2020中考数学 压轴专题 动态几何之“双动点”问题(含答案)

合集下载

2020中考题型突破双动点

2020中考题型突破双动点

1.如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直.接.写出t 的值.图1526.解:(1)25.(2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==.(3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD 下行,所以在6787t <<中存在EB图5B图6B图7B图8B图9B C A PPG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)2.2010葫芦岛(12)如图,在Rt ∆ABC 中,∠ACB=900,AC=6,BC=8;四边形PDEF 是矩形,PD=2,PF=4,DE 与AB 边交于G ,点P 从点B 出发沿BC 以每秒1个单位的速度向点C 匀速运动,伴随P 点的运动,矩形 PDEF 在射线BC 上滑动;点Q 从点P 出发沿折线PD —DE 以每秒1个单位的速度 匀速运动.点P,Q 同时出发,当点Q 到达点E 时停止运动,点P 也随之停止.设点P,Q 运动的时间为ts(t>0). (1)当t=1时,QD=_____.DG=______. (2)当点Q 到达点G 时,求出t 的值. (3)t 为何值时,∆PQC 是直角三角形.BB C A1C A25.(1)1,53(2)当点Q 到达点G 时,如图1,作QH ⊥BC 于H.则QD=t-2,DG=BH-BP=8/3-t,而QD=DG ∴t-2=8/3-t 解得x=7/3.(3).①当点Q 在PD 上运动时,即0<t ≤2时,∆PQC 是直角三角形.②当点Q 在上运动,PQ 2+QC 2=PC 2时,∆PQC 是直角三角形.如图2,延长DE 交AC 于点K.而PQ 2=DQ 2+PD 2=(t-2)2+22=t 2-4t+8. QC 2=QK 2+KC 2=[8-t-(t-2)]2+22=4t 2-40t+104.PC 2=(8-t)2=t 2-16t+64.令(t 2-4t+8)+(4t 2-40t+104)= t 2-16t+64 解得t 1=3,t 2=4.③当点Q 经过DE 与AC 的交点时,∆PQC 是直角三角形.如图3.此时,BP+DQ=BC,即t+(t-2)=8.解得t=5.∵0<t ≤6 ∴0<t ≤2,或t=3,或t=4时∆PQC 是直角三角形.图3.2009河北(本小题满分12分)如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ 于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)Array(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.P图1626.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.图4P图3F此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =.【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】26.(本小题满分12分)如图13,在等腰ABC △中,5cm AB AC ==,6cm BC =,点P 从点B 开始沿BC 边以每秒1 cm 的速度向点C 运动,点Q 从点C 开始沿CA 边以每秒2 cm 的速度向点A 运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交BC 于点E .点P Q ,分别从B C ,两点同时出发,当点Q 运动到点A 时,点Q 、p 停止运动,设它们运动的时间为(s)x . (1)当x = 秒时,射线DE 经过点C ;(2)当点Q 运动时,设四边形ABPQ 的面积为2(cm )y ,求y 与x 的函数关系式(不用写出自变量取值范围);(3)当点Q 运动时,是否存在以P Q C 、、为顶点的三角形与△PDE 相似?若存在,求出x 的值;若不存在,请说明理由.26.解:(1)2x = ……………3分(当DE 经过点C 时,∵DE ⊥PQ ,PD QD = ∴PC CQ =6PC x =-,2CQ x =即62x x -= 得2x = ∴当2x =时,当DE 经过点C )(2)分别过点Q 、A 作QN BC ⊥,AM ⊥BC 垂足为M 、N .图135AB AC ==cm ,6BC =cm , ∴4AM ==(cm )∵ QN AM ∥ ∴~QNC AMC △△ ∴QN CQ AM CA = 即245QN x = 85Q N x=……………6分又6PC x =- ∴PCQ S ∆=12PC QN ==18(6)25x x -∴ABC PCQ y S S ∆∆=-=1642⨯⨯-18(6)25x x -即24241255y x x =-+ ……………9分(3)存在. ……………10分理由如下:∵DE ⊥PQ ∴PQ ⊥AC 时△PQC ∽△PDE 此时,△PQC ∽△AMC ∴QC PC MC AC = 即 2635x x -=∴1813x = ……………12分09河北滦南一模 4.(本小题满分12分)如图14,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒).(1)求当t 为何值时,两点同时停止运动;(2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC .图14ABCD E FO09河北滦南一模 26.解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分)由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t .∵ED ∥BC ,∴△FED ∽△FBC .∴FD EDFC BC=. ∴2428t tt -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分)(2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF =12×8×4+12×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分)(3)①若EF=EC 时,则点F 只能在CD 的延长线上,∵EF 2=222(24)51616t t t t -+=-+,EC 2=222416t t +=+,∴251616t t -+=216t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴216t +=4t 2.∴t = ③若EF=FC 时,∵EF 2=222(24)51616t t t t -+=-+,FC 2=4t 2,∴251616t t -+=4t 2.∴t 1=16+,t 2=16-.∴当t 的值为416-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分)(4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CFCD ED==, ∴Rt △BCF ∽Rt △CED .∴∠BFC =∠CED .………………………………………(10分) ∵AD ∥BC ,∴∠BCE =∠CED .若∠BEC =∠BFC ,则∠BEC =∠BCE .即BE =BC . ∵BE 2=21680t t -+,∴21680t t -+=64. ∴t 1=16+,t 2=16-∴当t =16-BEC =∠BFC .……………………………………………(12分)图2ABCDEF5唐山一模(12分)如图,在矩形ABCD 中,AB =3cm ,BC =4cm .设P ,Q 分别为BD ,BC 上的动点,点P 自点D 沿DB 方向作匀速移动的同时,点Q 自点B 沿BC 方向向点C 作匀速移动,移动的速度均为1cm/s ,设P ,Q 移动的时间为t (0≤t ≤4).(1)当t 为何值时,PQ ⊥BC ?(2)写出△PBQ 的面积S (cm 2)与时间t (s )之间的函数表达式,当t 为何值时,S 有最大值?最大值是多少?(3)当t 为何值时,△PBQ 为等腰三角形?A B09唐山一模6.(1)由题意知:BD=5,BQ=t ,QC=4-t ,DP=t ,BP=5-t ∵PQ ⊥BC ∴△BPQ ∽△BDC ∴BC BQ BD BP =即455t t =- ∴920=t 当920=t 时,PQ ⊥BC ……………………………………………………………………3分 (2)过点P 作PM ⊥BC ,垂足为M∴△BPM ∽△BDC ∴355PM t =- ∴)5(53t PM -=……………………4分 ∴⨯=t S 21)5(53t -=815)25(103+--t …………………………………………5分∴当52t =时,S 有最大值158.……………………………………………………6分 (3)①当BP=BQ 时,t t =-5, ∴25=t ……………………………………7分 ②当BQ=PQ 时,作QE ⊥BD ,垂足为E ,此时,BE=2521tBP -=∴△BQE ∽△BDC ∴BD BQ BC BE = 即5425tt=- ∴1325=t ……………………9分 ③当BP=PQ 时,作PF ⊥BC ,垂足为F, 此时,BF=221tBQ =∴△BPF ∽△BDC ∴BD BP BC BF = 即5542tt-= ∴1340=t ……………………11分 ∴14013t =, 252t =,32513t =,均使△PBQ 为等腰三角形. …………………………12分7题(10分)如图已知等边三角形AB C中,点D、E、F分别是边AB、A C、B C的中点,M 为直线B C上的一点,△DMN为等边三角形(点M位置改变时,△DMN也随之改变).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系,点F是否在直线NE上?都请直接..写出答案,不必证明或说明理由.(2)如图2,当点M在B C上时,其他条件不变,(1)中的结论是否仍然成立?若成立,请利用图2证明,若不成立,请说明理由.(3)如图3,当点M在点B右侧时,请你在图3画出相应的图形,并判断(1)中的结论是否仍然成立?若成立,请直接..写出答案,不必证明或说明理由.若不成立,请举例说明.8题唐山二模(12分)已知:如图,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD =2,BC =4,AB =DC =2,点M 从点B 开始,以每秒1个单位的速度向点C 运动;点N 从点D 开始,沿D —A —B 方向,以每秒1个单位的速度向点B 运动.若点M 、N 同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t (t >0).过点N 作NP ⊥BC 与P ,交BD 于点Q .(1)点D 到BC 的距离为 ; (2)求出t 为何值时,QM ∥AB ;(3)设△BMQ 的面积为S ,求S 与t 的函数关系式;(4)求出t 为何值时,△BMQ 为直角三角形.A B C D M N P Q9唐山三模(12分)如图,梯形OABC中,O为直角坐标Array系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动.其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿折线O―C―B 向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.(1)如果点Q的速度为每秒2个单位时,①试分别写出点Q分别在OC上和在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);②求t为何值时,PQ∥OC.(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半时.①试用含t的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?有可能,求出相应的t 的值和P 、Q 的坐标;如不可能,请说明理由.9.解:(1)①当点Q 在OC 上,坐标为(t 58,t 56); 当点Q 在CB 上,坐标为(12-t ,3)……………………4分②令4)12(=--t t 解得t =5∴t 为5秒时,PQ ∥OC …………………………………………6分(2)①由题意知:梯形OABC 的周长为32,则点Q 所经过的路程为t -16,速度为tt-16……………………8分②当Q 在OC 上时,作QM ⊥OA ,垂足为M ,则QM =53)16(⨯-t ∴t t S OPQ ⋅-⨯=∆)16(5321=)16(103t t - 令)16(103t t -=18 解得:101=t ,62=t ∵当t 1=10时,16-t =6,这时点Q 不在OC 上,故舍去, 当t 2=6时,16-t =10,这时点Q 不在OC 上,故舍去。

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

《中考压轴题》专题24:动态几何之双(多)动点形成的函数关系问题一、选择题1.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是A .AE=6cmB .4sin EBC 5∠=C .当0<t ≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。

河北2020年河北中考要注意双动点问题

河北2020年河北中考要注意双动点问题

河北2020年河北中考要注意双动点问题了!最近这几年河北的中考题大多以图形变换来考察几何综合问题,动点变换缺位了几多年。

这里给出中考说明中的三个例题,要好好研究了。

1、在△ABC 中,BC =AC =5,AB =8,CD 为AB 边上的高。

如图1,点A 在原点处,点B 在y 轴的正半轴上,点C 在第一象限。

若A 从原点出发沿x 轴向右以每秒1个单位长度的速度运动,则点B 随之沿y 轴向下滑,并带动△ABC 在平面内滑动,如图2。

设运动时间为t 秒,点B 到达原点时运动停止。

(1)当t =0时,求点C 的坐标;(2)当t =4时,求OD 的长及∠BAO 的大小;(3)求从t =0到t =4这一时段内点D 的运动路线的长;(4)当以点C 为圆心,CA 为半径的圆与坐标轴相切时,求t 的值。

解:(1)当t =0时,点A 与原点重合,∵CD 为AB 边上的高,∴CD ∥x 轴, ∵BC =AC ,∴AD =BD =21AB =4。

在Rt △ACD 中,CD =22AD AC -=2245-=3,∴点C 的坐标为(3,4);(2)当t =4时,OA =4。

在Rt △AOB 中,OD =21AB =21×8=4。

∵cos ∠BAO =AB OA =84=21(或△AOD 是等边三角形),∴∠BAO =60°; (3)由(2)可知,∠BOD =30°。

由题意知,点D 的运动路线是弧线,如图所示。

DD /⌒=︒⨯︒180430π=π32,∴从t =0到t =4这一时段内点D 的运动路线的长为π32; (4)当⊙C 和x 轴相切时,AC ⊥x 轴,AC ∥y 轴,如图所示。

△ACD ∽△BAO ,∴BA AC =AO CD ,∴85=t 3,解得:t =524;当⊙C 和y 轴相切时,BC ⊥y x 轴,AC ∥x 轴,如图所示。

△BCD ∽△ABO ,∴∴AB BC =AO BD ,∴85=t 4,解得:t =532; 综上所述,当以点C 为圆心,CA 为半径的圆与坐标轴相切时,t 的值为524或532。

专题32 动态几何之双(多)动点形成的最值问题(压轴题)

专题32 动态几何之双(多)动点形成的最值问题(压轴题)

《中考压轴题》专题32:动态几何之双(多)动点形成的最值问题一、填空题1.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.3.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.二、解答题1.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?2.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?3.如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.4.在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的位置关系,并说明理由;(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?请说明理由;(4)如图④,当E ,F 分别在边DC ,CB 上移动时,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD=2,试求出线段CP 的最小值.5.如图,在平面直角坐标系xOy 中,抛物线2y ax bx 4=+-与x 轴交于点A(﹣2,0)和点B ,与y 轴交于点C ,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M ,H 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行,当点M 到达原点时,点H 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M 的直线l ⊥x 轴,交AC 或BC 于点P ,设点M 的运动时间为t 秒(t >0).求点M 的运动时间t 与△APH 的面积S 的函数关系式,并求出S 的最大值.6.如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c 与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.7.如图,直线4y x83=-+与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.8.如图,在平面直角坐标系中,抛物线2y ax bx 3(a 0)=+-≠与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使CBK PBQ S S 5:2=△△:,求K 点坐标.9.如图,抛物线y=ax 2+bx+c (a≠0)的图象过点C (0,1),顶点为Q (2,3),点D 在x 轴正半轴上,且OD=OC .(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.如图,直线y x 412=-+与坐标轴分别交于点A 、B ,与直线y=x 交于点C .在线段OA 上,动点Q 以每秒1个单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外).(1)求点P 运动的速度是多少?(2)当t 为多少秒时,矩形PEFQ 为正方形?(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.11.如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为点C 、D ,连结CD 、QC .(1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系,并求S 的最大值?(3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.12.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.13.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N 以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.14.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=22.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.15.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P 有几个?并求出点P到线段OD的距离;若不存在,请说明理由.16.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.17.如图,正方形AOCB 在平面直角坐标系xOy 中,点O 为原点,点B 在反比例函数k y x =(x >0)图象上,△BOC 的面积为8.(1)求反比例函数k y x=的关系式;(2)若动点E 从A 开始沿AB 向B 以每秒1个单位的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t 表示,△BEF 的面积用S 表示,求出S 关于t 的函数关系式,并求出当运动时间t 取何值时,△BEF 的面积最大?(3)当运动时间为34秒时,在坐标轴上是否存在点P ,使△PEF 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.18.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C 的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.19.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒53个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?20.如图,甲、乙两人分别从A(1)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.21.如图,在O A B C中,点A在x轴上,∠A O C=60o,O C=4c m.O A=8c m.动点P从点O出发,以1c m/s的速度沿线段O A→A B运动;动点Q同时..从点O出发,以a c m/s的速度沿线段O C→C B运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.22.如图,抛物线2y x 2=-++与x 轴交于C .A 两点,与y 轴交于点B ,点O 关于直线AB 的对称点为D ,E 为线段AB 的中点.(1)分别求出点A .点B 的坐标;(2)求直线AB 的解析式;(3)若反比例函数k y x=的图象过点D ,求k 值;(4)两动点P 、Q 同时从点A 出发,分别沿AB .AO 方向向B .O 移动,点P 每秒移动1个单位,点Q 每秒移动12个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值;若不存在,请说明理由.23.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.24.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.。

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态几何问题的常见方法有:2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1以双动点为载体,探求函数图象问题。

2以双动点为载体,探求结论开放性问题。

3以双动点为载体,探求存在性问题。

4以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .

又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.

2020年广东中考数学压轴题:动点

2020年广东中考数学压轴题:动点

2020年广东省中考数学压轴题:动点问题如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-. 解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--. 解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意. 综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=. 因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m . 当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6。

2020年中考数学专题训练6.几何动态问题(含解析)

2020年中考数学专题训练6.几何动态问题(含解析)

2020年中考数学专题训练几何动态问题1.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A′处,若∠1=∠2=50°,则∠A′的度数为()第1题图A.130°B.120°C.105°D.100°C【解析】∠四边形ABCD是平行四边形,∴AD∠BC,∠∠ADB=∠DBG,由折叠的性质可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∠∠1=∠BDG+∠DBG=50°,∠∠ADB=∠BDG=25°,又∠∠2=50°,∠在∠ABD中,∠A=105°,∠∠A'=∠A=105°.2.如图,在Rt∠ABC中,∠ACB=90°,BC=2,将∠ABC绕顶点C逆时针旋转得到∠A′B′C,使点B′落在AC边上,设M是A′B′的中点,连接BM,CM,则∠BCM的面积为()第2题图第2题解图A.1B.2C.3D.4A 【解析】如解图,过点M 作MH ∠A ′C 于H ,∠∠ABC 绕顶点C 逆时针旋转得到∠A ′B ′C ,使点B ′落在AC 边上,∠CB ′=CB =2,∠A ′CB ′=∠ACB =90°,∠点A ′、C 、B 共线,∵点M 是A'B'的中点,∴MH =21CB'=1,∠S ∠BCM =21BC ·MH =21×2×1=1.3.如图,已知四边形ABCD 是边长为4的正方形,E 为AB 的中点,将∠DAE 绕点D 沿逆时针方向旋转后得到∠DCF ,连接EF ,则EF 的长为( )第3题图A .23B .25C .26D .210D 【解析】∠四边形ABCD 为正方形,∠∠A =∠ADC =90°,∠∠ADE +∠EDC =90°,∠∠DAE 绕点D 沿逆时针方向旋转后得到∠DCF ,∠∠ADE =∠CDF ,DE =DF ,∠∠CDF +∠EDC =90°,∠∠DEF 为等腰直角三角形,∠E 为AB 的中点,AB =4,∠AE =2,∠DE =22AD AE =25,∠EF =2DE =210.4.如图,在矩形ABCD 中,BC =8,CD =6,将∠ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则EF 的长是( )第4题图A .3B .524C .5D .1689A 【解析】∠四边形ABCD 是矩形,∠AB =CD =6,∠A =90°,∠AB =6,AD =8,∠BD =22AD AB +=10,∠将∠ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,∠BF =AB =6,EF=AE ,∠BFE =∠A =90°,∠DF =4,在Rt∠DEF中,由勾股定理得DE 2=EF 2+DF 2,即(8-AE )2=AE 2+16,∠AE =3,即EF =3.5.如图,将矩形ABCD 绕点A 逆时针旋转至矩形AB ′C ′D ′位置,此时AC ′的中点恰好与D 点重合,AB ′交CD 于点E ,则旋转角的度数为( )第5题图A .30°B .45°C .60°D .90°C 【解析】∠将矩形ABCD 绕点A 逆时针旋转至矩形AB ′C ′D ′位置,∠AD =AD ',CD =C 'D ',∠D '=∠ADC ,∠∠ACD ∠∠AC 'D ',∠AC =AC ',∠DCA =∠D 'C 'A ,∠D 是AC '的中点,∠AC '=2AD ,∠AC =2AD ,∠sin∠DCA =21=AC AD ,∠∠DCA =30°,∠∠D 'C 'A =30°,∠D 'C '∠AB ',∠∠D 'C 'A =∠C 'AB '=30°,∠∠B 'AB =60°,∠旋转角为60°.6.如图,在四边形ABCD 中,∠BAD =130°,∠B =∠D =90°,点E ,F 分别是线段BC ,DC 上的动点.当∠AEF 的周长最小时,则∠EAF 的度数为( )第6题图 第6题解图A .90°B .80C .70°D .60°B 【解析】如解图,作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于E ,交CD 于F ,则A ′A ″即为∠AEF 的周长最小值,作DA 延长线AH ,∵∠DAB =130°,∠∠HAA ′=50°,∠∠AA ′E +∠A ″=∠HAA ′=50°,∵∠EA 'A =∠EAA ′,∠F AD =∠A ″,∠∠EAA ′+∠A ″AF =50°,∠∠EAF =130°-50°=80°.7.如图,正方形ABCD 的边长为5,E 为AB 上的点,AE =1,P 为BC 上的点,CP =2,O 为AC 上的动点,则∠EOP 周长的最小值是( )第7题图 第7题解图A .8+2B .6+22C .295+D .不存在 C 【解析】根据题意可得522=+=BP BE PE ,要使△EOP 的周长最小,即要使OE +OP 的值最小,如解图,作点E 关于直线AC 的对称点E ′,连接E ′P 交AC 于点O ,连接OE ,PE ,过点P 作PH ∠AD 于点H ,此时OE +OP 最小,即OE +OP=OE'+OP=E'P ,在Rt △E'HP 中,HP =5,E'H =2,∴E ′P =222252'+=+HP H E 29=,∠∠EOP 的周长的最小值为295+.8.如图,菱形ABCD 中,AB =2,∠D =120°,E 是对角线AC 上的任意一点,则BE +21CE 的最小值为( )第8题图 第8题解图A .3B .2C .23+1D .3+1 A 【解析】如解图,过点B 作BF ∠DC 于点F ,交AC 与点E ,∠菱形ABCD 中,AB =2,∠D =120°,∠BC =2,∠FBC =30°,∠DCA =30°,∴EF =21EC ,∴BF =BE +EF =BE +21EC .由垂线段最短可知:当BF ∠DC 时,BF 有最小值,即BE +21CE 有最小值,∵BF =23BC =23×2=3,∠BE +21EC 的最小值为3. 9.如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,将∠ABE 沿AE 折叠,使点B 落在AC 上的点B'处,又将∠CEF 沿EF 折叠,使点C 落在射线EB'与AD 的交点C'处,则ABBC 的值为( )第9题图 第9题解图A .2B .33C .2D .3D 【解析】如解图,连接CC ′.∠四边形ABCD 是矩形,∠AD ∠BC ,∠B =90°,∠∠C ′AE =∠AEB =∠AEC ′,∠AC ′=EC ′,∠EC =EC ′,∠AC ′=EC ,∠四边形AC ′CE 是平行四边形,∠AC ∠EC ′,∠四边形AC ′CE 是菱形,∠AC ′=AE =EC ′,∠∠AEC ′是等边三角形,∠∠EAC ′=60°,∠∠ACB =∠CAC ′=21∠EAC ′=30°,∴∠BAC =60°,在Rt∠ABC 中,ABBC =tan60°=3. 10.如图,在△ABC 中,AB =10,AC =8,BC =6,AD 平分∠BAC ,点P 、Q 分别是AD 、AC 上的动点(点P 不与A 、D 重合,点Q 不与A 、C 重合),则PC +PQ 的最小值为 .第10题图 第10题解图 524【解析】如解图,过点C 作CH ∠AB 于H ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,易知PQ =PH ,∠PC +PQ =PC +PH=CH ,∴PC +PQ 的最小值就是线段CH 的长.∠AB =10,AC =8,BC =6,∠AB 2=AC 2+BC 2,∠∠ACB =90°,∠21•AB •CH =21•AC •BC ,∠CH =524,即PC +PQ 的最小值为524.。

2020年中考数学热点冲刺8 动态几何问题(含解析)

2020年中考数学热点冲刺8 动态几何问题(含解析)

热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。

2020年中考数学复习(通用)专题:几何压轴题型含答案

2020年中考数学复习(通用)专题:几何压轴题型含答案

几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =∠DCE,∠DCE+∠DBE=180°,即∠ABD+∠DBE=180°,∴点A ,B ,E 共线,易知2∠ACB+∠BAC=90°不成立,存在2∠BAC+∠ACB=90°,易证得△ECB∽△EAC,∴EC AE =BE EC ,即127+BE =BE 12,解得BE =9(负值已舍去),∴AE=16,在Rt△AEC 中,利用勾股定理得,AC =AE 2+CE 2=20.类型三1.解:(1)①DF=2AE ; ②DF=2AE ;理由:∵∠EBF=∠ABD=45°,∴∠ABE =∠FBD.∵BE BF =AB BD ,∴△ABE∽△DBF,∴AE DF =AB BD =22,∴DF=2AE.(2)①如解图①,过点F 作FG⊥AD 于点G ,则四边形AEFG 是矩形,∴GF=AE. ∵tan∠FDG=BAAD =GFDG ,AD =BC =mAB ,∴DG=mGF ,在Rt△DGF 中,由勾股定理得DF =GF 2+DG 2=1+m 2GF ,∴DF=1+m 2AE.②画出草图如解图②,DF′=1+m2AE′.2.解:(1)GM=GN;GM⊥GN.【解法提示】如解图①,连接BE,CD相交于点H.∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG 12 CD.同理:NG 12BE,∴MG=NG,MG⊥NG.(2)小明发现的上述结论成立.理由:如解图②,连接CD ,BE 相交于点H. ∵∠DAB=∠CAE=90°,∴∠DAC=∠BAE.∵DA=BA ,CA =EA ,∴△DAC≌△BAE(SAS),∴∠FBH=∠ADF,DC =BE.∵M 是BD 的中点,G 是BC 的中点,∴MG=12DC , 同理NG =12BE ,∴MG=NG. 设CD 交AB 于点F ,则∠FHB=180°-(∠FBH+∠BFH)=180°-(∠ADF+∠AFD)=90°,∴CD⊥BE,∴MG⊥NG;(3)△GMN 为等腰直角三角形.证明:如解图③,连接EB ,DC ,延长线相交于点H ,同(1)的方法得,MG =NG ,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH +∠ECH =∠AEH -∠AEC +180°-∠ACD -∠ACE =∠ACD -45°+180°-∠ACD-45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.3.(1)证明: ∵DE∥AB,∴∠EDC=∠ABM.∵CE∥AM,∴∠ECD=∠ADB.∵AM 是△A BC 的中线,且点D 与点M 重合,∴BD=DC ,∴△ABD≌△EDC(ASA),∴AB=ED.∵AB∥ED,∴四边形ABDE 是平行四边形.(2)解:结论成立.理由如下:第3题解图①如解图①,过点M作MG∥DE交CE于点G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM.∵AB∥DE,∴AB∥GM,∴∠ABM=∠GMC.∵AM∥CE,∴∠AMB=∠GCM.∵AM为△ABC的中线,∴BM=MC.∴△ABM≌△GMC(ASA),∴AB=GM,∴AB=DE.∵AB∥DE,∴四边形ABDE是平行四边形.(3)解:①如解图②,取线段HC的中点I,连接MI,第3题解图②∵BM=MC,∴MI 是△BHC 的中位线,∴MI∥BH,MI =12BH. ∵BH⊥AC,且BH =AM.∴MI=12AM ,MI⊥AC, ∴∠CAM=30°.②设DH =x ,则AH =3x ,AD =2x , ∴AM=4+2x ,∴BH=4+2x.∵四边形ABDE 是平行四边形,∴DF∥AB, ∴HF HA =HD HB ,∴33x =x 4+2x , 解得x =1+5或x =1-5(舍去), ∴DH=1+ 5.。

中考数学专题检测专题《动态几何之双(多)动点形成的函数关系》(含解析)

中考数学专题检测专题《动态几何之双(多)动点形成的函数关系》(含解析)

专题24动态几何之双(多)动点形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与"不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。

本专题原创编写单动点形成的函数关系问题模拟题。

双动点和多动点问题就是在一些基本几何图形上,设计几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。

解决点动问题常常用的是“类比法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。

类比法大致可遵循如下步骤:(1)根据已知条件,先从动态的角度去分析观察可能出现的情况。

(2)结合某一相应图形,以静制动,运用所学知识(常见的有三角形全等、三角形相似等)得出相关结论。

(3)类比猜想并证明其他情况中的图形所具有的性质。

在中考压轴题中,双(多)动点形成的函数关系和图象问题命题形式主要有选择题和解答题。

其考点类型主要有两类,一是根据条件求出函数关系式,由函数关系式判断函数图象或求相应变量的值;二是根据条件研究动点的变化趋势(特殊位置)来判断函数图象。

2020年中考数学专题复习卷 几何图形的动态问题精编(含解析)

2020年中考数学专题复习卷 几何图形的动态问题精编(含解析)

几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。

2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。

2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)1.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=.以OC 为一边作等边三角形OCD ,连接AC 、AD .(1)若120α=︒,判断OB OD +_______BD (填“>,<或=”)(2)当150α=︒,试判断AOD ∆的形状,并说明理由;(3)探究:当α=______时,AOD ∆是等腰三角形.(请直接写出答案)【答案】(1)=;(2)ADO ∆是直角三角形,证明见详解;(3)125︒、110︒、140︒. 【分析】(1)根据等边三角形性质得出60COD ∠=︒,利用120BOC a ?=°求出180BOD ∠=︒,所以B ,O ,D 三点共线,即有OB OD BD +=;(2)首先根据已知条件可以证明BOC ADC ∆≅∆,然后利用全等三角形的性质可以求出ADO ∠的度数,由此即可判定AOD ∆的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2.如图,在平面直角坐标系中,矩形ABCO 的顶点O 与坐标原点重合,顶点A 、C在坐标轴上,186B (,),将矩形沿EF 折叠,使点A 与点C 重合.(1)求点E的坐标;--方向以每秒2个单位的速度匀速运动,到达终(2)点P从O出发,沿折线O A EV的面积为S,求S与t的关系式,直接点E时停止运动,设P的运动时间为t,PCE写出t的取值范围;(3)在(2)的条件下,当3=PA PE时,在平面直角坐标系中是否存在点Q,使得以2点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.【答案】(1)E(10,6);(2)S= -8t+54(0≤t≤3)或S=-6t+48(3<t≤8);(3)存在,Q(14.4,-4.8)或(18.4,-4.8).【详解】解:(1)如图1,矩形ABCO中,B(18,6),∴AB=18,BC=6,设AE=x,则EC=x,BE=18-x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴(18-x)2+62=x2,x=10,即AE=10,∴E(10,6);(2)分两种情况:①当P在OA上时,0≤t≤3,如图2,S=S矩形OABC-S△PAE-S△BEC-S△OPC,=18×6-12×10(6-2t)-12×8×6-12×18×2t,=-8t+54,②当P在AE上时,3<t≤8,如图3,S=12PE•BC=12×6×(16−2t)=3(16-2t)=-6t+48;(3)存在,由PA=32PE可知:P在AE上,如图4,过G作GH⊥OC于H,∵AP+PE=10,∴AP=6,PE=4,设OF=y ,则FG=y ,FC=18-y ,由折叠得:∠CGF=∠AOF=90°,由勾股定理得:FC 2=FG 2+CG 2,∴(18-y )2=y 2+62,y=8,∴FG=8,FC=18-8=10,12FC •GH =12FG •CG , 12×10×GH =12×6×8, GH=4.8,由勾股定理得:,∴OH=8+6.4=14.4,∴G (14.4,-4.8),∵点P 、E 、G 、Q 为顶点的四边形为平行四边形,且PE=4,∴Q (14.4,-4.8)或(18.4,-4.8).3.如图1,平面直角坐标系xoy 中,A(-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长; ②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.【答案】(1)①EC =2; ②748CE <<;(2)点D 的坐标为233(,)82-或113(,)55- 【详解】解:(1)①由题意得(,3)3kE ,(4,)4--k F , ∵k 0<,则3=-k EC ,4=-k FB , ∴43=+k AE ,34=+k AF , ∴14(12)433133(12)44++===++k k AE k AF k , ∵由A(-4,3)得:4,3AC AB ==, ∴43=AC AB , ∴AE AC AF AB =, 又∵∠A=∠A ,∴△AEF ∽△ACB ,∴∠AEF=∠ACB ,∴EF ∥CB ,如图2,连接AD 交EF 于点H ,由折叠的性质得:AH=DH ,∵D 在BC 上, ∴1==AE AH EC DH,则AE EC =, ∴122==EC AC ; ②由折叠得EF 垂直平分AD ,∴90AHE =︒∠,则90∠+∠=︒EAH AEF ,又∵90∠+∠=∠=︒BAD EAH BAC ,∴∠=∠BAD AEF ,如图,当D 落在BO 上时,∵90∠=∠=︒EAF ABD ,∴△AEF ∽△BAD , ∴=AE AF AB BD ,则43==AB AE BD AF , ∴4393344=÷=⨯=BD AB , 设AF=x ,则FB=3-x ,FD=AF=x ,在Rt △BDF 中,由勾股定理得:222FB BD FD +=, 即2229(3)4⎛⎫-+= ⎪⎝⎭x x ,解得:7532=x , ∴7532=AF , ∴44752533328==⨯=AE AF , ∴2574488=-=-=CE AE ,∴748CE <<,即折叠后点D 落在矩形ABOC 内(不包括边界),CE 的取值范围为748CE <<; (2)∵△ABD 是等腰三角形,显然AB AD ≠,∴AD BD =或AD AB =,①当AD BD =时,BAD ABD ∠=∠,由(1)得:∠=∠BAD AEF ,∴∠=∠ABD AEF ,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则DM AB ⊥,4==MN AC ,∴90∠=∠=︒BMD EAF ,1322==BM AB , ∴△AEF ∽△MBD , ∴=AE AF MB MD ,则43==MB AE MD AF , ∴43393248=÷=⨯=MD MB , ∴923488=-=-=DN MN MD , ∴点D 的坐标为233(,)82-; ②当AD AB =时,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则3AD AB ==,DM AB ⊥,4==MN AC ,∴90∠=∠=︒AMD EAF ,由(1)得∠=∠BAD AEF ,∴△AEF ∽△MAD , ∴=AE AF AM MD ,则43==AM AE MD AF , 设4=AM a ,则3=MD a ,在Rt △MAD 中,由勾股定理得:222+=AM MD AD ,即222(4)(3)3+=a a ,解得:35a =, ∴125=AM ,95=MD , ∴123355=-=-=BM AB AM ,911455=-=-=DN MN MD , ∴点D 的坐标为113(,)55-; 综上所述,若折叠后,△ABD 是等腰三角形,点D 的坐标为233(,)82-或113(,)55-. 4.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm .P ,Q 是△ABC 边上的两个动点,其中点P 从点A 出发沿A →B 方向运动,速度为每秒1cm ,到达点B 停止运动;点Q 从点B 出发沿B →C →A 方向运动,速度为每秒2cm ,到达点A 停止运动.它们同时出发,设出发时间为t 秒.(1)当t=________秒时,PQ ∥AC ;(2)设△PQB 的面积为S ,求S 关于t 的函数关系式,并写出自变量的取值范围;(3)当点Q 在边CA 上运动时,直接写出能使△BCQ 为等腰三角形的t 的值.【答案】(1)2411;(2)S=-t 2+8t (0<t ≤3)或S=2348192t t 555-+(3<t<8);(3)当t 为5.5,6或6.6时,△BCQ 为等腰三角形.【详解】解:(1)如图,当PQ ∥AC 时,△BQP ∽△BCA , ∴BQ BP BC AB=,即2868t t -=, 解得:t=2411, 故答案为:2411;(2)解:当0<t ≤3时,如图所示:BQ=2t ,BP=8-t ,则S=12BP ·BQ =12×(8-t) ×2t =-t 2+8t ,当3<t<8时,如图所示,过点Q 作QH ⊥AH 于点H ,HQ=35(16-2t), ∴S=12BP ·HQ =()()138t 162t 25⨯-⨯-=2348192t t 555-+; (3)当t 为5.5,6或6.6时,△BCQ 为等腰三角形, ①当CQ=BQ 时,如图所示:则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5②当CQ=BC 时,如图所示:则BC+CQ=12,∴t=12÷2=6③当BC=BQ 时,如图所示、过点B 作BE ⊥AC 于点E ,则BE=6810AC AB BC ⋅⨯= =4.8,∴=3.6,∴CQ=2CE=7.2,∴BC+CQ=13.2,∴t=13.2÷2=6.6,综上,当t 为5.5,6或6.6时,△BCQ 为等腰三角形.5.在Rt ABC ∆中,6AB =,90B ∠=︒,8BC =,点P 从A 出发沿AC 方向在运动速度为3个单位/秒,点Q 从C 出发向点B 运动,速度为1个单位/秒,P 、Q 同时出发,点Q 到点B 时两点同时停止运动.(1)点P 在线段AC 上运动,过P 作DP PQ ⊥交边AB 于D ,2t =时,求PD PQ 的值; (2)运动t 秒后,90BPQ ∠=︒,求此时t 的值;(3)t =________时,AQ QP =.【答案】(1)2;(2)2t =或3019;(3)10023 【详解】(1)如图1中,作PE AB ⊥于E ,PF BC ⊥于F ,∵6AB =,90B ∠=︒,8BC =,∴AC=10,∵2t =,∴6AP =,2CQ =,∵//PE BC , ∴PA PE AE AC BC AB==, ∴61086PE AE ==, ∴ 4.8PE =, 3.6AE =, 2.4BE =,∵90PEB EBF PFB ∠=∠=∠=︒,∴四边形EBFP 是矩形,∴ 2.4PF BE ==,∵90EPF QPD ∠=∠=︒,∴EPD FPQ ∠=∠,∴PED PFQ ∆∆∽, ∴ 4.822.4PD PE PQ PF ===.(2)如图2中,作PE AB ⊥于E ,∵//PE BC , ∴PE AP AE BC AC AB==, ∴125PE t =,95AE t =,965EB t =-, ∵EPB PBQ ∠=∠,90PEB BPQ ∠=∠=︒,∴PEB BPQ ∆∆∽, ∴PE PB PB BQ=,∴2212129(8)6555t t t t ⎛⎫⎛⎫⋅-=+- ⎪ ⎪⎝⎭⎝⎭, ∴2t =或3019.(3)如图3中作QF AC ⊥于F ,∵QCF ACB ∠=∠,QFC ABC ∠=∠,∴QFC ABC ∆∆∽, ∴QF QC AB AC=, ∴35QF t =, ∵AQ QP =, ∴32AF FP t ==, ∵22222AQ AB BQ QF AF =+=+, ∴2222336(8)52t t t ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:21611600100000t t +-=, 解得10023t =(或1007-舍弃). 故答案为:10023.6.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,证明详见解析;(3)492.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN 是等腰直角三角形, ∴MN 最大时,△PMN 的面积最大, ∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM+AN ,连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE =90°, ∴AM =在Rt △ABC 中,AB =AC =10,AN =∴MN最大==∴S△PMN 最大=12PM 2=12×12MN 2=14×()2=492; 方法2:由(2)知,△PMN 是等腰直角三角形,PM =PN =12BD , ∴PM 最大时,△PMN 面积最大,∴点D 在BA 的延长线上,∴BD =AB+AD =14,∴PM =7,∴S △PMN 最大=12PM 2=12×72=492.。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=

2020年广东省中考数学压轴题:动点问题

2020年广东省中考数学压轴题:动点问题

2020年广东省中考数学压轴题:动点问题例1:如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2, m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n , 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.图1满分解答(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐标为(2, 4).将点A (2, 4)代入k y x=,得k =8. (2)将点B (n , 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2).设直线BC 为y =x +b ,代入点B (4, 2),得b =-2.所以点C 的坐标为(0,-2).由A (2, 4) 、B (4, 2) 、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=ABC =90°.所以S △ABC =12BA BC ⋅=12⨯8. (3)由A (2, 4) 、D (0, 2) 、C (0,-2),得AD=AC=由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE . 所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD= 此时△ACD ≌△CAE ,相似比为1.图2②如图4,当CE ACCA AD ==CE =C 、E 两点间的水平距离和竖直距离都是10,所以E (10, 8).图3图4。

中考热点问题”双动点问题”的处理方法复习总结(模型解析+例题精讲+真题反馈)

中考热点问题”双动点问题”的处理方法复习总结(模型解析+例题精讲+真题反馈)

中考热点问题"双动点问题"的处理方法总结动点问题是中考数学必考的重难点问题,大多数同学都是“谈动色变”,选择直接放弃的更是大有人在。

解决动点问题,大家一定不要被其“动”所吓倒,我们要充分发挥空间想象能力,“动"中求“静",化“动”为“静",利用已知条件和所学知识点,寻找和所求相关的不变量和确定关系,这样,题目就化难为易了。

动点问题一般分为点动、线动和面动这三种类型,本节我们主要学习两类较难的动点问题。

一.不关联双动点问题对于不关联的双动点问题,我们采用“控制变量法",我们先控制其中一个点不动,分析另一个点运动轨迹,之后再让这个点运动起来,这样我们可以使问题更直观,思路更清晰。

我们先来看一道例题:例1.如图,RTAABC中,AC=3,AB=4,D、E分别是AB、AC上的两个动点,将AADE 沿着DE翻折,A点落在A'处,求A'C的最小值。

【简答】首先,我们固定D点不动,使E点动起来,随着E点的运动,X'始终在以D为圆心,DA为半径的圆上运动(如图1),图1只有当C、A'、D三点共线时,A z C是最短的(如图2);图2然后我们让D点也动起来,随着D点的运动,圆D的半径会发生变化,圆的半径越大,离C点就越近,因此,当D与B重合时,圆离C点的距离最近,再,移动E点,使得A,落在BC上,此时C、A,、D三定共线(如图3),CA'最小为5-4=1.图3二.多动点联动问题对于多个点运动并且是联动的这类问题,我们采用相对运动法,可以让这多个点静止,让原本的定点动起来,这样减少了动点的个数,使得问题简单化。

(原则是:让数量少的点动,让数量多的点休息)如下面这道天津中考题的最后一问。

例2.在平面直角坐标系中,四边形AOBC是矩形,点0的坐标为(0,0),点A 的坐标为(5,0),点B的坐标为(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点0,B,C的对应点分别为D,E, F.(1)如图①,当点D落在BC边上时,求点D的坐标.(2)如图②,当点D落在线段BE上时,连接AB,AD与BC交于点H.①求证:AADB义AAOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S^jAKDE的面积,求S的取值范围(直接写出结果即可).【简答】(1)VA(5.0), B (0.3).・.・OA=5,OB=3,..•四边形AOBC是矩形.AAC OB=3,OA BC-5,ZOBC=ZC-90°.•.•矩形ADEF是由矩形AOBC旋转得到,/.AD=AO=5.在RtAAlK中,CD V a D2+AC2 4..•.BD=BC-CD 1.AD(h3).(2)®由四边形ADEF是短形,得到ZADE=90°.•・•点D在线段BE上,:.ZADB90°,由(1)可知,AD-AO.又AB AB.ZAOB=90%ARtAADBSSRlAAOB②如图b中.由八ADB^AAOB.得到ZBAD-ZBAO.又在矩形AOBC中,OA〃BC,/.ZCBA=ZOAB,.\ZBAD=ZCBA..\BH=AH.设AH=BH=m.则HC BC-BH5-m.在RtAAHC中,VAIP-HC^AC^.ABH y..・.H(—,3).<3)要求△KDE面积的取值范围.我们只要考虑K、D,E三个点的运动情况即可.由于D、E西个点都在运动.3KDE面积的取值范围不好确定.例3.直线1外有一点D,点D到直线的距离为3,让腰长为2的等腰直角三角板ABC在直线]上滑动,则AD+CD的最小值为.【简答】由于运动是相对的,可以看做D点在直线r上运动,作点a关于直线r的对称点A'.可知当A\D、C三点共线时AD+CD 最小,最小值为A,C的长。

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)专题导读动态几何问题,是近年来的热点问题.它几乎成了每个城市中考试卷中的亮点,拿到一套试卷,总是习惯先看看有没有关于动态几何的问题.动态几何问题也就是关于图形运动的一类问题,它主要是牵扯到图形的三种变换:平移、旋转、轴对称及动点问题.当然考查图形的运动问题有小题,也有大题,小题主要分布在选择和填空的最后一两个题,也就是小压轴题,解答题中也会有关于图形的运动问题,主要有两类,一类是关于平移、旋转、轴对称的作图,这个比较简单,我们这里就不说了;另一类就是我们介绍的重点一一研究图形在运动过程中产生的一些图形性质上的变化和不变的情况.这几乎成了压轴题基本上共同的特点.中考要求中考要求课程标准和中考说明都要求学生要具备一定的用运动观点分析问题的能力.学会在运动变化中寻求不变的图形性质.学会运用函数的观点研究关于图形运动中性质的变化情况.专题集训考向1图形的运动与最值1.(2019江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作。

与直线相切,点P是QC±一个动点,连接AP交于点T,则业的最大值是AT2.(2019江苏省无锡市)如图,在AABC中,AB=AC=5,BC=4逐,D为边AB上一动点(3点除外),以CD为一边作正方形CDEF,连接8E,则ABDE面积的最大值为.3.(2019江苏省宿迁市)如图,ZMAN^60°,若△ABC的顶点3在射线AM上,且A3=2,点。

在射线AN上运动,当AABC是锐角三角形时,BC的取值范围是.4.(2019江苏省宿迁市)如图,正方形ABCQ的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.5.(2019江苏省扬州市)如图,己知等边△ABC的边长为8,点F是边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B'.(1)如图1,当PB=4时,若点可恰好在AC边上,则菌,的长度为;(2)如图2,当PB=5时,若直线1〃AC,则33,的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,AACB'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求可面积的最大值.6.(2019江苏省苏州市)已知矩形ABCD AB=5cm,点F为对角线AC上的一点,且AP =26cm.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为I(s),A4PM的面积为S(enF),S与f的函数关系如图②所示:(1)直接写出动点M的运动速度为cm/s,BC的长度为cm-,(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点£>出发,在矩形边上沿着D t C t B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M、N经过时间x(s)在线段BC上相遇(不包含点C),动点N相遇后立即停止运动,记此时AARW与AZJRV的面积为5](<?麻),$2(伽2).①求动点N运动速度v(cm/s)的取值范围;②试探究S] .S?是否存在最大值.若存在,求出S|・S2的最大值并确定运动速度时间x的值;若不存在,请说明理由.(B®)7.(2019江苏省扬州市)如图,四边形A3CD是矩形,A3=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,ZG=90°.点M在线段AB上,且AM=a,点P沿折线AQ-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AQ.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点F在线段AD上时,若四边形AMQF的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段ZJG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.考向2动点与函数的结合问题1.(2019江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L:y^x+bx+c过点C(0,-3),与抛物线£2:-lx2-旦t+2的一个交点为A,且点A的横坐标为2,点22P、Q分别是抛物线3、3上的动点.(1)求抛物线3对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点F的坐标;(3)设点R为抛物线3上另一个动点,且CA平分ZPCR.若OQ//PR,求出点。

中考试题动态问题(双动点,图形运动问题)

中考试题动态问题(双动点,图形运动问题)

动态问题(双动点,图形运动问题)1.如图13,已知Rt△ABC 中,∠C =90°,AC=3,BC=4,点E 在AC 上,E 与A 、C 均不重合. (1)若点F 在AB 上,且EF 平分Rt△ABC 的周长,设AE=x ,△AEF 的面积为y ,求y 与x 的函数关系式;(2)若点F 在折线ABC 上移动,是否存在直线EF 将Rt△ABC 的周长 与面积同时平分?若存在,求出AE 的长;若不存在,请说出理由。

2.如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位. (1)在前3秒内,求△OPQ 的最大面积;(2)在前10秒内,求P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.图133. (本题满分9分)如图,在平面直角坐标系中,四边形OABC 为矩形,点A ,B 的坐标分别为(3,0)、(3,4),动点M ,N 分别从O ,B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动;点N 沿BC 向终点C 运动,过点N 作NP ⊥BC ,交AC 于点P ,连接MP .已知动点运动了x 秒.(1)点P 的坐标为(______,________)(用含x 的代数式表示);(2)试求△MPA 面积的最大值,并求此时x 的值;(3)请你探索:当x 为何值时,△MPA 是一个等腰三 角形?4.(本小题满分12分)在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。

动点,P Q 同时从点B 出发,点P 沿,,BA AD DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,两点运动时的速度都是1/cm s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学 压轴专题 动态几何之“双动点”问题(含答案)1. 已知,如图,在△ABC 中,已知AB =AC =5 cm ,BC =6 cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s ,且QD ⊥BC ,与AC ,BC 分别交于点D ,Q ;当直线QD 停止运动时,点P 也停止运动.连接PQ ,设运动时间为t (0<t <3)s .解答下列问题: (1)当t 为何值时,PQ//AC ?(2)设四边形APQD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形APQD :S △ABC =23:45?若存在,求出t 的值;若不存在,请说明理由.第1题图解:(1)当t s 时,PQ//AC ,∵点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s , ∴BP =t ,BQ =6−t . ∵PQ//AC , ∴△BPQ ∽△BAC ,第1题解图∴C B Q B B A BP =,即665t t -=,解得t =1130s . ∴当t 为1130s 时,PQ//AC ;(2)过点A 、P 作AN ⊥BC ,PM ⊥BC 于点N 、M , ∵AB =AC =5cm ,BC =6cm , ∴BN =CN =3cm , ∴AN =222235-=-BN AB =4cm .∵AN ⊥BC ,PM ⊥BC , ∴△BPM ∽△BAN , ∴AN PM AB BP =,即45PM t =,解得PM =t 54, ∴S △BPQ =21BQ ·PM =21(6−t )·t 54=t t 512522+-, ∵AB =AC =5cm ,AN=4cm ,CN=3cm ,DQ//AN , ∴△CDQ ∽△CAN , ∴CN CQ AN DQ =,即34tDQ =,∴DQ=34t , ∴S △CDQ =21CQ ·DQ =32t 2. ∵S △ABC =21BC ·AN =21×6×4=12, ∴y =S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−32t 2−(t t 512522+-)=12−t t 5121542-(0<t <3); (3)存在.∵由(2)知,S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−21t 2−(t t 512522+-)=12−t t 5121542-,S △ABC =12, ∴452312512154122=-t t -,解得t 1=4114123-+,t 2=4114123--(舍去). ∴当t =4114123-+s 时,S 四边形APQD :S △ABC =23:45.2. 如图①,在Rt △ABC 中,∠C =90°,AB =10,BC =6,点P 从点A 出发,沿折线AB −BC 向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒34个单位长度的速度运动,P 、Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连接PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连接DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.第2题图解:(1)在Rt △ABC 中,∵∠C =90°,AB =10,BC =6,由勾股定理得:AC =2222610-=-BC AB =8,∵点Q 在CA 上,以每秒34个单位移动, ∴CQ =34t , ∴AQ =AC -CQ =8−34t .(2)∵P 点从AB -BC 总时间36510+=4s , ∵点P 在AB 或BC 上运动,点Q 在AC 上, ∴PQ 不可能与AC 平行, ①当点P 在AB 上,则PQ//BC ,此时AC AQ AB AP =,即834810t 5t-=,解得t =s 23; ②当点P 在BC 上,此时PQ//AB ,∴CA CQ BC CP =,即46-3t 2368t-=(),解得t =3s , 综上所述,t =32s 或3s 时,PQ 与△ABC 的一边平行; (3)①∵点D 是AC 的中点, ∴CD=4,当点Q 运动到点D 时,t 34=4,解得t =3, 点Q 与点E 重合时,t 316=AC =8,得t =23,分三种情况讨论如下: (i )点Q 与点E 重合时,316t =AC =8,得t =23,当0≤t ≤23,此时矩形PEQF 在△ABC 内,如解图①所示,∵AP =5t ,易得AE =4t ,PE =3t ,∴EQ =AQ -AE =8-34t -4t =8-316t , ∴S =PE ×EQ =3t (8-316t )=-16t 2+24t ;第2题解图(ii )点P 与点B 重合时,5t =10,得t =2,当23≤t ≤2时,如解图②所示,设QF 交AB 与T ,则重叠部分是矩形PEQF 的面积减去△PFT 的面积. ∵AQ =8-34t ,∴QT =43AQ =43(8-34t )=6-t , ∴FT =PE -QT =3t -(6-t )=4t -6, EQ =AE -AQ =4t -(8-34t )=316t -8, ∴S =PE ·EQ -21EQ ·Ft =3t ·(316t -8)-21·(316t -8)(4t -6) =316t 2+8t -24; (iii )当2<t ≤3,点P 在BC 上,且点F 在△ABC 外,如解图③所示,此时点E 与点C 重合,PC =6-3(t -2)=12-3t ,QC =34t ,QT =43(8-34t )=6-t ,BP =3(t -2),PR =34·3(t -2)=4t -8,FR =FP -PR =34t -(4t -8)=8-38t ,FT =43FR =6-2t . ∴S =PT ×QC -21FR ·FT =(12-3t )·34t -21·(8-38t )·(6-2t ) =-320t 2+32t -24;第2题解图②53,56. 3. 如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达C 时停止运动,点Q 也同时停止.连接PQ ,设运动时间为t (0<t ≤5)秒.(1)当点Q 从B 点向A 点运动时(未到达点A )求S △APQ 与t 的函数关系式;写出t 的取值范围; (2)在(1)的条件下,四边形BQPC 的面积能否为△ABC 面积的1513若能,求出相应的t 值;若不能,说明理由;(3)伴随点P 、Q 的运动,设线段PQ 的垂直平分线为l ,当l 经过点B 时,求t 的值.第3题图解:(1)在Rt △ABC 中,由勾股定理得:AC =222243+=+BC AB =5;如解图①,过点P 作PH ⊥AB 于点H ,AP =t ,AQ =3−t ,第3题解图①则∠AHP =∠ABC =90°,∵∠PAH =∠CAB ,∴△AHP ∽△ABC , ∴BCPHAC AP =, ∵AP =t ,AC =5,BC =4, ∴PH =54t ,∴S △APQ =21(3−t )·54t , 即S =−2t 52+t 56,t 的取值范围是:0<t <3. (2)在(1)的条件下,四边形BQPC 的面积能为△ABC 面积的1513.理由如下: 依题意得:−2t 52+t 56=21152 ×3×4,即−2t 52+t 56=54. 整理,得(t −1)(t −2)=0, 解得t 1=1,t 2=2, 又0<t <3,∴当t =1或t =2时,四边形BQPC 的面积能为△ABC 面积的1513; (3)①如解图②,当点Q 从B 向A 运动时l 经过点B ,第3题解图②BQ =BP =AP =t ,∠QBP =∠QAP , ∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90° ∴∠PBC =∠PCB ,∴CP =BP =AP =t ∴CP =AP =21AC =21×5=2.5, ∴t =2.5;②如解图③,当点Q 从A 向B 运动时l 经过点B ,第3题解图③BP =BQ =3−(t −3)=6−t ,AP =t ,PC =5−t ,过点P 作PG ⊥CB 于点G , 则PG//AB , ∴△PGC ∽△ABC , ∴BCGCAB PG AC PC ==, ∴PG =AC PC ·AB =53(5−t ), CG =AC PC ·BC =54(5−t ), ∴BG =4−54(5−t )=54t , 由勾股定理得BP 2=BG 2+PG 2, 即(6−t )2=(54t )2+[53(5−t )]2, 解得t =1445. 综上所述,伴随点P 、Q 的运动,线段PQ 的垂直平分线为l ,经过点B 时,t 的值是2.5或1445. 4. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,D 、E 分别是AC 、AB 的中点,连接DE ,点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 运动到点E 停止运动,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t <4).解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在BE 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE :S 五边形PQBCD =1:29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.解:(1)如解图①,在Rt △ABC 中,第4题解图AC =6,BC =8, ∴AB =2286+=10.∵D 、E 分别是AC 、AB 的中点., AD =DC =3,AE =EB =5,DE//BC 且DE =21BC =4, ∵PQ ⊥AB ,∴∠PQB =∠C =90°, 又∵DE//BC ,∴∠AED =∠B , ∴△PQE ∽△ACB ,∴BCQEAB PE =. 由题意得:PE =4−t ,QE =2t −5, 即852104-=-t t ,解得t =1441; (2)如解图②,过点P 作PM ⊥AB 于M , 由△PME ∽△ACB ,得ABPEAC PM =, ∴10t -46=PM ,得PM =53(4−t ).S △PQE =21EQ ·PM =21(5−2t )·53(4−t )=53t 2−1039t +6, S 梯形DCBE =21×(4+8)×3=18, ∴y =S 梯形DCBE -S △PQE =18−(53t 2−1039t +6)=−53t 2+1039t +12. (3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29, 则此时S △PQE =301S 梯形DCBE , ∴53t 2−1039t +6=301×18,即2t 2−13t +18=0, 解得t 1=2,t 2=29(舍去). 当t =2时, PM =53×(4−2)=56,ME =54×(4−2)=58, EQ =5−2×2=1,MQ =ME +EQ =58+1=513, ∴PQ =22MQ PM +=52055135622=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛.∵21PQ ·h =S △PQE =53, ∴h =56·)2056(20520562055或=. 5. 如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S△CPQ :S △ABC =9:100?若存在,求出t 的值;若不存在,则说明理由;(3)是否存在某一时刻t ,使得△CPQ 为等腰三角形?若存在,求出所有满足条件的t 的值;若不存在,则说明理由.解:(1)如解图①,∵∠ACB =90°,AC =8,BC =6,∴AB =10.∵CD ⊥AB ,∴S △ABC =21BC •AC =21AB •CD . ∴CD =1086⨯=⨯AB AC BC =4.8, ∴线段CD 的长为4.8; (2)①过点P 作PH ⊥AC ,垂足为H ,如解图②所示.由题可知DP =t ,CQ =t ,则CP =4.8−t .∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B .∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴AB PC AC PH =,∴10t 8.48-=PH , ∴PH =t 54-2596,∴S △CPQ =21CQ ·PH =21t (t 54-2596)=−52t 2+2548t ; ②存在某一时刻t ,使得S △CPQ :S △ABC =9:100.∵S △ABC =21×6×8=24,且S △CPQ :S △ABC =9:100, ∴(−52t 2+2548t ):24=9:100. 整理得:5t 2−24t +27=0.即(5t −9)(t −3)=0.解得:t =59或t =3. ∵0≤t ≤4.8,∴当t =59秒或t =3秒时,S △CPQ :S △ABC =9:100; (3)①若CQ =CP ,如解图①,则t =4.8−t ;解得:t =2.4;②若PQ =PC ,如解图②所示,∵PQ =PC ,PH ⊥QC ,∴QH =CH =21QC =21t . ∵△CHP ∽△BCA .∴ABCP BC CH =, ∴108.4621t t -=,解得:t =55144; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,如解图③所示.同理可得:t =1124. 综上所述:当t 为2.4秒或55144秒或1124秒时,△CPQ 为等腰三角形.第5题解图6. 如图,在△ABC 中,AB =AC =10 cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2 cm /s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ//AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t (0<t <5).(1)当t 为何值时,PM//BC ?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式; (3)已知某一时刻t ,有S 四边形PQCM =43S △ABC 成立,请你求出此时t 的值.第6题图解:(1)∵当PM//BC 时,△APM ∽△ABC , ∴AP =AM ,∴10−t =2t ,∴t =310; (2)∵四边形PQCM 为梯形,y =21(PQ +MC )DF , ∵PQ =PB =t ,MC =10−2t ,BF :BD =BP :AB ,∴BF =54108 t t , ∴DF =8−t 54, ∴y =21(t +10−2t )·(8−t 54)=252t −8t +40; (3)由(2)知,252t −8t +40=40×43, 解得t =10±53,又∵0<t<5,∴当t =10-53s 时,使S 四边形PQCM =43S △ABC 成立.7. 如图,在四边形ABCD 中,AD//BC ,AD =6 cm ,CD =4 cm ,BC =BD =10 cm ,点P 由B 出发沿BD方向匀速运动,速度为1cm /s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm /s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,PE//AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =252S △BCD ?若存在,求出此时t 的值;若不存在,说明理由; (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第7题图解:(1)当PE//AB 时,∴DBDP DA DE =. 而DE =t ,DP =10−t ,∴10106t t -=, ∴t =415, ∴当t =415s 时,PE//AB ; (2)∵AD//BC ,线段EF 由DC 出发沿DA 方向匀速运动,∴EF//CD ,∴四边形CDEF 是平行四边形,∴∠DEQ =∠C ,∠DQE =∠BDC .∵BC =BD =10,∴△DEQ ∽△BCD ,∴CD EQ BC DE =,410EQ t =, ∴EQ =52t , 如解图,过B 作BM ⊥CD 交CD 于M ,过P 作PN ⊥EF 交EF 于N ,∵BC =BD ,BM ⊥CD ,CD =4cm ,∴CM =21CD =2cm , ∴BM =6496410021022==-=-cm ,∵EF//CD ,∴∠BQF =∠BDC ,∠BFG =∠BCD ,又∵BD =BC ,∴∠BDC =∠BCD ,∴∠BQF =∠BFG ,∵ED//BC ,∴∠DEQ =∠QFB ,又∵∠EQD =∠BQF ,∴∠DEQ =∠DQE ,∴DE =DQ ,∴ED =DQ =BP =t ,∴PQ =10−2t .又∵△PNQ ∽△BMD , ∴BM PN BD PQ =,∴6410210PN t =-,∴PN =)5t -,∴S △PEQ =21EQ ·PN =⨯⨯t 5221)5t -=2255-+;第7题解图(3)存在.此时t 的值为1s 或4s .S △BCD =21CD ·BM =21×4×46=86, 若S △PEQ =252S △BCD , 则有2646255-+=252×86, 解得t 1=1,t 2=4,∴当t=1或4时,S △PEQ =252S △BCD ; (4)五边形PFCDE 的面积不发生变化.理由如下:在△PDE 和△FBP 中, ∵DE =BP =t ,PD =BF =10−t ,∠PDE =∠FBP ,∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE =S △PDE +S 四边形PFCD =S △FBP +S 四边形PFCD =S △BCD =86,∴在运动过程中,五边形PFCDE 的面积不变.8. 如图.在△ABC 中.AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm /s .同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm /s ,EF//BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s )(0<t <4),解答下列问题:(1)当t 为何值时,四边形BDFE 是平行四边形?(2)设四边形QDCP 的面积为y (cm 2),求出y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形QDCP :S △ABC =9:20?若存在,求出此时t 的值;若不存在,说明理由;(4)是否存在某一时刻t ,使点Q 在线段AP 的垂直平分线上?若存在,求出此时点F 到直线PQ 的距离h ;若不存在,请说明理由.第8题图解:(1)如解图①中,连接DF , 第8题解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中,AD =223-5=4,∵EF//BC ,∴△AEF ∽△ABC ,∴ADAQ BC EF =, ∴446t EF -=, ∴EF =23(4−t ), ∵EF//BD ,∴EF =BD 时,四边形EFDB 是平行四边形,∴23(4−t )=3, ∴t =2,∴t =2s 时,四边形EFDB 是平行四边形;(2)如解图②中,作PN ⊥AD 于N ,第8题解图②∵PN //DC ,∴ACAP DC PN =, ∴553t PN -=, ∴PN =53(5-t ), ∴y =21DC ·AD −21AQ ·PN =6−21(4−t ) ·53(5−t )=6−(t t 10271032-+6)=t t 10271032+-(0<t <4); (3)存在.理由:由题意(t t 10271032+-):12=9:20, 解得t =3或6(舍去);∴当t =3s 时,S 四边形QDCP :S △ABC =9:20;(4)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .第8题解图③∵QA =QP ,QN ⊥AP ,∴AN =NP =21AP =21(5−t ),由题意cos ∠CAD =AQAN C A AD =, ∴()544521=--t t , ∴t =37, ∴t =37s 时,点Q 在线段AP 的垂直平分线上. ∵sin ∠FPH =53=PF FH , ∵PA =5−37=38,AF =AQ ÷122554=, ∴PF =127, ∴FH =207. ∴点F 到直线PQ 的距离h =207.9. 如图,BD 是正方形ABCD 的对角线,BC =2,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,同时动点Q 从点C 出发,以相同的速度沿射线BC 运动,当点P 出发后,过点Q 作QE ⊥BD ,交直线BD 于点E ,连接AP 、AE 、PE 、QE ,设运动时间为t (秒).(1)请直接写出动点P 运动过程中,四边形APQD 是什么四边形?(2)请判断AE ,PE 之间的数量关系和位置关系,并加以证明;(3)设△EPB 的面积为y ,求y 与t 之间的函数关系式;(4)直接写出△EPQ 的面积是△EDQ 面积的2倍时t 的值.第9题图解:(1)四边形APQD 是平行四边形;【解法提示】∵四边形ABCD 是正方形,P 、Q 速度相同, ∴∠ABE =∠EBQ =45°,AD ∥BQ ,AD =BC =2,BP =CQ , ∴BC =AD =PQ ,∴四边形APQD 是平行四边形.(2)AE =PE ,AE ⊥PE ;理由如下:∵EQ ⊥BD ,∴∠PQE =90°−45°=45°,∴∠ABE =∠EBQ =∠PQE =45°,∴BE =QE ,在△AEB 和△EPQ 中,AB PQ ABE PQE BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△EPQ (SAS ),∴AE =PE ,∠AEB =∠PEQ ,∴∠AEP =∠BEQ =90°,∴AE ⊥PE ;(3)过点E 作EF ⊥BC 于点F ,如解图①所示:BQ =t +2,EF =22+t , ∴y =21×22+t ×t ,即y =t t 41212+;第9题解图①(4)△EPQ 面积是△EDQ 面积的2倍时t 的值为1或3.【解法提示】分两种情况:① 当P 在BC 延长线上时,作PM ⊥QE 于M ,如解图②所示:知识像烛光,能照亮一个人,也能照亮无数的人。

相关文档
最新文档