的是().
A.一个数的平方根一定有两个
B.一个非负数的非负平方根一定是它的算术平方根
C.一个正数的平方根一定是它的算术平方根
D.一个非零数的负的平和-4.
故这个正数为16.
13.答案:解:设立方体的棱长为xcm,根据题意,可得x3=20×15×5,即x3=1 500,所以 (cm).
利用计算器,可算得x≈11.45(cm).
故这个立方体铁块的棱长约为11.45cm.
10.答案:1点拨:由|a-2|+ =0,得a-2=0,b-3=0,解得a=2,b=3.因此a2-b=1.
11.答案:解:(1) =12+13=25.
(2) .
(3) =5÷0.2=25.

平方根立方根基础训练及答案

平方根立方根基础训练及答案

平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。

八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)

八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)

八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)一、选择题1. 下列式子中,属于最简二次根式的是A. √ 7B. √ 9C. √ 20D. √132. 如果a=1√ 3+2,b=√ 3−2那么a与b的关系是.( )A. a>bB. a=bC. a=1bD. a+b=03. 化去根式1√ 3αb3(a>0,b>0)分母中的根号,分子、分母应同时乘以.( )A. √ 3aB. 1√ 3a C. √ 3ab D. 1√ 3ab4. 计算5√15÷(−√ 5)的结果是( )A. −1B. 1C. −√ 5D. 55. 等式√ a2−a =√ a√ 2−a成立的条件是( )A. a≥0B. 0≤a<2C. a≠2D. a2−a≥0 6. 下列变形正确的是( )A. √ (−4)×(−9)=√ (−4)×√ (−9)B. √ 1614=√ 16×√14=4×12=2C. √ 18a2=√ 9a2×√ 2=3√ 2a(a≥0)D. √ 252−242=25−24=17. 下列四个等式中,不成立的是( )A. 2√ 3−1=√ 3+1 B. √ 2(√ 2+√ 3)=2+√ 6 C. (1−√ 2)2=3−2√ 2 D. √ (√ 3−2)2=√ 3−28. 化简√15+16的结果是( )A. √ 1130B. 30√ 330 C. √ 33030D. 30√ 119. 已知:a=2−√ 3b=2+√ 3则a与b的关系是( )A. 相等B. 互为相反数C. 互为倒数D. 平方相等10. 有依次排列的一列式子:1+√ 2√ 2+√ 3√ 3+22+√ 5√ 5+√ 6√ 6+√ 7小红对式子进行计算得:第1个式子:1+√ 2=√ 2−1(1+√ 2)×(√ 2−1)=√ 2−1;第2个式子:√ 2+√ 3=√ 3−√ 2(√ 2+√ 3)×(√ 3−√ 2)=√ 3−√ 2......根据小红的观察和计算,她得到以下几个结论:①第8个式子为1√ 8+3;②对第n 个式子进行计算的结果为√ n +1−√ n ; ③前100个式子的和为√ 101−1;④将第n 个式子记为a n ,令b n =1a n ,且9an 2+17a n b n +9bn2=575则正整数n =15. 小红得到的结论中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题11. 将√ 632化为最简二次根式,其结果是______.12. 化简:1√ 2= ______ .13. 写出一个二次根式,使它与√ 2的积是有理数.这个二次根式是______. 14. 若无理数x 与√ 8的积是一个正整数,则x 的最小值是______. 15. 计算√ 3×√ 12的结果是______.16. 等式√ x√ 1−x =√ x 1−x 成立的条件是______.17. √ 3−2的倒数是___.18. 当a <0时,化简a √ −2a ⋅√ −8a 的结果是 .19. 如图,在▱ABCD 中,BE 平分∠ABC 交AD 于点E.若∠D =30∘,AB =√ 6则△ABE 的面积为 .20. 若[x]表示不超过x 的最大整数,A =1−√341+√34+(1−√34)0,则[A]=__________.三、解答题21. 下列等式中,字母应分别符合什么条件?(1)√ a 2=a (2)√ ab =√ a ⋅√ b (3)√ x(x +1)=√ x ⋅√ x +1(4)√ x 2−6x +9=3−x22. (1)写出一个二次根式,使它与√ 2的积是有理数;(2)写出一个含有二次根式的式子,使它与2+√ 3的积不含有二次根式.23. 先化简再求值 (1−1x)÷x2−2x+1x,其中x =√ 2.24. 已知x =2+√ 3y =2−√ 3.(1)求x 2+y 2−xy 的值;(2)若x 的整数部分是a ,y 的小数部分是b ,求5a 2021+(x −b)2−y 的值.25. 若一个三角形的三边长分别为a 、b 、c ,设p =12(a +b +c),则这个三角形的面积S =√ p(p −a)(p −b)(p −c)(海伦−秦九韶公式).当a =4、b =5、c =6时,S 的值.参考答案1、A2、D3、C4、A5、B6、C7、D8、C9、C 10、D 11、3√ 14212、√ 2213、√ 2(答案不唯一) 14、√ 2415、6 16、0≤x <1 17、−2−√ 3 18、−4a 2 19、32 20、−221、解:(1)∵√ a2=a∴a≥0(2)∵√ ab=√ a⋅√ b∴a≥0b≥0(3)∵√ x(x+1)=√ x⋅√ x+1∴x≥0∴x≥0(4)∵√ x2−6x+9=3−x∴3−x≥0∴x≤3.22、解:(1)∵2√ 2×√ 2=4∴这个二次根式可以为:2√ 2(2)∵(2−√ 3)(2+√ 3)=4−3=1∴这个二次根式可以为:2−√ 3.23、解:原式=x−1x×x(x−1)2=1x−1当x=√ 2时,原式=√ 2−1=√ 2+1.24、解:(1)∵x=2+√ 3=√ 3(2+√ 3)(2−√ 3)=2−√ 3y=2−√ 3=√ 3(2−√ 3)(2+√ 3)=2+√ 3∴x2+y2−xy=(x+y)2−3xy=(2−√ 3+2+√ 3)2−3(2−√ 3)(2+√ 3)=16−3=13(2)∵1<√ 3<2∴0<2−√ 3<13<2+√ 3<4∴a=0b=2+√ 3−3=√ 3−1∴5a2021+(x−b)2−y=5×0+(2−√ 3−√ 3+1)2−(2+√ 3)=(3−2√ 3)2−2−√ 3=9−12√ 3−12−2−√ 3=−5−13√ 3.25、解:由题意,得:a=4b=5c=6∴p=12(a+b+c)=152∴S=√ p(p−a)(p−b)(p−c)=√152×(152−4)×(152−5)×(152−6)=√152×72×52×32=154√ 7.故S的值是154√ 7.。

初中平方根立方根估算基础练习(含答案与解析)

初中平方根立方根估算基础练习(含答案与解析)

初中平方根立方根估算基础练习(含答案与解析)平方根立方根估算基础练一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个2.36的平方根是()A.±XXX.±3.实数的平方根是()A.±4B.4C.2D.±24.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是(A.﹣3B.﹣1C.1D.﹣3或15.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是56.计算的结果是()A.﹣3B.3C.2D.7.下列各式化简后的结果为3的是()A.B.C.D.8.25的算术平方根是()A.5B.±5C.﹣5D.25 9.2的算术平方根是()XXX10.的值等于()A.4B.﹣4C.±2D.2 11.下列等式正确的是()A.B.C.D.12.的算术平方根是()第1页(共12页))A.﹣2B.213.C.﹣D.的算术平方根是()D.﹣A.B.﹣C.14.已知A.15.若+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1,则下列结论中正确的是()B.2016<a<A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<416.﹣A.1二.填空题(共8小题)17.的平方根是,﹣的立方根是.与B.2之间的整数个数是()C.3D.418.若x的立方根是﹣,则x=.19.实数﹣8的立方根是.20.计较:=.21.若一个正方体的体积是8,那末它的棱长是.22.的平方根是,(﹣5)2的算术平方根是,的立方根是﹣0.1.23.﹣的立方根为.24.立方根和算术平方根都等于它本身的数是.三.解答题(共3小题)25.比较与0.5的大小.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)按照上述结论,比力大小:2(3)根据(2)的结论,计算:|第2页(共12页)27.比力3与2的大小.一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π、故选:B.【点评】此题首要考查了在理数的定义,其中初中规模内研究的在理数有:π,2π等;开方开不尽的数;和像0.…,等有如许规律的数.2.36的平方根是()A.±XXX.±是无理数,【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(±6)2=36,∴36的平方根是±6.故选A.【点评】此题考查了平方根的定义.此题注意一个正数的平方根有两个,且它们互为相反数.3.实数的平方根是()C.2D.±2A.±4B.4【分析】直接利用算术平方根化简,进而利用平方根的定义分析得出答案.【解答】解:∵=4,第3页(共12页)∴的平方根是:±2.故选:D.【点评】此题主要考查了平方根,正确把握定义是解题关键.4.若2m﹣4与3m﹣1是统一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选;D.【点评】本题首要考查的是平方根的性质,明确2m﹣4与3m﹣1相称或互为相反数是解题的枢纽.5.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是5【分析】根据负数没有平方根,正数有两个平方根进行分析即可.【解答】解:A、﹣25的平方根是﹣5,说法错误;B、﹣5是25的平方根,说法精确;C、﹣25的平方根是5,说法错误;D、25的平方根是5,说法错误;故选:B.【点评】此题首要考查了平方根,枢纽是把握平方根的性质:正数a有两个平方根,它们互为相反数;的平方根是;负数没有平方根.6.计算A.﹣3B.3的成效是()C.2D.【分析】算术平方根,和有理数的平方的运算办法,求出计较几何便可.第4页(共12页)的成效是【解答】解:计较故选:B.的结果是3.【点评】此题主要考查了算术平方根,以及有理数的平方的运算方法,要熟练掌握.7.下列各式化简后的结果为3A.B.C.D.的是()【分析】按照二次根式的性质一一化简可得.【解答】解:A、B、C、D、=2=3不克不及化简;,此选项错误;,此选项精确;=6,此选项错误;故选:C.【点评】本题首要考查二次根式,闇练把握二次根式的性质是解题的枢纽.8.25的算术平方根是()A.5B.±5C.﹣5D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题首要考查的是算术平方根的定义,闇练把握算术平方根的定义是解题的枢纽.9.2的算术平方根是()XXX【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是故选B.第5页(共12页),【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.10.A.4的值等于()B.﹣4C.±2D.2透露表现16的算术平方根,需注意的是算术平方根必为非负数求【分析】按照出即可.【解答】解:按照算术平方根的意义,故选A.=4.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为11.下列等式正确的是()A.B.C.D..【分析】A、按照算术平方根的定义便可判定;B、按照负数没有平方根便可判定;C、按照立方根的定义便可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、D、故谜底选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.第6页(共12页),故选项C错误;,故选项正确.12.的算术平方根是()C.﹣D.的值,然后再利用算术平方根的定A.﹣2B.2【分析】首先根据算术平方根的定义求出义即可求出结果.【解答】解:∵∴=4,=2.的算术平方根是故选:B.【点评】此题首要考查了算术平方根的定义,注意要第一计较13.的算术平方根是()D.﹣=4.A.B.﹣C.【分析】首先化简【解答】解:故选:C.,然后根据算术平方根的定义即可求出结果..=,的算术平方根是【点评】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.14.A.+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1B.2016【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故选:D.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为时,则其中的每一项都必须等于是解题的关键.15.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4第7页(共12页)【分析】首先估算【解答】解:∵1又∵<a<,和的大小,再做选择.<4,<2,3∴1<a<4,故选B.【点评】本题首要考查了估算在理数的大小,第一估算题的关键.16.﹣A.1与B.2之间的整数个数是()C.3D.4<﹣1,2<<3,由此确定﹣与的取值范围,再和的大小是解答此【分析】由于﹣2<﹣根据取值范围找出整数即可求解.【解答】解:∵﹣2<﹣∴﹣与<﹣1,2<<3,之间的整数有﹣1,,1,2共4个.故选D.【点评】此题主要考查了无理数的估算的能力,解题时先确定﹣范围是解答本题的关键.二.填空题(共8小题)17.的平方根是±2,﹣、=4,的立方根是﹣2.与的取值【分析】先找出【解答】解:∵∴∵∴﹣的值,再按照平方根与立方根便可得出结论.的平方根是±2;=8,的立方根是﹣2.故答案为:±2;﹣2.【点评】本题考查了平方根以及立方根,解题的关键是熟练掌握平方根与立方根的求法.第8页(共12页)18.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣故答案为:﹣.,【点评】本题考查了立方根的应用,首要考查学生的计较本领.19.实数﹣8的立方根是﹣2.【分析】利用立方根的定义便可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故谜底﹣2.【点评】本题首要考查了立方根的观点.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那末这个数x就叫做a的立方根,也叫做三次方根.20.计较:=0.2.【分析】直接利用立方根的定义分析得出答案.【解答】解:故谜底为:0.2.【点评】此题主要考查了立方根,正确把握定义是解题关键.21.若一个正方体的体积是8,那末它的棱长是2.【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那末它的棱长是2;故答案为:2.【点评】本题考查了立方根的定义的应用,主要考查学生的计算能力.第9页(共12页)==0.2.22.的平方根是±,(﹣5)2的算术平方根是5,﹣0.001的立方根是﹣0.1.【分析】按照立方根和平方根和算术平方根的定义分别分析得出谜底便可.【解答】解:=3,3的平方根是±,(﹣5)2=25,25算术平方根是5,﹣0.001的立方根是﹣0.1.故答案为:±,5,﹣0.001.【点评】此题主要考查了立方根、平方根和算术平方根等定义,熟练掌握其定义是解题关键.23.﹣的立方根为﹣.的立方根.【分析】按照立方根的定义便可求出﹣【解答】解:﹣故答案为:﹣.的立方根为﹣.【点评】此题主要考查了立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.24.立方根和算术平方根都等于它本身的数是和1.【分析】首先设出这个数为x,根据立方根是它本身列式为x3=x,由算术平方根是它本身列式为=x,联立两式解得x.【解答】解:设这个数为x,根据题意可知,解得x=1或,故答案为:和1【点评】本题首要考查立方根宁静方根的知识点,注意一个正数有两个平方根,它们互为相反数,正数是它的算术平方根;的平方根是;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,的立方根第10页(共12页),式.三.解答题(共3小题)25.比较【分析】利用系.【解答】解:∵∴∴∴,>0.5.,,与0.5的大小.<得到2<,则﹣1>1,即可得到与0.5的大小关【点评】本题考查了实数的大小比较,运用算术平方根的性质估算无理数的大小是解答此题的关键.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)依据上述结论,比较大小:2(3)按照(2)的结论,计较:|【分析】(1)利用平方根的概念进行比较;(2)先比力2和3的大小,由3与的关系获得谜底;(3)按照绝对值的性质解答.【解答】解:(1)∵7<9,∴<3,∵1.52=2.25<3,∴1.5<(2)∵∴2∴2;>1.5,,>3,又3>>;第11页(共12页)(3)原式=﹣﹣2+=2﹣3.【点评】本题考查的是实数的大小比较,掌握有理数的乘方法则、绝对值的性质是解题的关键.27.比较3与2的大小.【分析】先把根号外边的数移到根号里面,再比较被开方数的大小即可.【解答】解:∵3∴>,即3=,2>2.=,18>12,。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。

其中,平方根和立方根是我们常见的数学概念之一。

平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。

在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。

练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。

例如,对于4来说,2的平方等于4,所以4的平方根为2。

同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。

练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。

例如,对于8来说,2的立方等于8,所以8的立方根为2。

同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。

练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。

例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。

平方根立方根解答题60题有答案ok

平方根立方根解答题60题有答案ok

平方根立方根解答题专项练习60题(有答案)1.求下列各式中的x:①(x+1)2+8=72;②3(2x﹣1)2﹣27=0.2.求下列各式中x的值.(1)4x2=9(2)(x﹣1)2=25.3.求x的值:2(x+1)2=984.已知a﹣1与5﹣2a是m的平方根,求a和m的值.5.求正数x的值:3(2x﹣1)2=27.6.一个正数x的平方根是a﹣1和a+3,求x和a的值.7.已知(x+1)2﹣1=24,求x的值.8.已知a+3与2a﹣15是m的两个平方根,求m的值.9.已知x+3与2x﹣15是正数y的两个不同平方根,试求y的值.10.求下列各式中的x的值.(1)x2=25(2)(x﹣3)2=4(3)=3.11.已知x没有平方根,且|x﹣3|=6,求x的值.12.求下列各数的平方根:(2)(3).13.解下列关于x的方程:.14.已知(x﹣1)2+|y﹣5|=0,求的平方根.15.(4x﹣1)2=225.16.计算下列各式中x的值:(1)16x2﹣49=0;(2)(x﹣1)2=100.17.已知2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,求x+2y的平方根.18.﹣a是否有平方根?为什么?19.解方程:x2﹣=0.20.求下列各式中的x:(1)x2=16;(2);(3)x2=15;(4)4x2=18;(5)2x2=10;(6)3x2﹣75=0.21.某数的平方根为和.22.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.23.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.24.计算:25.小明家的客厅是用正方形地板砖铺成的,面积为21.6㎡,小明数了一下地面所铺的地板砖正好是60块,请你帮小明计算他家地板砖的边长是多少?26.研究下列算式,你会发现有什么规律?==2;==3;==4;==5;…请你找出规律,并用公式表示出来.27.小文房间的面积为10.8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?28.有一个正方体的集装箱,原体积为216m2,现准备将其扩容用以盛放更多的货物,若要使其体积达到343m2,则它的棱长需增加多少m?29.半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.30.我们来看下面的两个例子:,,和都是9×4的算术平方根,而9×4的算术平方根只有一个,所以.,和都是5×7的算术平方根,(2)运用以上结论,计算:的值.31.求下列各式中的x的值:(1)25x2=36(2)(x+1)3=832.(1)X2﹣7=0(2)X3+27=0(3)(x﹣3)2=64(4)(2x﹣1)3=﹣833.34.一个非零实数的平方根式3a+1和a+11,求这个数及它的立方根.35.求下列各式中的x(2)(x﹣2)3=3.36.求下列各式中的x:(1)4x2﹣24=25(2)(x﹣0.7)3=﹣0.027.37.已知,a是的平方根,b=,c是﹣8的立方根,试求a+b﹣c的值.38.已知M=是m+3的算术平方根,是n﹣2的立方根,试求M+N的算术平方根.39.(1)化简:+﹣(2)求x的值:x2+23=25.40.(1)﹣+;(2)﹣+.41.已知x、y都是实数,且,求:(1)3x﹣y的平方根(2)x+3y的立方根.42.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.43.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.44.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.45..46.已知立方根为x﹣,求x的平方根.47.小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)48.计算:+(﹣2)3×.49.已知A=是m+2n的立方根,B=是m+n+3的算术平方根、求m+11n的立方根.50.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?51.学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:_________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:_________.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:_________.因此59319的立方根是_________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是_________位数,②它的立方根的个位数是_________,③它的立方根的十位数是_________,④185193的立方根是_________.52.问题:(1);(2);(3).探究1,判断上面各式是否成立.(1)_________(2)_________(3)_________探究2:并猜想=_________.探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展,,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.53.若球的半径为R,则球的体积V与R的关系式为V=πR3.已知一个足球的体积为6280cm3,试计算足球的半径.(π取3.14,精确到0.1)54.若是一个正整数,则满足条件的最小正整数x=_________.55..56.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.57.求下列各数的立方根:(1)(2)(3)﹣(4)58.计算(1)用计算器计算:(结果精确到0.01);(2)计算:;59.用计算器求下列各式的值:(结果精确到0.01)(1)﹣;(2).60.利用计算器计算,把答案填在横线上:(1)=_________;(2)=_________;(3)=_________;(4)=_________;(5)=_________;(6)猜想=_________.(用含n的式子表示)参考答案:1.①∵(x+1)2=64∴x+1=±8∴x=7或﹣9;②∵3(2x﹣1)2=27∴(2x﹣1)2=9∴2x﹣1=±∴x=2或x=﹣1.2.(1)x2=,∴x=±,x=±;(2)x﹣1=±,∴x﹣1=±5,∴x﹣1=5或x﹣1=﹣5,∴x1=6,x2=﹣4.3.原方程可化为:(x+1)2=49,∴x+1=±7,解得:x1=6,x2=﹣84.a﹣1与5﹣2a是同一个数的平方根,a﹣1+5﹣2a=0,解得a=4;∴a﹣1=4﹣1=3∴m=32=9 ∴a的值为4,m的值为95.方程的两边同除以3得:(2x﹣1)2=9,∴2x﹣1=3或2x﹣1=﹣3,∴x1=2,x2=﹣1(不符合题意,舍去),∴x=26.由题意,得:a﹣1+a+3=0,解得a=﹣1;所以正数x的平方根是:2和﹣2,故正数x的值是4 7.移项得:(x+1)2=25,∴x+1=±5,即x=4或﹣68.由题意得:a+3+(2a﹣15)=0,解得:a=4.所以m=(a+3)2=72=49.9.由题意,得x+3+2x﹣15=0,解得x=4,则y=(4+3)2=49.故y的值为4910.(1)x2=25,x=±5;(2)(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,故x=5或1;(3)=3,两边平方得:x=911.由题意得,x为负数,又∵|x﹣3|=6,∴x﹣3=±6,解得:x1=9(不合题意舍去),x2=﹣3.故x=﹣312.(1)∵(±0.7)2=0.49,∴0.49的平方根是±0.7;(2)∵=1,(±1)2=1,∴的平方根是±1;(3)∵(±)2=,∴的平方根是±.13.原方程即:(x﹣2)2=6,则(x﹣2)2=12,x﹣2=±2,则x=2+2或x﹣214.∵(x﹣1)2+|y﹣5|=0,∴x﹣1=0,y﹣5=0,x=1,y=5,∴x+y=1+×5=2,∴的平方根是±15.4x﹣1=±15,则4x﹣1=15,解得x=4;或4x﹣1=﹣15,解得x=﹣.16.(1)16x2﹣49=0,x2=,∵(±)2=,∴x=±;(2)∵(±10)2=100,∴x﹣1=10或x﹣1=﹣10,解得x=11或x=﹣9.故答案为:(1)±,(2)x=11或﹣917.∵2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,∴2x﹣1=9,3x+y﹣1=16,解得:x=5,y=2,∴x+2y=5+4=9,∴x+2y的平方根为±318.当a≤0时,﹣a有平方根;当a>0时,﹣a没有平方根.理由是:∵一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,19.移项得,x2=,所以,x=±20.(1)x2=16,x=±4;(2),x=±;(3)x2=15,x=±;(4)4x2=18,x2=,x=±;(5)2x2=10,x2=5,x=±;(6)3x2﹣75=0,x2=25,x=±521.(1)依题意得+=0,解得a=3;(2)==1,==﹣1.故答案为:(1)3,(2)1、﹣122.∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=23.∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.24.原式=7+5﹣15=﹣3.25.设他家地板砖的边长是a,∵地板砖是正方形,∴一块地板砖的面积是a2,∴60a2=21.6,得,a=0.6(m)26.第n项a n===n+1,即a n=n+127.设每块地砖的边长是x,则120x2=10.8,解得x=0.3,即每块地砖的边长是0.3m28.∵正方体的集装箱,原体积为216m2,∴棱长为=6m,要使其体积达到343m2,则棱长为=7m,∴正方体的棱长需增加=1(m).答:正方体的棱长需增加1m29.根据题意可知:πR2=π(25﹣4),解得R2=21,即R=30.根据题意,有=;(1)根据题意,有=;(2)=×=8×15=120.故答案为:=31.(1)25x2=36两边同时除以25得∴.(2)(x+1)3=8 开立方,得,∴x+1=2解得x=132.(1)∵x2=7,∴x=±;(2)∵x3=﹣27 ∴x=﹣3;(3)∵(x﹣3)2=64 ∴x﹣3=±8 ∴x=11或﹣5;(4)∵(2x﹣1)3=﹣8∴2x﹣1=﹣2 ∴x=﹣.33.原式=()2﹣3=5﹣2﹣3=2﹣.35.(1)由原方程,得2x﹣1=±,∴x=±,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=36.(1)4x2﹣24=25,∴4x2=25+24,x2=,x=±;(2)(x﹣0.7)3=﹣0.027,∵(﹣0.3)3=﹣0.027,∴x﹣0.7=﹣0.3,∴x=0.437.∵a是的平方根,b=,c是﹣8的立方根,∴a=±2,b=3,c=﹣2,∴当a=2时,a+b﹣c=7,当a=﹣2时,a+b﹣c=338.解:根据题意,得:解得,所以,所以M+N=4,故M+N算术平方根是239.(1),=5﹣1﹣3,=1;(2)移项、合并得,x2=2,∴x=±40.解:(1)原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣41.∵,∴x﹣3=0,8﹣y=0,解得x=3,y=8,∴(1)3x﹣y=3×3﹣8=1,∵1的平方根=±1,∴±=±1;(2)∵x=3,y=8,∴x+3y=3+3×8=27,∵=3,∴=342.∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 把x的值代入解得:y=8,∴x2+y2的算术平方根为10.43.设新正方形的棱长为x cm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.44.(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣145.原式==046.∵立方根为x﹣,而的立方根为,∴x﹣=,解得x=4∴4的平方根为±2,∴x的平方根±247.设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米48.原式=2+4+0.1+8×0.4=4+5.349.由题意,有,解得.∴m+11n=5+22=27,=3,∴m+11n的立方根是350.设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.51.(1)103=1000,1003=1000000,你能确定59319的立方根是2位数.故答案是:2;(2)由59319的个位数是9,你能确定59319的立方根的个位数是9.故答案是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.答:①它的立方根是2位数,②它的立方根的个位数是7,③它的立方根的十位数是5,④185193的立方根是57.故答案是:2,7,5,5752.探究1:(1)成立;(2)成立;(3)成立;探究2:5;探究3:=n(n≥2的整数).理由如下:===n;拓展:=n.理由如下:===n53.由已知6280=π•R3∴6280≈×3.14R3,∴R3=1500∴R≈11.3cm54.∵128=27,∴128x=29=27×4时,是一个正整数,即最小的正整数x=4.故答案为:455.﹣1=﹣,∵(﹣)3=﹣,∴=﹣.56.设书的高为xcm,由题意得:(4x)3=216,解得:x=1.5.答:这本书的高度为1.5cm.57.(1)=﹣2;(2)=0.4;(3)﹣=﹣;(4)=958.(1)解:原式=3×1.414213562+0.745355992﹣3.141592654+5×0.2=2.8446404026≈2.84;(2)解:原式=2+0﹣=59.(1)原式≈﹣8.59;(2)原式≈﹣1.66.60.用计算器计算并猜想:(1)=3,(2)=6,(3)=10,(4)=15,(5)=21,(6)1+2+3+…+n=n(n+1).故本题的答案是3,6,10,15,21,n(n+1)平方根立方根解答题60题---- 11。

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案1. 求平方根a) √64 =b) √144 =c) √25 =d) √169 =答案:a) √64 = 8b) √144 = 12c) √25 = 5d) √169 = 132. 求平方根(化简根式)a) √12 =b) √18 =c) √27 =d) √48 =答案:a) √12 = 2√3c) √27 = 3√3d) √48 = 4√33. 求立方根a) ∛8 =b) ∛64 =c) ∛125 =d) ∛729 =答案:a) ∛8 = 2b) ∛64 = 4c) ∛125 = 5d) ∛729 = 94. 求立方根(化简根式)a) ∛27 =b) ∛54 =c) ∛128 =d) ∛216 =答案:b) ∛54 = 3∛2c) ∛128 = 2∛2d) ∛216 = 65. 综合练习:求平方根与立方根a) ∜256 =b) ∛512 =c) 2√3 + 3√2 =d) 4∛3 - ∛48 =答案:a) ∜256 = 4b) ∛512 = 8c) 2√3 + 3√2 = 5√2 + 2√3d) 4∛3 - ∛48 = 3∛2通过以上练习题,我们可以加深对于求平方根和立方根的理解。

求平方根就是找到一个数,它的平方等于被开方的数;而求立方根则是找到一个数,它的立方等于被开方的数。

在解决这些问题时,我们需要掌握一些基本的化简根式的方法。

例如,当根号下的数可以被平方数整除时,我们可以将其化简为一个整数乘以根号下的平方数。

希望通过这些练习题和答案的提供,能够帮助同学们更好地理解和掌握求解平方根和立方根的方法,提高数学解题的能力。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案一、选择题1. 下列哪个数是4的平方根?A) 2B) 4C) 8D) 162. 下列哪个数是8的立方根?A) 2B) 4C) 6D) 83. 当一个数的立方根等于16时,这个数是多少?A) 2B) 4C) 8D) 164. 下列哪个数是27的平方根?A) 3B) 9C) 27D) 815. 下列哪个数的平方根和立方根相等?A) 4B) 8C) 16D) 64二、填空题1. 27的平方根是____。

2. 125的立方根是____。

3. 当一个数的平方根等于9时,这个数是____。

4. 64的平方根是____,立方根是____。

5. 49的平方根是____,立方根是____。

三、解答题1. 想要计算一个数的平方根和立方根,你可以使用什么数学运算符号?请简要描述一下平方根和立方根的运算符号。

2. 用数学方法证明:一个数的平方根和立方根不可能相等。

3. 计算以下数的平方根和立方根,并保留两位小数:a) 16b) 64c) 125d) 216四、答案及解析一、选择题1. A) 22. A) 23. D) 164. A) 35. A) 4二、填空题1. 32. 53. 814. 8, 45. 7, 343三、解答题1. 平方根可以使用√符号表示,立方根可以使用³√符号表示。

2. 设一个数的平方根是x,立方根是y。

根据定义,平方根满足x²= x * x,立方根满足y³ = y * y * y。

假设x=y,则有x²=y³。

两边开根号得到√(x²) = √(y³),即x = y√y。

左边是一个实数,右边是一个实数乘以非实数,这是不可能相等的,所以假设不成立,一个数的平方根和立方根不可能相等。

3.a) 平方根:√16 = 4;立方根:∛16 = 2.67b) 平方根:√64 = 8;立方根:∛64 = 4c) 平方根:√125 = 11.18;立方根:∛125 = 5d) 平方根:√216 = 14.70;立方根:∛216 = 6通过以上练习题和解答,你可以巩固和加深对平方根和立方根的理解和运用能力。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

初二平方根与立方根练习题

初二平方根与立方根练习题

初二平方根与立方根练习题1. 计算下列数的平方根与立方根:(1) 4的平方根和立方根分别是多少?(2) 9的平方根和立方根分别是多少?(3) 16的平方根和立方根分别是多少?(4) 25的平方根和立方根分别是多少?(5) 36的平方根和立方根分别是多少?2. 求下列数的平方根与立方根:(1) 81的平方根和立方根分别是多少?(2) 100的平方根和立方根分别是多少?(3) 144的平方根和立方根分别是多少?(4) 196的平方根和立方根分别是多少?(5) 225的平方根和立方根分别是多少?3. 判断下列数是否完全平方数或完全立方数:(1) 16是完全平方数还是完全立方数?(2) 27是完全平方数还是完全立方数?(3) 64是完全平方数还是完全立方数?(4) 100是完全平方数还是完全立方数?(5) 125是完全平方数还是完全立方数?4. 选择题:根据题干选择正确的答案。

(1)那个数既不是完全平方数,也不是完全立方数?a. 4b. 7c. 9d. 10(2)有一个数,它的平方根是5,立方根是25,这个数是?a. 25b. 125c. 625d. 3125(3)一个数的平方根大于它的立方根,这个数是?a. 1b. 10c. 100d. 1000(4)一个数的平方根小于它的立方根,这个数是?a. 64b. 81c. 100d. 121(5)一个完全平方数的立方根是多少?a. 1b. 2c. 3d. 45. 解答题:请写出下列数的平方根和立方根。

(1) 49(2) 64(3) 121(4) 169(5) 256注意事项:在计算平方根和立方根时,如果结果不是整数,请保留小数点后两位。

请认真完成以上练习题,加深对初二平方根与立方根的理解。

文章结束。

平方根和立方根(习题及答案)

平方根和立方根(习题及答案)

平方根和立方根(习题)1. 下列说法错误的是( )A1=B1=- C .2的平方根是D .-81的平方根是9± 2. 下列说法正确的是( ) A .-0.064的立方根是0.4B .-9的平方根是3±C .16D .0.01的立方根是0.000 001 3. 下列说法正确的是( ) A .7是497±B .7是(-7)27=C .7±是49的平方根,即7=D .7±是497=±4. 若22(3)x =-,则x =_________.5.=_______=_______=_________________;=_______=______;2=_______.6. 若一个数的平方根是8±,则这个数的立方根是_________.7. 若某个数的平方根是a +2与3a -6,则a 的值为________.8. 已知一个正数的平方根是a +1与-2a +1,求这个正数.9._______;210-的算术平方根是_________;的平方根是_____________;_______的立方根是________.10.3=,则5a +2的立方根是________.11.,则a =_________.12. 若一个正数的算术平方根是m ,则比这个正数大2的数的算术平方根是_________.13. 若2m +2的平方根是±2,n +1的平方根是±3,则m +2n 的立方根是________.复习巩固14. 一个正方体木块的体积为1 000 cm 3,现要把它锯成8块同样大小的正方体小木块,小木块的棱长是________.15. 若一个正方形的面积变为原来的4倍,则它的边长变为原来的______倍;若面积变为原来的9倍,则它的边长变为原来的______倍;若面积变为原来的100倍,则它的边长变为原来的______倍;若面积变为原来的n 倍,则它的边长变为原来的______倍.1. 平方根与算术平方根的比较2. 对于任意数a a 吗?2一定等于a 吗?①当a ≥0;当a <0,a .(“一定等于”或“不一定等于”)②对于2,a 作为被开方数,所以a ______0,因为平方和开平方互为_________,所以2_______a .(“一定等于”或“不一定等于”)思考小结1.D 2.C 3.B 4. ±3 5. 0.3;0.3;34;54;4;-6;196 6. 47. 18. 这个正数为99. ±3;110;±32;3 10. 311. 412.13.14. 5 cm15. 2,3,101.2. ①a ,a -,不一定等于 ②≥,逆运算,一定等于复习巩固思考小结。

初中数学平方根立方根实数运算练习题(附答案)

初中数学平方根立方根实数运算练习题(附答案)

初中数学平方根立方根实数运算练习题一、单选题1.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.若a 是2(4)-的平方根,b 的一个平方根是2,则a b +的立方根为( ).A.0B.2C.0或2D.0或2-4.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数 5.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.b =,则a=bD.=则a=b二、解答题6.已知51a -的算术平方根是3,31a b +-的立方根为2.(1)求a 与b 的值;(2)求24a b +的平方根.7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.9.已知2x -的平方根是2±,532y +的立方根是2-.1.求33x y +的平方根.2.计算: 2--的值. 三、计算题10.计算:1123-⎛⎫-+ ⎪⎝⎭11.计算: 01(2016)--;四、填空题12.827-的立方根为______. 13.若一个数的立方根是4,则这个数的平方根是______.14.已知21x +的平方根是5±,则54x +的立方根是 .参考答案1.答案:C解析:任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:C解析:4.答案:D解析:5.答案:D解析:6.答案:(1)由题意,得2513a -=,3312a b +-=,解得2a =,3b =.(2)∵24224316a b +=⨯+⨯=,∴24a b +的平方根4±.解析:7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:第二个正方体纸盒的棱长是7厘米.解析:9.答案:1.无平方根; 2. 132-解析:10.答案:1解析:11.答案:0解析:12.答案:23-解析:a 827-的立方根是23-. 故答案为23-. 13.答案:8±解析:14.答案:4解析:根据题意,得()2215x +=±,解得12x =.所以54512464x +=⨯+=.因为64的立方根是4,所以54x +的立方根是4。

勾股定理平方根立方根算术平方根练习题(附答案)

勾股定理平方根立方根算术平方根练习题(附答案)

勾股定理平方根立方根算术平方根练习题一、单选题1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A. 25B. 7C. 5和7D. 25或72.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A. 10cmB. 12cmC. 14cmD. 无法确定3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.B. 1C. 6,7,8D. 2,3,44.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D '处.若3AB =,4AD =,则ED 的长为( )A. 32B. 3C. 1D. 435.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是( )A. 17cm h ≤B. 8cm h ≥C. 7cm 16cm h ≤≤D. 15cm 16cm h ≤≤ 6.如图,架在消防车上的云梯AB 长为10 m ,90,2ADB AD BD ∠=︒=,云梯底部离地面的距离BC 为2 m ,则云梯的顶端离地面的距离AE 为( )A . 2)mB . 2)mC .2)mD . 7m7.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )A. 1:2B. 1:4C. 1:5D. 1:108.如图,已知长方体的长为6 cm ,宽为5 cm ,高为3 cm ,那么虫子想沿表面从A 爬到B 的最短路程是( )A.14 cmB.10 cm D. 6 cm9.下列说法正确的是( ) A. 一个三角形的三边长分别为:,,a b c ,且222a b c -=,则这个三角形是直角三角形B. 三边长度分别为 的三角形是直角三角形,且C. 三边长度分别是12,35,36的三角形是直角三角形D. 在一个直角三角形中,有两边的长度分别是3和5,则另一边的长度一定是410.如图①所示,有一个由传感器A 控制的灯,要装在门上方离地高4.5 m 的墙上,任何东西只要移至该灯5 m 及5 m 以内时,灯就会自动发光.请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A. 4米B. 3米C. 5米D. 7米11.如图,由四个全等的直角三角形拼成的图形,设,CE a HG b ==,则斜边BD 的长是( )A. 222a b - B. 222a b + C. a b + D. a b -12.如图,Rt△ABC 中,∠C =90°,若AB =15cm,则正方形ADEC 和正方形BCFG 的面积和为()A. 2150cmB. 2200cmC. 2225cmD.无法计算13.65 )A.5和6之间B.6和7之间C.7和8之间D.8和9之间14.下列等式正确的是( )222= 333 444= 55515.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±16.下列说法正确的是( )A.115-是无理数B.若23a =,则a 是3的平方根,且a 是无理数C.93D.无限小数都是无理数17.2(9)的平方根是x ,64的立方根是y ,则x y +的值为( )A.3B.7C.3或7D.1或718.在实数1,0.518,,0.6732,233π---中,无理数的个数是( )A. 1B. 2C. 3D. 419.()233x x --成立,则x 满足的条件是( )A.3x >B.3x <C.3x ≥D.3x ≤二、解答题20.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点(1)判断ABC 的形状,并说明理由.(2)求BC 边上的高.21.如图,在ABC △中,30cm AB =,35cm BC =,60B ∠=︒,有一动点M 自A 向B 以1cm/s 的速度运动,动点N 自B 向C 以2cm/s 的速度运动若点M N ,分别从AB ,同时出发.(1)经过多少秒,BMN △为等边三角形?(2)经过多少秒,BMN △为直角三角形?22.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪网,经过测量得知:90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断D ∠是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪网的面积.23.问题:如图①,在Rt ABC △中,AB AC D =,为BC 边上一点(不与点B C ,重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC DC EC ,,之间满足的等量关系式为 . 探索:如图②,在Rt ABC △与Rt ADE △中,AB AC =,AD AE =,将ADE △绕点A 旋转,使点D 落在BC 边上,试探索线段AD BD CD ,,之间满足的等量关系,并证明你的结论.应用:如图③,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若9BD =,3CD =,求AD 的长.24.看图解答下面问题1.如图1,在水塔O 的东北方向32m 处有一抽水站A,在水塔的东南方向24m 处有一建筑工地B,在AB 间建一条直水管,求水管AB 的长;2.如图2,在△ABC 中,D 是BC 边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC 的长三、计算题25.已知21a -的算术平方根是3,34a b ++的立方根是2,求4a b +的平方根.26.1.()244x -= 2.()313903x +-= 27.计算:201833π427(1)---.28.计算:3333110.125 6.251827---. 四、填空题29.小红做了棱长为5cm 的一个正方体盒子,小明说:“我做的盒子的体积比你的大3218cm . ”则小明的盒子的棱长为__________cm .30.一个正数x 的平方根是23a -与5a -,则x =________.31.如图,数轴上点A 表示的数为a ,化简:244a a a +-+= 。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案平方根立方根练习题及答案【篇一:平方根立方根练习题】一、填空题1.如果x?9,那么x=________;如果x?9,那么x?________2.如果x的一个平方根是7.12,那么另一个平方根是________. 3.?的相反数是, 3?1的相反数是;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7的平方根是_______的算术平方根是_________,10?2的算术平方根是;8.若一个数的平方根是?8,则这个数的立方根是;9.当m______时,?m有意义;当m______时,m?3有意义;10.若一个正数的平方根是2a?1和?a?2,则a?____,这个正数是;11.已知2a?1?(b?3)2?0,则2ab? ; 312.a?1?2的最小值是________,此时a的取值是________.13.2x?1的算术平方根是2,则x=________.二、选择题14.下列说法错误的是()a(?1)2?1b3?13??1 c、2的平方根是?2d、?81的平方根是?9215.(?3)的值是(). 2a.?3 b.3 c.?9 d.916.设x、y为实数,且y?4??x?x?5,则x?y的值是()a、1b、9c、4d、517.下列各数没有平方根的是().a.-﹙-2﹚ b.(?3)3 c.(?1)2 d.11.118.计算25?8的结果是().a.3b.7c.-3d.-719.若a=?32,b=-∣-2∣,c=?(?2)3,则a、b、c的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a20.如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.321.一个等腰三角形的两边长分别为52和2,则这个三角形的周长是()a、2?2b、52?4c、2?2或52?43d、无法确定三、解方程22.x?25?023. (2x?1)3??8 24.4(x+1)=8 22四、计算25.1.25的算术平方根是;平方根是 .2.3的平方根是,它的平方根的和是 .3.49?14426.4144949 27.?31 ?1625的平方根是;的算术平方根是 . 644. -27的立方根是,的立方根是-4.5.21?, ??,4?62?6.318? , ?3? ,?3?0.008?827;绝对值是 .8.若x2?64,则x=.9.若无理数a满足:1a4,请写出两个你熟悉的无理数:,? .10.一个数的算术平方根是8,则这个数的立方根是 .11.一个正数的平方根是3a+1和7+a,则a =.12.化简(1)2?5 =; (2)3??=.13.满足?3?x?6的所有整数的和.14..15.比较大小:(2)-6; (3)? ?3(4)1?.16a和b之间,a?b,那么a=___ ,b= .17.已知坐标平面内一点a(-2,3),将点a,,得到a′,则a′的坐标为.二、选择题20.下列各式中,无意义的是( )a.21.下列说法错误的是( ) ..a.无理数没有平方根; b.一个正数有两个平方根;c.0的平方根是0;d.互为相反数的两个数的立方根也互为相反数.22.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.a.1个b.2个c.3个d.4个23. 若a为实数,下列式子中一定是负数的是( )a.?ab.??a?1?c. ?ad.??a?1 21; 6112b.(?2) c.?44 d.?2 22?24.a,则下列结论正确的是()a. 4.5?a?5.0b. 5.0?a?5.5c. 5.5?a?6.0d. 6.0?a?6.525. 下列各式估算正确的是( )a30 b250 c5.2d4.126. 面积为10的正方形的边长为x,那么x的范围是( )a.1?x?3 b.3?x?4 c.5?x?10d.10?x?10027.下列等式不一定成立的是( )a?a c.a?a d.(a)3?a28. 实数a,b在数轴上对应点的位置如图所示,则必有()a.a?b?0 b.a?b?0 c.ab?00 d.23a?0 b29. 如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点a,则点a表示的数是() a. 11 2 b. 1.4 c. 3 d. 230. 在?,2,732.121121112中,无理数的个数是()a.1b.2c.3d.431. 如图,数轴上表示1a、点b.若点b关于点a的对称点为点c,则点c所表示的数为()a1 b.1.2 d.2三、解答题32. 求的算术平方根、平方根、立方根.33. 求下列各式的值(?3)235. 将下列各数按从小到大的顺序重新排成一列,并用“”连接:22,,?2,0,36. 已知m,n为实数,且m?0,求m?n的值.37. 已知2?x??y?0,且x?y?y?x,求x?y的值.38. 求下列各式中的x.(1)x2?25(2)(x?1)2?9(3)x3??64(4)(2x?1)2?216?0.1.6【篇二:平方根立方根练习题】一、填空题1、 121的平方根是____,算术平方根_____.3、(-2)的平方根是_____,算术平方根是____.4、 0的算术平方根是___,立方根是____.5、-是____的平方根. 26、64的平方根的立方根是_____.2x?9x?9,那么7、如果,那么x=________;如果x?________9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.10、若一个实数的算术平方根等于它的立方根,则这个数是________;11、的平方根是_______,4的算术平方根是_________,10?2的算术平方根是;12、若一个数的平方根是?8,则这个数的立方根是;13、当m______时,3?m有意义;当m______时,m?3有意义;14、若一个正数的平方根是2a这个正数是; ?1和?a?2,则a?____,2ab?2a?1?(b?3)?015、已知,则;3216、a?1?2的最小值是________,此时a的取值是________.17、2x?1的算术平方根是2,则x=________.二、选择题1、 169的平方根是()2、0.49的算术平方根是()a,0.49 b,-0.7 c,0.7 d,0.73、81的平方根是()4、下列等式正确的是()15、-8的立方根是()111a,-16、当x=-8时,则x2的值是()7、下列语句,写成式子正确的是()a,3是9的算术平方根,即9??3c,2是2的算术平方根,即2=2d,-8的立方根是-2,即?8=-28、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()a, 0个b,1个c,2个 d,3个10、下列说法错误的是()a、(?1)2?1b、?13??1c、2的平方根是?2d、?81的平方根是?901、2(?3)11、的值是().a.?3 b.3 c.?9 d.912、如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.313、下列各数没有平方根的是().32(?1)(?3)a.-﹙-2﹚ b. c. d.11.125?的结果是(). 14、计算a.3b.7c.-3d.-73?(?2)15、若a=?3,b=-∣-2∣,c=,则a、b、c 2的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a16、设x、()a、1b、9c、4d、5三、解方程1、x2y为实数,且y?4??x?x?5,则x?y的值是?25?02、(2x?1)??8233、4(x+1)=8四、计算491441、? 2、4149 3、?316?4 14494、求下列各数的平方根和算术平方根:(1)121;(2)(-3)2;(3)1(4)?36;(5)625.5、求下列各数的立方根:(1)-127;(2)0.064;(3)169(4) 64;(5)512-1.116;-78; 31【篇三:平方根;立方根经典练习题(非常好)】p> 2.已知x?3?3,则7x?73.若|3x-y-1|和2x?y?4互为相反数,求x+4y的算术平方根。

平方根和立方根(习题及答案)

平方根和立方根(习题及答案)

平方根和立方根(习题)例题示范例1:一个正数的平方根是a+1与-2a+1,求这个正数.解:∵一个正数的平方根是a+1与-2a+1∴a+1+(-2a+1)=0∴a=2∴a+1=3,-2a+1=-3∵(±3)2=9∴这个正数是9例2:364的平方根是__________.思路分析数学符号语言与文字语言同时出现,分两步运算,先开立方,再开平方.第一步:开立方,364=4,标注在旁边;第二步:转化为“4的平方根是_____”,4的平方根是±2.所以364的平方根是±2.巩固练习1.下列说法错误的是()-=-A.2(1)1-=B.33(1)1±D.-81的平方根是9±C.2的平方根是22.下列说法正确的是()A.-0.064的立方根是0.4B.-9的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000013.下列说法正确的是()A.7是49的算术平方根,即7=49±B.7是2)7(-的算术平方根,即7(2=)7-C.7±是49的平方根,即7±49=D.7±是49的平方根,即7=49±4.若a 和a -都有意义,则a 满足的条件是()A .0a ≥B .0a ≤C .0=a D .0a ≠5.一个正数的两个平方根的和是________,商是___________.6.若一个实数的算术平方根等于它的立方根,则该数是______.7.算术平方根等于它本身的数是______________,立方根等于它本身的数是______________.8.0.09=________;30.027=_______;916=_________;2(4)-=_______;33(6)=-_______;2)196(=_______.9.若一个数的平方根是8±,则这个数的立方根是_________.10.36的平方根是_______;2(9)-的算术平方根是_________.11.323(2)2-+=________;39125464-=________.12.若0a ≥,则233()()a a -+-=__________.13.当m _________时,3m -有意义.14.若32a -有意义,则a 能取得的最小整数为________.思考小结1.请根据平方根和立方根的定义回答下列问题:①一个数的平方等于它本身,这个数是_______.②平方根等于它本身的数是_________.③算术平方根等于它本身的数是__________.④立方根等于它本身的数是_________.⑤一个数的立方等于它本身,这个数是_______.2.对于任意数a,2a一定等于a吗?2()a一定等于a吗?①当a≥0,2a=____,当a<0,2a=____,所以2a_____a.()a,a作为被开方数,所以a_____0,因为乘方和②对于2()a_______a.开方互为_________,所以2【参考答案】 巩固练习1.D2.C3.B4.C5.0,-16.1或07.1,0;±1,08.0.3;0.3;34;4;-6;1969.410.6±;911.4;1 412.013.≤314.1思考小结1.①0,1;②0;③0,1;④-1,0,1;⑤-1,0,12.①a,a-,≠②≥,逆运算,=。

人教版七年级数学下册《平方根和立方根》同步练习含答案

人教版七年级数学下册《平方根和立方根》同步练习含答案

第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。

公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。

2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。

《平方根与立方根》习题精选及参考答案

《平方根与立方根》习题精选及参考答案

《平方根与立方根》习题精选及参考答案习题一一1.填表。

其中13 14 16 17 19121 144 225 324 4002.求下列各数的平方根及算术平方根:169,361,,0,0.36,0.0121,,900,19,37。

3.求下列各式的值:4.求下列各式的值:5.求下列各式的值:6.如果一定等于吗?如果是任意一个数,等于什么数?参考答案1.第一行依次填11,12,15,18,20,第二行依次填169,196,256,289,361。

2.平方根依次为:±13,±19,±,±,0,±0.6,±0.11,±,±30,±,±算术平方根依次为:13,19,,,0,0.6,0.11,,30,,3.4,-1.2,1,,,0.144.9,15,42,,0.3,,125,4.155.2,3,,0.4,,35,0.016.时,,如果x是任意一个数,(或时,;时,二1.已知:都是正数,且.求证:的最小值是2.2.一个圆的半径是10cm,是它面积2倍的一个正方形的边长约为多少cm(精确到0.1cm)3.在物理学中我们知道:动能的大小取决于物体的质量与它的速度.关系式是:动能,若某物体的动能是25焦(动能单位),质量m是0.7千克,求它的速度为每秒多少米?(精确到0.01)4.飞出地球,遨游太空,长久以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞得再快,也得回到地面,导弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度我们叫做第一宇宙速度,计算式子是:千米/秒,其中重力加速度千米/秒2,地球半径千米,试求出第一宇宙速度的值(单位:千米/秒).参考答案1.,∴,∴,∴的最小值是2.2.设正方形的边长为 cm.3.(米/秒).4.7.9千米/秒.三1.填空题(1)的立方根是_____________.(2)的立方根是________________.(3)是___________的立方根.(4)若的立方根是6,则 _______.(5)0的立方根是______.(6)7的立方根是_______.(7) _______.(8) ________.2.填空题(1)的倒数为________.(2)49的算术平方根的立方根是________.(3)若,则(4) ______.(5) ________.(6)的绝对值为_______.(7) _______.(8)的立方根为_______.3.填空题(1)的立方根是_______.(2)是_____的立方根.(3)81的平方根的立方根是_______.(4) _______.(5)的立方根是______.(6)的立方根是________.(7)若,则 _______.(8)已知,则 _______.参考答案:1.(1)(2)(3)(4)216(5)0 (6)(7)(8)32.(1)(2)(3)(4)60(5)(6)117 (7)(8)13.(1)(2)-11(3)(4)15 (5)(6)(7)-4 (8)2四1.填表3 5 6 8 91 8 64 343 10002.求下列各数的立方根:27,-125,1,-1,0.512,-0.000729,640003.求下列各式的值:(1),(2),(3),(4),(5)4.求下列各式的值:5.与有什么相同点与不同点?6.大正方体的体积为1331cm3,小正方体的体积为125cm3,如图那样摞在一起,这个物体的最高点A离地面C的距离是多少cm?7.一个正方体的体积为64cm3,它的边长是多少cm?如果它的边长扩大一倍,它的体积是原正方体体积的多少倍?若正方体的体积改为原正方体体积的一半,它的边长是多少cm?就本题的计算过程,你能得出什么结论?参考答案1.第一行依次填:1,2,4,7,10,第二行依次填:27,125,216,512,729.2.3,-5,1,-1,0.8,-0.09,403.(1)-4 (2)0.6 (3)-9 (4)(5)4.-7,-23,0.17,,,1255.相同点:,不同点:的意义是求的立方,是求的立方根.6..∴ cm,即这个物体的最高点A 离地面C是16cm.7.边长为4cm,边长扩大一倍,体积为512cm3,体积为原来体积的8倍.体积为原体积的一半为32cm3,边长是 cm(或 cm).边长扩大一倍,体积扩大8倍,体积缩小一倍,边长是原边长的倍.习题二1.(a-b)3的立方根为()A.a-b B.b-aC.±(a-b) D.(a-b)3答案:A说明:根据立方根的定义,不难得出只有a−b的立方为(a−b)3,即正确答案为A.2.某自然数的一个平方根是a,则与其相邻的下一个自然数的算术平方根是()A.a+1 B.a2+1C.a+1D.a2+1答案:D说明:由该自然数的一个平方根是a可得该自然数为a2,与其相邻的下一个自然数即a2+1,a2+1的算术平方根为,所以答案为D.3.下列各式正确的是()A.(-7)2=-7 B.-(-7)2=-7C.(-7)2=±7 D.±(-7)2=7答案:B说明:== 7,所以,选项A、C错;−= −=−7,选项B正确;而±= ±=±7,选项D错,答案为B.4.若0<a<1,b=a,则a与b的大小关系是()A.a>b B.a<bC.a=b D.不能确定答案:B说明:因为0<a<1,b=,可知0<b<1,且b2=a,因为0,1之间的数平方后比自身要小,即有b2<b,也即a<b成立,所以答案为B.5.16的平方根和立方根分别是()A.±4,16B.±2,±4C.2,4D.±2,4答案:D说明:= 4,因此的平方根即4的平方根,由平方根的定义知4的平方根应为±2,再由立方根的定义知4的立方根应为,所以正确答案应该是D.6.下列判断不正确的是()A.若m=n,则m = nB.若m=n,则m=nC.若m2=n2,则m=nD.若m3=n3,则m=n答案:C说明:选项A,由=两边同时平方即有m=n成立;选项B,由=两边同时立方即有m=n成立;选项C,若m=1,n=−1,则=成立,但m≠n,所以选项C错;选项D,因为=m,=n,所以=即m=n;因此,答案为C.7.-(-2)3的平方根是__________,立方根是___________.答案:±2;2说明:−(−2)3=−(−8)=8,由平方根的定义知8的平方根为±=±=±2,而8的立方根则是2.8.一个正数x的两个平方根为m+1和m-3,则m =__________,x =___________.答案:1;4提示:一个正数的平方根有两个,它们互为相反数,因此(m+1)+(m−3)=0,故m=1,进而x=4.9.若式子5x+6总有平方根,则x_________.答案:≥−说明:要使式子5x+6总有平方根,则5x+6≥0,解这个不等式可得x≥−.10.若式子x-的平方根只有一个,则x=__________.答案:说明:平方根只有一个的就是0,因此式子x−= 0,即x=.11.某运动场地是一个矩形,长是宽的4倍,面积为1156m2,求运动场地的长和宽.答案:长 68m宽 17m说明:设宽为x,则长为4x,由已知面积为1156m2,得x×4x=1156m2,即x2=289m2,x=± 17m(−17m不合题意,舍去),4x=68m,即运动场地的长为68m,宽为17m.探究活动你能判断出谁年轻吗?如今的时代是知识爆炸的时代,是科技高速发展的时代,中国的航天技术正在飞速发展,宇宙的奥秘正逐步展现在我们面前.有两名宇航员李飞(二十八岁)和刘学(二十五岁).李飞乘着以光速0.98倍的速度飞行的宇宙飞船,作了五年宇宙旅行后回来(这个五年是指地面上的五年).这时谁年轻?年轻几岁?(精确到一年)提示:根据爱因期坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式内的c是指光速(30万千米/秒),v是指宇宙飞船速度.参考答案:地面上经过1秒,飞船内经过秒,相当于地面上时钟走的速度的五分之一,所以地面上过了五年,宇宙飞船上才过去一年,因此李飞的岁数这时是29岁,而刘学的岁数是30岁,李飞比刘学年轻一岁.。

人教版七年级下册数学期末考复习专题01平方根及立方根(专题测试)(解析版)

人教版七年级下册数学期末考复习专题01平方根及立方根(专题测试)(解析版)

专题01 平方根及立方根专题测试一、单选题1.(2019·阜阳市第九中学初一期中)平方根和立方根都是本身的数是( )A .0B .0和1C .±1D .0和±1【答案】A【解析】平方根和立方根都是本身的数是0.故选A .2.(2019·重庆市永川区第五中学校初二期中)下列各式中,正确的是A 4=±B .4=C 3=-D 4=-【答案】C【解析】A . 原式=4,所以A 选项错误;B . 原式=±4,所以B 选项错误;C . 原式=−3,所以C 选项正确;D . 原式=|−4|=4,所以D 选项错误;故选:C .3.(2019·广东初二期中)-8的立方根与4的平方根之和是( )A .0B .4C .0或4D .0或-4【答案】D【解析】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.故选:D .4.(2019·安徽初一期末)下列语句中正确的是( )A .9-的平方根是3-B .9的平方根是3C .9的算术平方根是3±D .9的算术平方根是3【答案】D【解析】A 选项:-9没有平方根,故是错误的;B 选项:9的平方根有3和-3,故是错误的;C 选项:9的算术平方根是3,故是错误的;D 选项:9的算术平方根是3,故是正确的;故选D 。

5.(2019·金寨县天堂寨镇暖流中学初一期中)下列各式中,正确的是( )A . 2.50.5-=-B .2(5)5-=-C .366=±D .93=【答案】D【解析】∵0.250.5-=-,故A 错误;2(5)5-=,故B 错误;366=,故C 错误;93=,故D 正确;故选:D6.(2017·安徽初一期中)327-的绝对值是A .3B .-3C .13 D .13-【答案】A【解析】3.-3的绝对值是3.故选A .7.(2019·81 )A .9B .±9C .±3D .3【答案】D【解析】81,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.813.故选:D .8.(2019·阜阳市第九中学初一期中)若2m -4与3m -1是同一个数的两个不等的平方根,则这个数是( ) A .2 B .一2 C .4 D .1【答案】C【解析】解:由题意可知:2m-4+3m-1=0,解得:m=1,∴2m-4=-2所以这个数是4,故选:C.9.(2019·+|b﹣1|=0,那么(a+b)2019的值为( ) A.﹣1 B.1 C.32019D.﹣32019【答案】A【解析】∵|a+2|+(b-1)2=0,∴a+2=0,b-1=0,∴a=-2,b=1,∴(a+b)2019=(-2+1)2019=-1.故选A.10.(2019·,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】,=∴x=-y,即x、y互为相反数,故选:B.二、填空题11.(2018·_____.【答案】2【解析】,4的算术平方根是2,∴16的算术平方根是2.12.(2019·淮南实验中学初一期中)﹣3是_____的立方根,81的平方根是_____.【答案】-27 ±9【解析】﹣3是﹣27的立方根,81的平方根是±9,故答案为:﹣27;±9.13.(2019·浙江初一期中)64立方根是__________.【答案】2;【解析】∵64=8,38=2,∴64的立方根是2.故答案为:2.14.(2019·安徽初二期中)观察下列各式:①111233+=;②112344+==3;③113455+=,…请用含n(n≥1)的式子写出你猜想的规律:____________.【答案】1 (1)2 nn++【解析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即12nn++=1(1)2nn++.故答案为1 (1)2 nn++.15.(2019·辽宁初二期中)已知x,y都是实数,且y=3x-+3x-+4,则y x=________. 【答案】64【解析】由题意得x=3,y=4, 则=43=64三、解答题16.(2019·丹东市第七中学初二期中)已知一个正数的两个平方根分别为a和3a﹣8(1)求a的值,并求这个正数;(2)求1﹣7a2的立方根.【答案】(1)4, (2)-3.【解析】(1)根据题意,得:a+3a﹣8=0,解得:a=2,所以这个正数为22=4;(2)当a=2时,1﹣7a2=﹣27,则1﹣7a2的立方根为﹣3.17.(2018·合肥市第四十五中学初一期中)已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.【答案】当a=4,b=﹣8,c=0,2a+b﹣3c=0;当a=4,b=﹣8,c=1,2a+b﹣3c=﹣3.【解析】∵某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.c算术平方根是其本身∴a+3+2a﹣15=0,b=﹣8,c=0或1,解得a=4.当a=4,b=﹣8,c=0,2a+b﹣3c=8﹣8﹣0=0;当a=4,b=﹣8,c=1,2a+b﹣3c=8﹣8﹣3=﹣3.18.(2019·安徽初一期中)已知3既是x-1的平方根,又是x-2y+1的立方根,求x2-y2的平方根.【答案】±6【解析】解:根据题意得192127xx y-⎧⎨-+⎩=①=②,由①得:x=10,把x=10代入②得:y=-8,∴108 xy⎧⎨-⎩==,∴x2-y2=102-(-8)2=36,∵36的平方根是±6,∴x2-y2的平方根是±6.19.(2019·阜阳市第九中学初一期中)已知a是-64的立方根,b的算术平方根为2.(1)写出a,b的值;(2)求3b-a的平方根,【答案】(1)a=-4,b=4;(2) ±4.【解析】解(1)因为a是-64的立方根,b的算术平方根为2,所以a=-4,b=4 (2)因为a=-4,b=4,所以3a-3b=16.所以3a-3b的平方根为士4。

平方根与立方根(人教版)(含答案)

平方根与立方根(人教版)(含答案)
C.2 D.3
答案:C
解题思路:
3.1415926和0.2是有限小数, 是分数, 0.7, 3,
因此它们都是有理数; 为无理数, 且 为无理数.
故选C.
试题难度:三颗星知识点:无理数的概念
16.下列说法正确的是( )
A.一个数的平方根有两个B.有理数与数轴上的点一一对应
C.两个无理数的和不一定是无理数D.绝对值最小的实数不存在
3.平方根等于它本身的数是______,立方根等于它本身的数是______.空格上依次填写正确的是( )
A.±1和0,1和0 B.1和0,±1和0
C.0,±1和0 D.0,±1
答案:
解题思路:
1的平方根是±1,0的平方根是0,所以平方根等于它本身的只有0;
1的立方根是1,0的立方根是0,-1的立方根是-1,
A.8 B.-8
C.8或-8 D.4或-4
答案:C
解题思路:
4的平方根为2或-2,因此这个数为2或-2,2的立方为8,-2的立方为-8.
故选C.
试题难度:三颗星知识点:平方根
10.-27的立方根与 的平方根之和为( )
A.0 B.6
C.0或-6 D.0或6
答案:C
解题思路:
-27的立方根是-3, ,9的平方根为±3,-3与±3的和为0或-6,
A. B.
C. D.
答案:D
解题思路:
因为 , , ,…,
可以发现一个数如果扩大100倍,那么它的算术平方根扩大10倍,
由于20是0.2的100倍,所以 .
故选D.
试题难度:三颗星知识点:平方根
13.若 ,则( )
A.a>1 B.a<1
C.a≧1 D.a≦1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根练习题及答案
平方根与立方根练习题及答案
数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。

而在数学中,平方根和立方根是我们常常会遇到的概念。

它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。

下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。

一、平方根练习题
1. 计算下列各数的平方根:
a) 9
b) 16
c) 25
d) 36
e) 49
答案:
a) √9 = 3
b) √16 = 4
c) √25 = 5
d) √36 = 6
e) √49 = 7
2. 计算下列各数的平方根(保留两位小数):
a) 2
b) 5
c) 8
d) 10
e) 13
答案:
a) √2 ≈ 1.41
b) √5 ≈ 2.24
c) √8 ≈ 2.83
d) √10 ≈ 3.16
e) √13 ≈ 3.61
3. 判断下列各数是否为完全平方数:
a) 16
b) 21
c) 36
d) 42
e) 49
答案:
a) 是
b) 否
c) 是
d) 否
e) 是
二、立方根练习题
1. 计算下列各数的立方根:
a) 8
b) 27
c) 64
d) 125
e) 216
答案:
a) ∛8 = 2
b) ∛27 = 3
c) ∛64 = 4
d) ∛125 = 5
e) ∛216 = 6
2. 计算下列各数的立方根(保留两位小数):
a) 1
b) 10
c) 25
d) 50
e) 100
答案:
a) ∛1 = 1
b) ∛10 ≈ 2.15
c) ∛25 ≈ 2.92
d) ∛50 ≈ 3.68
e) ∛100 ≈ 4.64
3. 判断下列各数是否为完全立方数:
a) 8
b) 27
c) 36
d) 49
e) 64
答案:
a) 否
b) 是
c) 是
d) 否
e) 是
通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。

同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。

在实际生活中,平
方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们
常常需要用到这些概念。

因此,掌握平方根和立方根的计算方法和应用场景,
对我们的学习和生活都具有重要意义。

总之,数学是一门需要不断练习和探索的学科,平方根和立方根作为其中的一
部分,同样需要我们进行反复的练习和应用。

希望通过这些练习题,能够帮助
大家更好地理解和掌握平方根和立方根的概念,提高数学水平,并在实际生活
中灵活运用。

相关文档
最新文档