全等三角形测试题含答案

合集下载

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

全等三角形习题精选(含答案)

全等三角形习题精选(含答案)

全等三角形习题精选(含答案)1.在图中,已知△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度数。

2.在图中,已知△AOB中,∠B=30°,将△AOB绕点O 顺时针旋转52°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为多少?3.在图中,已知△ABC中,∠A=90°,D、E分别是AC、BC上的点,若△AADB≌△EDB≌△EDC,则∠C的度数是多少?4.在图中,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=?5.已知,如图所示,AB=AC,AD⊥BC于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD的长度是多少?6.在图中,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的垂线BC、CE,垂足分别为D、E,若BD=3,CE=2,则DE的长度是多少?7.在图中,AD是△XXX的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,交AD于G,需要证明AD与EF垂直。

8.在图中,△ABC中,AD为∠BAC的角平分线,DE⊥XXX于E,DF⊥AC于F,△ABC的面积是28cm,AB=20cm,AC=8cm,求DE的长度。

9.已知,如图所示:AB=AE,∠B=∠E,∠BAC=∠EAD,∠XXX∠DAF,需要证明AF⊥CD。

10.在图中,已知AD=BD,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点H,需要判断BH是否等于AC,并解释原因。

11.在图中,已知AD为△ABC的高,E为AC上一点,BE交AD于F,且有ABF=AC,FD=CD,需要证明BE⊥AC。

12.在图中,△DAC、△EBC均是等边三角形,AF、BD分别与CD、CE交于点M、N,需要证明:(1)AE=BD(2)CM=CN(3)△CMN为等边三角形(4)MN∥BC。

全等三角形经典50题(含答案)

全等三角形经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACAD BC BACDF21E5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB AD BC A9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

∵BC=ED,CF=DF,∠BCF=∠EDF。

∴三角形BCF全等于三角形EDF(边角边)。

∴BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

∴ ∠EBF=∠BEF 。

又∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又EF ∥AB∴∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC又∵AC =AC∴△ADC ≌△AFC (SAS )CD B A∴AD =AF∴AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。

全等三角形测试题含答案

全等三角形测试题含答案

《全等三角形》整章水平测试题(一)一、认认真真选,沉着应战!1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2.下列各条件中,不能作出惟一三角形的是() A .已知两边和夹角 B .已知两角和夹边 C .已知两边和其中一边的对角 D .已知三边4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于() A .1:2B .1:3C .2:3D .1:4 6.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( )A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上7.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到EDC ABC ≅,所以ED =AB ,因 此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( ) A .SAS B .ASA C .SSS D .HL10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度ACB DFEN AMCB FCEABD数为( )A .80°B .100°C .60°D .45°. 二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.D E15. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △ 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是 BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______. 三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =, M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠EA B C D'A 'B 'D 'CC B⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE , DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?参考答案一、1—5:DCDCD 6—10:BCBBA 二、 11.100°12.4cm 或9.5cm13.1.5cm 14.4 15.略16.15AD << 17. 互补或相等 18. 180 19.15 20.350三、 21.在一条直线上.连结EM 并延长交CD 于'F 证'CF CF =.22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中AD BC AC BD ==∵, AB BA =ABDC EOM NAGFC BDE(图1)∴△ABD ≌△BAC∴CAB DBA ∠=∠AE BE =∴ ∴AC AE BD BE -=-即CE ED =情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中D C ∠=∠,DAB CBA ∠=∠AB AB =∵∴△ABD ≌△BAC ∴AD BC =23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上.四、24. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN ∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABCAEG CM GN S AB CM S AE GN ∴===△△,ABC AEGS S ∴=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和∴这条小路的面积为(2)a b +平方米.BD。

3套全等三角形测试卷含答案

3套全等三角形测试卷含答案

全等三角形一.填空题(每题3分,共30分)1.如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______.2.如图,△ABD ≌△ACE,且∠BAD 和∠CAE,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,那么对应边_________. 3. 已知:如图,△ABC ≌△FED,且BC=DE.那么∠A=__________,A D=_______. 4. 如图,△ABD ≌△ACE,那么AB 的对应边是_________,∠BAD 的对应角是______. 5. 已知:如图,△ABE ≌△ACD,∠B=∠C,那么∠AEB=_______,AE=________.6.已知:如图 , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .假设AB=5 , 那么AD=___________. 7.已知:△ABC ≌△A ’B ’C ’, △A ’B ’C ’的周长为12cm ,那么△ABC 的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 依照是_________再证△BDE ≌△______ , 依照是__________.4321EDCBA9.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,那么需添加的条件是____________.10.如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,那么∠CBC ’为________度.二.选择题(每题3分,共30分)1一、以下条件中,不能判定三角形全等的是 ( ) A.三条边对应相等 B.两边和一角对应相等ABCD12AA'BCC'C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 若是两个三角形全等,那么不正确的选项是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 以下说法中不正确的选项是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 那么图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.那么不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 那么∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一水池,要测水池两头A、B的距离,可先在平地上取一个能够直接抵达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,确实是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC和BC,CD和CA,BD和AB2.AB和AC,AD和AE,BD和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 因此△ABC≌△CED AB=ED 23.证△ABC≌△FED得∠ACB=∠F 因此AC∥DF 24.证△BED ≌△CFD得∠E=∠CFD 因此CF∥BE 25.由AAS证△ABC≌△CED AC=EF.全等三角形B卷(考试时刻为90分钟,总分值100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,那么△ABD ≌_________.4. 如图4,△ABC ≌△AED ,假设AE AB =,︒=∠271,那么=∠2 .5.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,那么图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,那么图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .图1图2图5 图68.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,那么∠BOC =__________.9.假设△ABC ≌△A ′B ′C ′,AD 和A ′D ′别离是对应边BC 和B ′C ′的高,那么△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,那么∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 别离是对应极点,假设AB =6cm ,AC =4cm ,BC =5cm ,那么AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.以下说法正确的选项是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.以下条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,假设AB =4,AC =6,那么AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.以下命题正确的选项是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等AEB O F C图8A CD图917.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,那么图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,那么P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点 三.解答题(共46分)19. (8分)如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB 是一个任意角,在边OA,OB 上别离取OM=ON,移动角尺,使角尺两边相同的刻度别离与M,N 重合,过角尺极点C 的射线OC 即是∠AOB 的平分线,什么缘故?21. (7分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.ABCEDO图10图 11B DOCAABECD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 彼此平分.24. (8分)如图,∠ABC =90°,AB =BC ,D 为AC 上一点,别离过A.C 作BD 的垂线,垂足别离为E.F,求证:EF =CF -AE. 答案1.△ADC2. ∠B=∠C 或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135° 11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC ≌△CON 21.先证△ABC ≌△DBC 得∠ABC=∠DCB,再证△ABE ≌△CED 22.垂直 23. 先证△ABE ≌△DFC 得∠B=∠D,再证△ABO ≌△COD 24.证△ABF ≌△BCFABEO FDCACEDB图 5全等三角形 C 卷(考试时刻为90分钟,总分值100分)一.填空题:(每题3分,共30分)1.如图1,假设△ABC ≌△ADE ,∠EAC=35°,那么∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,若是AD=7cm ,DM=5cm ,∠DAM=300,那么AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,那么∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)假设以“SAS ”为依据,还须添加的一个条件为________________. (2)假设以“ASA ”为依据,还须添加的一个条件为________________. (3)假设以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,那么△______≌△_______.6. 如图6,AB=AC ,BD=DC ,假设︒=∠28B ,那么=∠C .图 6 图 77.如图7,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有______对.ABCDE图1ABCDMN 图2ABCD9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,假设︒=∠60ADB ,EO=10,那么∠DBC= ,FO= . 10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 那么在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,以下各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具有①②③B. 具有①②④C. 具有③④⑤D. 具有②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边13. 若是两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 必然全等 B. 必然不全等 C. 没必要然全等 D. 面积相等14. 若是两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 (15ABCDEF16. 如图AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD=AB ,那么 ( ) A. ∠1=∠EFD B. BE=EC C. BF=DF=CD D. FD ∥BC17.以下说法正确是 ( ) A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形 D. 有三个角对应相等的两个三角形是全等三角形18.以下说法错误的选项是 ( ) A. 全等三角形对应边上的中线相等 B. 面积相等的两个三角形是全等三角形 C. 全等三角形对应边上的高相等 D. 全等三角形对应角平分线相等19.已知:如图,O 为AB 中点,BD ⊥CD ,AC ⊥CD ,OE ⊥CD ,那么以下结论没必要然成立的是 ( )A. CE =EDB. OC =ODC. ∠ACO =∠ODBD. OE =21CD20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?FEDCBA23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠DB5.ACD,AED6.28°7.58.SAS9.60°,1010.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B21.AE和AC,ED和BC, ∠B和∠D, ∠BAC和∠DAE22.AD=BC,AE=CF,DE=BF,AD∥BC, △ACD≌△ACB,AB∥CD等23.相等, △AOB≌△DOC24.连AC,证△ADC≌△ABC25.(1)证DE=EC (2) 设BE与CD交于F,通过全等证DF=CF.。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题一.选择题:1. 在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或135°D .都不对3. 现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒4.根据下列已知条件,能惟一画出三角形ABC 的是( )A . AB =3,BC =4,AC =8;B . AB =4,BC =3,∠A =30;C . ∠A =60,∠B =45,AB =4;D . ∠C =90,AB =65.如图3,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( )A . 当∠B 为定值时,∠CDE 为定值 B . 当∠α为定值时,∠CDE 为定值C . 当∠β为定值时,∠CDE 为定值D . 当∠γ为定值时,∠CDE 为定值 二、填空题:6.三角形ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 还大12度,则这个三角形是__三角形.7.以三条线段3、4、x -5为这组成三角形,则x 的取值为____.8.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.9.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,若CD =8cm ,则点D 到AB 的距离为____cm .10.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____. 三、解答题: 11. 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB ,求证:△EAD ≌△CAB .12. 如图13-5,△ACD 中,已知AB ⊥CD ,且BD>CB, △BCE 和△ABD 都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC ≌△DBE ;②△ACB ≌△ABD ; ③△CBE ≌△BED ;④△ACE ≌△ADE .这些三角形真的全等吗?简要说明理由. 13. 已知,如图13-6,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE=FE, FC ∥AB,求证:AD=CF .A B D C E 图13-5 A B FCD E 图13-6 A B D F C A C B E D 图13-4 B 图13-314. 如图5-7,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D, F 为垂足, DE ⊥AB 于E ,且AB>AC ,求证:BE -AC=AE .15. 阅读下题及证明过程:已知:如图8, D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .证明:在△AEB 和△AEC 中,∵EB=EC ,∠ABE=∠ACE ,AE=AE , ∴△AEB ≌△AEC ……第一步∴∠BAE=∠CAE ……第二步 问上面证明过程是否正确?若正确,请写出每一步推理的依 据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.16.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒x 的取值范围是:10cm <x <90cm .=4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项可画出无数个三角形.)5.B .(提示:∠CDE =∠B +∠α-∠γ=∠γ-∠B ,故得到2(∠B -∠γ)+∠α=0.又∵∠γ-C A BDE 图8 图9 A G B D H EF A B CD E F 图9∠B =∠γ-∠C =∠CDE ,所以可得到∠CDE =2α,故当∠α为定值时,∠CDE 为定值.) 6.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数)7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3.8.三角形的稳定性.9.8.(提示:点D 到AB 的距离与CD 的长相等.)10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.)11. 提示:先证∠EAD=∠CAB ,再由SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等,理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等.13. 提示:由ASA 或AAS ,证明△ADE ≌△CFE .14. 过D 作DN ⊥AC, 垂足为N, 连结DB 、DC 则DN=DE ,DB=DC ,又∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE .15.上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中,∵BE=CE , ∴∠EBC=∠ECB , 又∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC, ∠BAE=∠CAE.16.如图11所示,过B 点作BH ⊥BC 交CE 的延长线于H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°, ∴∠CAD =∠BCH .在△ACD 与△CBH 中,∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°, ∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH ,∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°∴在△BED 和BEH 中,⎪⎩⎪⎨⎧∠∠=BE,BE EBH,EBD ,==BH BD ,∴△BED ≌△BEH .∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .A B C D E F H 图11。

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。

全等三角形单元测试题含答案

全等三角形单元测试题含答案

全等三角形单元测试题(含答案)2第11章《全等三角形》单元检测题一、选择题 (每小题4分,共40分) 1. 下列可使两个直角三角形全等的条件是A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等2. 如图,点P 是△ABC 内的一点,若PB =PC ,则A .点P 在∠ABC 的平分线上 B.点P 在∠ACB 的平分线上C .点P 在边AB 的垂直平分线上D .点P 在边BC 的垂直平分线上 3. 如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE . 下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 其中正确的有A D CBE F3PO DCBA A. 1个 B. 2个 C. 3个 D. 4个4. 在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有A.∠ADE =∠CDEB.DE ⊥ECC.AD ·BC =BE ·DED.CD =AD +BC 5. 使两个直角三角形全等的条件是 A. 斜边相等 B. 两直角边对应相等C. 一锐角对应相等D. 两锐角对应相等6. 如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小关系A.PC >PDB.PC =PDC.PC <PDD.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形 A E D是A. ①②③B. ②③C. ③④⑤D. ③④⑥8. 如图,平行四边形ABCD中,AC、BD相交于点O,过点O作直线分别交于AD、BC于点E、F,那么图中全等的三角形共有A.2对B.4对C.6对D.8对9. 给出下列条件:①两边一角对应相等②两角一边对应相等③三角形中三角对应相等④三边对应相等,其中,不能使两个三角形全等的条件是A. ①③B. ①②C. ②③D. ②④10. 如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是A. PE PF= B. AE AF=C. △APE≌△APFD. AP PE PF=+AD CBE F45二、简答题 (每小题3分,共24分)11. 如图,ABC ∆中,点A 的坐标为(0,1),点C 的 坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是_________.12. 填空,完成下列证明过程.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ).xyOABCADE CBF6∴ED=EF ( ).13. 如图,点B 在AE 上,∠CAB =∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是:-____________(写一个即可).(第13题) (第14题)(第15题)14. 如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °. 15. 如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AC 于D ,垂足为E ,若∠A =30°,DE =2,∠DBC 的度数为__________,CD 的长为__________.16. 如图,已知AD=BC .EC ⊥AB.DF ⊥AB ,C.D为垂足,要使ΔAFD ≌ΔBEC ,还需添加一个条件.若图3DC POBA7FE DCBA 以“ASA ”为依据,则添加的条件是 .17. 如图,AB =CD ,AD 、BC 相交于点O ,要使△ABO≌△DCO ,应添加的条件为 . (添加一个条件即可)18. 如图3,P 是∠AOB 的平分线上一点,C .D 分别是OB .OA 上的点,若要使PD =PC ,只需添加一个条件即可。

全等三角形专项练习及答案

全等三角形专项练习及答案

word 格式-可编辑-感谢下载支持评卷人 得分一、选择题(题型注释)1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为( )A .8cm 、15cm 、6cmB .7cm 、9cm 、13cmC .10cm 、20cm 、30cmD .20cm 、40cm 、60cm【答案】B2.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE【答案】D3.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A 、∠A 与∠D 互为余角B 、∠A=∠2C 、△ABC≌△CEDD 、∠1=∠2【答案】D4.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于D,DE ⊥AB 于E.AB =6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA =OC ,OB =OD ,OA ⊥OB ,OC ⊥OD ,下列结论:①△AOD ≌△COB ;②CD =AB ;③∠CDA =∠ABC ;其中正确的结论是( )A .①②B .①②③C .①③D .②③ AB C DE 1 2【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC 的周长是()A.10cm B.12cm C.15cm D.17cm【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()word格式-可编辑-感谢下载支持A.90° B.1 80° C.360° D.无法确定【答案】【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2 B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360° D.∠1+∠2+∠A=∠O【答案】D .【解析】试题分析:连接AO 并延长,交BC 于点D ,∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )A.2cmB.cm 512C.3cmD.cm 514 【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质word 格式-可编辑-感谢下载支持第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分 二、填空题(题型注释)14.如图,△ABC 中,∠A =90°,DE 是BC 的垂直平分线,AD=DE ,则∠C 的度数是 °.【答案】30°.【解析】试题分析:∵DE 是BC 的垂直平分线,∴DE ⊥BC ,∵∠A =90°,AD=DE ,∴BD 平分∠AABC ,∴∠ABD=∠DBC ,∵DE 是BC 的垂直平分线,∴DC=BD ,∴∠C=∠DBC ,∴3∠C=90°,∴∠C=30°.故答案为:30°. 考点:1.线段垂直平分线的性质;2.角平分线的性质.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为 。

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD已知:D 是AB 中点,∠ACB=90°,求证:12CD AB已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEADBCCDB AB A CDF2 1 E6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

.7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C8已知:AB=CD,∠A=∠D,求证:∠B=∠CDCBAFEAB CD9.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE10.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):F A ED C BOED C B A24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 证明:延长BA 、CE ,两线相交于点F ∵BE ⊥CE ∴∠BEF=∠BEC=90° 在△BEF 和△BEC 中 ∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC∴△BEF ≌△BEC(ASA) ∴EF=EC ∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD ≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形经典题目测试含答案

全等三角形经典题目测试含答案

一.选择题(共13小题,共39分)1.(2013贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.(2011芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4C.D.3.(2011恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.C.7D.4.(2010岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.56.(2009西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题)A.330°B.315°C.310°D.320°8.(2009临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP9.(2009江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.(2008新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()(第11题)(第12题)(第13题)A.3B.4C.5D.612.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个13.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C二.填空题(共7小题,共21分)14.(2013丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_________.(第14题)(第15题)15.(2012通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.16.(2012临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE=_________cm.(第16题)(第17题)(第18题)17.(2011资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_________度.18.(2011郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.19.(2008大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:_________,使OC=OD(只添一个即可).20.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_________度.三.解答题(共6小题,共60分)21.(2013陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l 于点D.求证:AC=OD.22.(2012云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点E.求证:△ABC≌△MED.23.(2011乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.24.(2012密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.25.如图,在∆ABC中,AB=AC,点D是BC的中点,点E在AD上.⑴求证:BE=CE;⑵若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:∆AEF≌∆BCF.26.(10分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.E ABF ABE一.选择题(共13小题)1.(2013贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判定与性质.分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.C.7D.考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD考点:全等三角形的判定.分析:根据全等三角形的判定方法,对每个选项分别分析、解答出即可;解答:解:A、BC=BD,∠BAC=∠BAD,又由图可知AB为公共边,不能证明△ABC和△ABD全等,故本项错误,符合题意;B、∠C=∠D,∠BAC=∠BAD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;D、BC=BD,AC=AD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意.故选A.点评:本题主要考查了全等三角形的判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5考点:角平分线的性质;三角形的面积.分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.解答:解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.点评:本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.6.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°考点:全等三角形的判定与性质.专题:网格型.分析:利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.解答:解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.点评:考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP考点:角平分线的性质.分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.解答:解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.点评:本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组考点:全等三角形的判定.分析:要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.解答:解:根据全等三角形的判定方法可知:①AB=DE,BC=EF,AC=DF,用的判定方法是“边边边”;②AB=DE,∠B=∠E,BC=EF,用的判定方法是“边角边”;③∠B=∠E,BC=EF,∠C=∠F用的判定方法是“角边角”;④AC=DF,∠A=∠D,∠B=∠E,用的判定方法是“角角边”;因此能使△ABC≌△DEF的条件共有4组.故选D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定考点:全等三角形的判定与性质.分析:本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;因此只要证明△AMC≌△FNE,即可得出h1=h2.解答:解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.故选C.点评:本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.11.(2007•义乌市)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6考点:角平分线的性质.分析:已知条件给出了角平分线还有PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.12.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或夹已知角的另一边.解答:解:∠1=∠2,AC=AD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.13.(2005•乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C考点:角平分线的性质.分析:根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.解答:解:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选B.点评:本题考查的是三角形角平分线的性质及三角形全等的判定;做题时要结合已知条件在图形上的位置对选项逐个验证.二.填空题(共7小题)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE=3cm.考点:全等三角形的判定与性质.分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.20.(2005•荆门)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.三.解答题(共6小题)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l 于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.考点:全等三角形的判定.专题:证明题.分析:根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.解答:证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.点评:本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.24.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.25.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.解答:解:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.26.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.考点:全等三角形的判定与性质.专题:证明题.分析:首先证明∠B=∠2,再加上条件AE=BC,∠FAF=∠BCA,可利用ASA证明△ABC≌△FEA,再根据全等三角形对应边相等可得AB=FE.解答:证明:∵EF⊥AB于点D,∴∠ADE=90°.∴∠1+∠2=90°,又∵∠C=90°,∴∠1+∠B=90°.∴∠B=∠2,在△ABC和△FEA中,,∴△ABC≌△FEA(ASA)∴AB=FE.。

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)初中数学:全等三角形测试题一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A。

70°B。

50°C。

60°D。

30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A。

2B。

2.5C。

3D。

3.53.XXX不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A。

①B。

②C。

③D。

①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥XXX于E,则下列结论中不正确的是()A。

BD+ED=BCB。

DE平分∠ADBCC。

AD平分∠EDCD。

ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A。

50°B。

60°C。

100°D。

120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A。

DQ>5B。

DQ<5C。

DQ≥5D。

DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A。

1个B。

2个C。

3个D。

4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为5米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是6.11.如图,已知△ABE≌△ACF,∠XXX∠F=90°,∠CMD=70°,则∠2=20度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.故选:C.点评】本题考查的是全等三角形的性质,需要掌握全等三角形的对应边相等和对应角相等的知识.3.如图,已知△ABC≌△DEF,AB=3,BC=4,则EF的长为()A.3.6B.4C.4.8D.6考点】全等三角形的性质.分析】根据全等三角形的性质求出DE=3,AC=4,进而得出EF的长.解答】解:∵△ABC≌△DEF。

三角形全等判定试题含答案

三角形全等判定试题含答案

三角形全等判定(考试总分:100 分)一、单选题(本题共计7小题,总分35分)1. 1.(5分)【孙杰—原创】如图,在四边形ABCD中,AD=BC,AB=DC,则∆ABC≌∆CDA的依据是()A.SASB. ASAC. SSSD. 以上都不对2.(5分)2.【王学军—原创】下列图形具有稳定性的是()A.正方形B. 长方形C. 直角三角形D. 平行四边形3.(5分)3.【孙杰—原创】图中是全等三角形的是()A.①和②B.②和③C.②和④D.①和③4.4.(5分)【孙杰—原创】根据下列已知条件,能画出唯一∆ABC的是()A.∠A=50。

,∠B=70。

,AB=6B.∠C=90。

,AB=10C.AB=10.BC=4,AC=4D.AB=8,BC=5,∠A=40。

5.5.(5分)【王雪军—原创】如图,在四边形ABCD中,AB=CD,AD=BC,AC与BD 交于O点,则可直接利用“SSS”判定全等三角形的有()A.1对B.2对C.3对D.4对6.6.(5分)【王雪军—原创】如图,∆ABC≌∆ADE,∠DAC=70。

,∠BAE=100。

,BC,DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.307.7.(5分)如图,在∆ABC中,∠C=90°,D,E分别为AC,AB上的点,若DE=DC,BE=BC,∠A=40°,则∠BDC的度数是()A.40° B.50°C.60°D.65°二、填空题(本题共计5小题,总分25分)8.(5分)8.【孙杰—原创】如图,已知AD=AE,要根据“ASA”来判断∆AEB≌∆ADC,则需要补充一个条件为 .8.9.(5分)【王雪军—原创】如图,在∆ABC中,∠C=90°,BE平分∠ABC,ED ⊥AB于点D,若AC=3,则AE+DE= .10.(5分)10.【孙杰—原创】如图,在Rt ∆ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm11.(5分)11.【孙杰—原创】如图,已知AB=AC,BD=CE,∠B=∠C,若∠1=30°,则∠2= .12.(5分)12.【王雪军—原创】如图,若AB=AC,BD=CD,∠C=20°,∠A=80°则∠BDC=三、解答题(本题共计4小题,总分40分)13.13.(10分)【孙杰—原创】(10分)如图,AB∥CD,AB=CD,BE=CF.求证:(1)∆ABF≌∆DCE;(2)AF∥DE.14.14.(10分)【孙杰—原创】(10分)如图,在∆ABC中,∠B=∠C=50°,BD=CF,BE=CD,求∠EDF的度数.15.(10分)15.【王雪军—原创】(10分)如图,在四边形ABCD中,AB=AD,BC=DC,点E在边AC上的一动点(不与点A,C重合),在点E运动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.16.(10分)16.【王雪军—原创】(10分)如图已知AD=BC,AB=CD,O是BD的中点,过O点作直线交BA的延长线于E,交DC的延长线于F,求证:OE=OF.答案一、单选题(本题共计7小题,总分35分)1.(5分)1.C2.(5分)2.C3.(5分)3.D4.(5分)4.A5.(5分)5.B6.(5分)6.A7.(5分)7.D二、填空题(本题共计5小题,总分25分)8.(5分)8.∠AEB=∠ADC9.(5分)9.310.(5分)10.711.(5分)11.30°12.(5分)12.120°三、解答题(本题共计4小题,总分40分)13.(10分)13.证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(10分)14.解:在△BDE与△CFD中,,∴△BDE≌△CFD(SAS);∴∠BDE=∠CFD,∴∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=50°.15.(10分)15.解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.16.(10分)16.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BO=DO,AD∥BC,∴∠E=∠F,∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(AAS),∴OE=OF.。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 在以下四组线段中,哪个组合的线段可以构成全等三角形?A) AB = 6 cm, AC = 6 cm, BC = 5 cmB) AB = 4 cm, AC = 3 cm, BC = 5 cmC) AB = 5 cm, AC = 7 cm, BC = 5 cmD) AB = 8 cm, AC = 6 cm, BC = 10 cm答案:B) AB = 4 cm, AC = 3 cm, BC = 5 cm2. 在△ABC中,AB = 5 cm, AC = 6 cm, BC = 7 cm。

下列哪个陈述是正确的?A) △ABC是全等三角形B) △ABC是直角三角形C) △ABC是等腰三角形D) △ABC不存在答案:A) △ABC是全等三角形二、填空题3. 完成下面的等式: △ABC ≌△___。

答案:ACD4. 如果两个三角形的对应顶点对应着相等的角度,那么这两个三角形是______的。

答案:全等三、解答题5. 已知图中的三个三角形,判断是否可以证明它们是全等三角形。

如果可以,请说明理由;如果不可以,请说明其中的不等条件。

(插入三个全等三角形的图示)答案:根据提供的图示,可以确定△ABC和△DEF是全等三角形。

理由是它们的对应边和对应角相等:AB = DE, AC = DF, BC = EF, ∠A= ∠D, ∠B = ∠E, ∠C = ∠F。

而△XYZ无法和△ABC或△DEF证明全等,其中的不等条件为对应的角度不相等。

6. 已知三角形ABC和DEF,如果AB = DE, AC = DF,并且∠A =∠D,请说明能否得出△ABC ≌△DEF的结论,并解释理由。

答案:不能得出△ABC ≌△DEF的结论。

因为仅仅知道两个边和一个角相等,不足以确定两个三角形全等的条件,还需要更多的信息,如另外两个边和对应的角度。

总结:全等三角形测试题及答案包括选择题、填空题和解答题。

通过在题目中提供三角形的边长和角度等信息,考察学生对全等三角形的理解和判断能力。

全等三角形经典题型50题含答案

全等三角形经典题型50题含答案

已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD已知:D 是AB 中点,∠ACB=90°,求证:12CD AB已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEADBCCDBAB A CDF2 1 E6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

.7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C8已知:AB=CD,∠A=∠D,求证:∠B=∠CDCBAFEAB CD9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):FAEDCB24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证明:延长BA、CE,两线相交于点F ∵BE⊥CE ∴∠BEF=∠BEC=90° 在△BEF和△BEC中∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC ∴△BEF≌△BEC(ASA) ∴EF=EC ∴CF=2CE ∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE ∴∠ABD=∠ACF 在△ABD和△ACF 中∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE25、(10分)如图:DF=CE,AD=BC,∠D=∠C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》整章水平测试题
宇文皓月
一、认认真真选,沉着应战! 1.下列命题中正确的是( )
A .全等三角形的高相等
B .全等三角形的中线相等
C .全等三角形的角平分线相等
D .全等三角形对应角的平分线相等 2.下列各条件中,不克不及作出惟一三角形的是()
A .已知两边和夹角
B .已知两角和夹边
C .已知两边和其中一边的对角
D .已知三边
4.下列各组条件中,能判定△ABC ≌△DEF 的是( )
A .A
B =DE ,B
C =EF ,∠A =∠
D B .∠A =∠D ,∠C =∠F ,AC =EF
C .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长
D .∠A =∠D ,∠B =∠
E ,∠C =∠F
5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,
则∠BCM :∠BCN 等于() A .1:2B .1:3C .2:3D .1:4
6.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( ) A .平行线之间的距离处处相等
A
C B
D
F
E
A
M
B
B .到角的两边距离相等的点在角的平分线上
C .角的平分线上的点到角的两边的距离相等
D .到线段的两个端点距离相等的点在线段的垂直平分线上 7.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条
角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5
8.如图,从下列四个条件:①BC =B ′C , ②AC =
A ′C ,
③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( )
A .1个
B .2个
C .3个
D .4个
9.要丈量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上
取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到
EDC ABC ≅,所以
ED =AB ,因
此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( )
A .SAS
B .ASA
C .SSS
D .HL
10.如图所示,△ABE 和△ADC 是△ABC 分别沿着
AB ,AC 边
翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则
∠α的度
数为( )
A .80°B.100°C.60°D.45°.
F
C
E
A
B
D
二、仔仔细细填,记录自信!
11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.
12.已知△DE F≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边中必有一条边等于______.
13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰
DC =5︰3,则D 到AB 的距离为_____________.
14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置分歧的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.
15. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且
AB A B AD A D ''''
==,.若使ABC A B C '''△≌△,请你弥补条件
___________.(
填写一个你认为适当的条件即可) 17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个
三角形的第三边所对的角的关系是__________.
19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平
分ACB ∠,
DE BC ⊥于E ,若15cm BC =,则DEB △ 的周长为cm .
20.在数
学活动课上,小明提出这样一个问题:∠B =∠C =900
,E 是
BC 的中点,DE 平分∠ADC ,∠CED =350
,如图,则∠EAB
是多

度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
E
A
B C
D
'A '
B '
D '
C C
B
三、平心静气做,展示智慧!
21.如图,公园有一条“Z ”字形道路ABCD ,其

AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =
M

BC 的中点,请问三个小石凳是否在一条直线
上?
说出你推断的理由.
22.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠ ⑤DAB CBA ∠=∠一个正确
已知: 求证: 证明:
23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,
OD =OE ,
DN 和EM 相交于点C .
求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!
24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形
ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石
铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和
A
B
D
C
E
O M N
A B
是b 平方米,这条小路一共占地多少平方米?
一、1BCBBA 二、12.4cm 或
9.
5cm 13.1.5cm 14.4 15.略 16.15AD << 17. 互补或相等 18. 180 19.15 20.35
三、 21.在一条直线上.连结EM 并延长交CD 于'
F 证'
CF CF =. 22.情况一:已知:AD BC AC BD ==,
求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中
∴△ABD ≌△BAC
即CE ED =
情况二:已知:D C DAB CBA ∠=∠∠=∠,
求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中
D C ∠=∠,DAB CBA ∠=∠
F
B D (图1)
∴△ABD ≌△BAC
23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上. 四、24. (1)解:ABC △与AEG △面积相等
过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则
AMC ∠=90ANG ∠=
四边形ABDE 和四边形
180EAG GAN BAC GAN
∠+∠=∴∠=∠
(2)解:由(1)面积之和
∴这条小路的面积为(2)a b +平方米.
B
D。

相关文档
最新文档