微积分基本公式16个

合集下载

微积分公式大全

微积分公式大全

cos2θ+ sin2θ=1
tanh x
csch x dx = 2 ln | 1 ex | + C cosh2θ-sinh2θ=1
csch x = -csch x
1 e2x
cosh2θ+sinh2θ=cosh2θ
coth x
Dx sinh-1 x =
1
a
a2 x2
sin 3θ=3sinθ-4sin3θ sinh-1 x dx = x sinh-1 x- 1 x2 + C cos3θ=4cos3θ-3cosθ
2 cos α sin β = sin α+β - sin α-β cos α - cos β = -2 sin α+β sin α-β
2 cos α cos β = cos α-β + cos α+β tan α±β= tan tan , cot α±
2 sin α sin β = cos α-β - cos α+β
1 b-a2
12
pq npq
q+pet q+ petn
npi1-pi
三项 p1et1+ p2et2+
pn 3
N n n k
N 1 N
λ
σ2
Vχ2=2n
10-1 deci d 分,十分之一 10-2 centi c 厘或写作「厘」,百分之一 10-3 milli m 毫,千分之一 001 10-6 micro 微,百万分之一 000 001 10-9 nano n 奈,十亿分之一 000 000 001 10-12 pico p 皮,兆分之一 000 000 000 001 10-15 femto f 飞或作「费」,千兆分之一 000 000 000 000 001 10-18 atto a 阿 000 000 000 000 000 001 10-21 zepto z 000 000 000 000 000 000 001 10-24 yocto y

微积分 中常见的基本公式

微积分 中常见的基本公式

设 u = u(x),v = v(x) 为可导函数,则
(1)
(u
±
v)′
=
u′
±
v′; (2)
(uv)′
=
u′v
+
uv′;(3)
u v

=
u′v − uv′ v2
(v

0).
(4) 若 uk = uk (x) (k = 1,2,L,n) 均为可导函数,则
(u1u2 Lun )′ = u1′u2 Lun + u1u2′Lun + L + u1u2 x2 + x4 + o(x4); 2! 4!
(4) tan x = x + x3 + 2 x5 + o(x5); 3 15
(5) arcsin x = x + x3 + 3 x5 + o(x5); (6)arctan x = x − x3 + x5 + o(x5)
6 40
1 n
n
单调递增.
六、 微积分中值定理
1、罗尔 (Rolle) 定理: 假设 f (x) 在 [a,b] 上满足
(1) f (x) 在 [a,b] 上连续;(2) f (x) 在 (a,b)内可导;(3) f (a) = f (b).
则:∃ξ ∈ (a,b) 使得 f ′(ξ ) = 0.
2、拉格朗日(Lagrange) 中值定理:假设 f (x) 在 [a,b] 上满足
(6)
(loga
x)′
=
1 x ln a
(a > 0且 a ≠ 1);
(8) (cos x)′ = −sin x;
(9) (tan x)′ = sec2 x;

高等数学微积分公式

高等数学微积分公式

高等数学微积分公式高等数学微积分公式微积分是数学中的一个重要分支,它研究的是函数的变化规律。

在微积分的学习中,我们需要掌握许多公式,在处理函数的变化过程中起到了非常重要的作用。

下面是高等数学中常见的微积分公式。

一、导数公式1.常数函数的导数公式:\[\frac{d}{dx} C=0\]其中C为常数。

2.幂函数的导数公式:\[\frac{d}{dx} x^{n}=nx^{n-1}\]其中n为常数。

3.自然指数函数的导数公式:\[\frac{d}{dx} e^{x}=e^{x}\]4.对数函数的导数公式:\[\frac{d}{dx} ln(x)=\frac{1}{x}\]5.三角函数的导数公式:\[\frac{d}{dx} sin(x)=cos(x)\]\[\frac{d}{dx} cos(x)=-sin(x)\]6.反三角函数的导数公式:\[\frac{d}{dx} sin^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}\] \[\frac{d}{dx} cos^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}\]7.复合函数的导数公式(链式法则):设y=f(u)和u=g(x),则有\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]二、微分公式1.常数函数的微分公式:\[d(C)=0\]其中C为常数。

2.幂函数的微分公式:\[d(x^{n})=nx^{n-1}dx\]其中n为常数。

3.指数函数的微分公式:\[d(e^{x})=e^{x}dx\]4.三角函数的微分公式:\[d(sin(x))=cos(x)dx\]\[d(cos(x))=-sin(x)dx\]5.反三角函数的微分公式:\[d(sin^{-1}(x))=\frac{dx}{\sqrt{1-x^{2}}}\]\[d(cos^{-1}(x))=-\frac{dx}{\sqrt{1-x^{2}}}\]6.复合函数的微分公式(链式法则):设y=f(u)和u=g(x),则有\[dy=\frac{dy}{du}\times du\]三、泰勒公式泰勒公式是微积分中的一个重要定理,它可以将一个函数在某点的值表示为一系列关于该点的导数的和。

微积分的公式大全

微积分的公式大全

微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。

2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。

-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。

-函数有界,且极限存在,则函数必定有极大值和极小值。

3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。

- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。

- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。

- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。

四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。

2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。

- 幂函数的导数:d/dx(x^n) = nx^(n-1)。

- 指数函数的导数:d/dx(e^x) = e^x。

- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。

-三角函数的导数:- d/dx(sin(x)) = cos(x)。

- d/dx(cos(x)) = -sin(x)。

- d/dx(tan(x)) = sec^2(x)。

-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。

- d/dx(arccos(x)) = -1/√(1-x^2)。

- d/dx(arctan(x)) = 1/(1+x^2)。

微积分—基本积分公式

微积分—基本积分公式

微积分—基本积分公式微积分是数学的一个重要分支,主要研究变化和量的关系。

其中积分是微积分的一个基本概念,它用于求解函数曲线下面的面积,以及函数的反导数。

在微积分中,有一些基本的积分公式是非常重要的,通过这些公式,我们可以简化积分计算的过程。

1.常数积分公式:∫k*dx = kx + C这个公式表示对于任何常数k,对其进行积分,得到的结果是k乘以自变量x再加上一个常数C。

2.幂函数积分公式:∫x^n*dx = (x^(n+1))/(n+1) + C (n≠-1)这个公式适用于幂函数的积分,其中n为任意实数。

对于幂函数的积分,可以将指数n加1后再除以(n+1),然后加上一个常数C。

3.指数函数积分公式:∫e^x*dx = e^x + C这个公式对于指数函数e^x的积分非常简单,积分结果直接是e^x再加上一个常数C。

4.对数函数积分公式:∫1/x*dx = ln,x, + C这个公式适用于1/x形式的函数的积分,其中ln表示自然对数。

对于1/x的积分,结果是ln取绝对值后再加上一个常数C。

5.三角函数积分公式:∫sin(x)*dx = -cos(x) + C∫cos(x)*dx = sin(x) + C这两个公式分别表示sin(x)和cos(x)的积分结果,其中负号表示积分后的结果会减少。

6.反三角函数积分公式:∫1/√(1-x^2)*dx = arcsin(x) + C∫1/√(1+x^2)dx = arctan(x) + C这两个公式分别表示1/√(1-x^2)和1/√(1+x^2)的积分结果,其中arcsin和arctan分别表示反正弦和反正切。

上面列举的是一些基本的积分公式,它们在微积分的求解过程中经常使用。

当然,还有其他一些复杂的积分公式和技巧,但它们都是由这些基本公式进行推导和扩展而来的。

需要注意的是,这些基本积分公式只是一些常用的情况,对于更复杂的函数积分,可能需要借助其他技巧和方法进行求解,比如换元法、分部积分等。

微积分公式大全

微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− ⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x x ′=−⋅ ⑼()xxe′=ea ⑽() ⑾()ln xxaa′=1ln x x′=⑿()1log ln xa x a′= ⒀()arcsin x ′= ⒁()arccos x ′=⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x ′=−+⒄()1x ′=⒅′=二、导数的四则运算法则()u v u v ′′±=±′′ () uv u v uv ′′=+2u u v u v v ′v ′′−⎛⎞=⎜⎟⎝⎠三、高阶导数的运算法则 (1)()()()()()()()n n u x v x u x v x ±=±⎡⎤⎣⎦n (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()(n n nu ax b a uax b +=+⎡⎤⎣⎦) (4)()()()()()()()0nn n k k k n k u x v x c u x v x −=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x a a =n a(4)()()sin sin 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠ (5) ()()cos cos 2n nax b a ax b n π⎛⎞+=++⎡⎤⎜⎟⎣⎦⎝⎠⋅ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎞=−⎜⎟+⎝⎠+ (7) ()()()()()11!ln 1n n n na n axb ax b −⋅−+=−⎡⎤⎣⎦+五、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d x x dx μμμ−=()sin cos d x xd =x x x ⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x⑺ ⑻()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅x ⑼ ⑽ ⑾()xxd ee dx =()ln xxd a aadx =()1ln d x dx x=⑿()1logln x a d dx x a =() ⒀arcsin =d x ⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=−+ 六、微分运算法则⑴ ⑵()d u v du dv ±=±()d cu cdu = ⑶ ⑷()d uv vdu udv =+2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠七、基本积分公式⑴ ⑵kdx kx c =+∫11x x dx c μμμ+=++∫ ⑶ln dxx c x=+∫ ⑷ln xxa a dx c a=+∫ ⑸x x e dx e c =+∫ ⑹cos sin xdx x c =+∫ ⑺sin cos xdx x c =−+∫ ⑻221sec tan cos dx xdx x c x ==+∫∫⑼221csc cot sin xdx x c x ==−∫∫+ ⑽21arctan 1dx x c x =++∫ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =−+∫ cot ln sin xdx x c =+∫ sec ln sec tan xdx x x c =+∫+ csc ln csc cot xdx x x c =−+∫2211arctan xdx c a x a a=+∫+ 2211ln 2x adx c x a a x a−=+−+∫c + ln dx c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ∫,令,n u x =ax dv e dx =形如sin n x xdx ∫令, n u x =sin dv xdx =形如cos n x xdx ∫令, n u x =cos dv xdx =⑵形如arctan n x xdx ∫,令, arctan u x =n dv x dx =形如ln n x xdx ∫,令,ln u x =n dv x dx =⑶形如,令u e 均可。

微积分必背公式大全

微积分必背公式大全

微积分必背公式大全微积分是数学中重要的分支,涉及到许多重要的公式。

以下是一些微积分中常用的公式大全:1. 导数公式:常数函数的导数,(k)' = 0。

幂函数的导数,(x^n)' = nx^(n-1)。

指数函数的导数,(e^x)' = e^x.对数函数的导数,(ln(x))' = 1/x.三角函数的导数,(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)。

2. 积分公式:幂函数的不定积分,∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为积分常数。

指数函数的不定积分,∫e^x dx = e^x + C.对数函数的不定积分,∫1/x dx = ln|x| + C.三角函数的不定积分,∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C.3. 微分与积分的基本关系:牛顿-莱布尼茨公式,如果F(x)是f(x)的一个原函数,那么∫f(x) dx = F(b) F(a),其中a和b是积分区间的端点。

4. 微分方程的基本公式:一阶线性微分方程的通解,dy/dx + P(x)y = Q(x)的通解为y = e^(-∫P(x)dx) (∫Q(x)e^(∫P(x)dx)dx + C),其中C为积分常数。

以上是微积分中一些重要的公式,掌握这些公式对于理解微积分的基本原理和解题非常重要。

当然,微积分领域的公式远不止这些,还有一些特殊函数的导数和积分公式,以及微分方程的高阶解等。

希望这些公式对你有所帮助。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a'=⒀()arcsin x '=⒁()arccos x '=-⒂()21arctan 1x x'=+ ⒃()21arc cot 1x x'=-+⒄()1x '=⒅1'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v u v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cux =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k kk nk u x v x cux v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax bn ax bea e++=⋅ (3)()()ln n x x na a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n nnn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1nn n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x =⑿()1logln x a d dx x a=⒀()1arcsin d x =⒁()1arccos d x =-⒂()21arctan 1d x dx x=+ ⒃()21arc cot 1d x dx x=-+六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11xx dx c μμμ+=++⎰ ⑶ln dx x c x=+⎰⑷ln xxaa dx c a=+⎰ ⑸x xe dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰⑾arcsin dx x c =+⎰八、补充积分公式tan lncos xdx x c =-+⎰c o t l n s i n xd x x c=+⎰ sec ln sec tan xdx x x c =++⎰c s c l n c s cc o t xd x x x c=-+⎰ 2211arctanx dx c axaa=++⎰2211ln2x a dx c x a ax a-=+-+⎰arcsinx c a=+⎰ln dx x c =++⎰九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx = 形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全(总结的比较好)

高数微积分公式大全(总结的比较好)

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫=⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =++九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos ax u e x x =均可。

16个微积分公式

16个微积分公式

16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。

下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。

一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。

这是因为常数函数在任意点的斜率都是0。

2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。

3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。

4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。

5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。

二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。

计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。

2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。

计算不定积分可以使用导数和积分的基本公式。

三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。

2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。

3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。

4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。

5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。

6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。

7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。

8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。

求解微分方程可以通过积分的方法来得到解析解。

9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。

微积分基本公式

微积分基本公式
几何平均数(Geometric mean)
调和平均数(Harmonic mean)
平均差(Average Deviatoin)
变异数(Variance)
X X1 X 2 ... X n n
取排序后中间的那位数字 次数出现最多的数值
G n X1 X2 ... Xn
H
1
1 ( 1 1 ... 1 )
e jx e jx
sin x =
cos x =
2j
tanh-1( x )= a
a a2 x2
sech-1 x dx = x sech-1 x- sin-1 x + C csch-1 x dx = x csch-1 x+ sinh-1 x + C
e jx e jx 2
coth-1(
x a
)=
a a2 x2
2 sin α cos β = sin (α +β ) + sin (α -β )
cos α + cos β = 2 cos ½(α +β ) cos ½(α -β )
2 cos α sin β = sin (α +β ) - sin (α -β )
cos α - cos β = -2 sin ½(α +β ) sin ½(α -β )
順位高 順位低 ;
顺位高 d 顺位低 ;
1
10
0* = * = = 0* =
00
0 0 = e0( ) ; 0 = e 0 ; 1 = e 0
顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)
算术平均数(Arithmetic mean) 中位数(Median) 众数(Mode)

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,涵盖了导数、积分、极限等概念和公式。

在学习微积分的过程中,掌握一些常用的微积分公式对于解题和理解概念非常重要。

下面是一些常用的微积分公式的介绍。

1. 导数的基本公式:- 常数函数导数为0:(c)' = 0,其中 c 是常数。

- 幂函数导数公式:(x^n)' = n*x^(n-1),其中 n 是常数。

- 乘积法则:(f*g)' = f'*g + f*g',其中 f 和 g 是可导函数。

- 商法则:(f/g)' = (f'*g - f*g')/g^2,其中 f 和 g 是可导函数,并且 g 不等于0。

- 链式法则:(f(g(x)))' = f'(g(x))*g'(x),其中 f 是可导函数,g 是可导函数。

2. 基本积分公式:- 变上限定积分公式:∫(f(x)'dx) = f(x) + C,其中 C 是常数。

- 幂函数积分公式:∫(x^n dx) = (x^(n+1))/(n+1) + C,其中 n 不等于-1,C 是常数。

- 指数函数积分公式:∫(e^x dx) = e^x + C,其中 C 是常数。

- 三角函数积分公式:∫(sin(x) dx) = -cos(x) + C,∫(cos(x) dx) = sin(x) + C,∫(tan(x) dx) = -ln|cos(x)| + C,C 是常数。

- 分部积分法:∫(f(x)g(x) dx) = f(x)∫(g(x) dx) - ∫(f'(x)∫(g(x) dx) dx,其中 f 和 g 是可导函数。

3. 极限的基本公式:- 夹逼定理:如果对于 x -> a,有g(x) ≤ f(x) ≤ h(x),且 g(x) 和h(x) 的极限都等于 L,则 f(x) 的极限也等于 L。

- 幂函数极限公式:lim(x -> a) (x^n) = a^n,其中 n 是正整数。

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个微积分是数学的一门重要分支,它主要研究函数的极限、导数、积分等概念和性质。

微积分的基本公式是我们学习和应用微积分的基础,下面将介绍微积分的16个基本公式。

1.1+1=2这是微积分的最基本的公式,表示两个数相加得到另一个数。

2.a*b=b*a这是乘法交换律,表示两个数相乘的结果与顺序无关。

3.a+(b+c)=(a+b)+c这是加法结合律,表示三个数相加的结果与加法的顺序无关。

4.a*(b+c)=a*b+a*c这是乘法分配律,表示一个数与两个数相加的结果等于这个数与每个数相加的结果之和。

5.a-b=-(b-a)这是减法的性质,表示两个数相减的结果与减法的顺序无关。

6.a/b=b/a这是除法的性质,表示两个数相除的结果与除法的顺序无关。

7. (a+b)^2=a^2+2ab+b^2这是二次方的展开公式,表示两个数的和的平方等于它们的平方和加上两倍的乘积。

8. (a-b)^2=a^2-2ab+b^2这是二次方差的公式,表示两个数的差的平方等于它们的平方差减去两倍的乘积。

9.(a+b)*(a-b)=a^2-b^2这是差的平方公式,表示两个数的和与差的乘积等于它们的平方差。

10. (a+b)^3=a^3+3a^2b+3ab^2+b^3这是立方和的展开公式,表示两个数的和的立方等于它们的立方和加上三倍的乘积加上三倍的乘积再加上立方。

11. (a-b)^3=a^3-3a^2b+3ab^2-b^3这是立方差的公式,表示两个数的差的立方等于它们的立方差减去三倍的乘积加上三倍的乘积再减去立方。

12. (a+b)*(a^2-ab+b^2)=a^3+b^3这是立方和的因式分解公式,表示两个数的和与和的平方差的乘积等于它们的立方和。

13. (a-b)*(a^2+ab+b^2)=a^3-b^3这是立方差的因式分解公式,表示两个数的差与差的平方和的乘积等于它们的立方差。

14. (a+b)^n=a^n+na^(n-1)b+(n(n-1)/2)a^(n-2)b^2+...+nb^(n-1)+b^n这是二项式定理,表示两个数的和的n次方等于它们的各种组合的乘积之和。

微积分的公式大全

微积分的公式大全

微积分的公式大全1.导数的定义和性质:- 导数的定义:若函数 f(x) 在点 x0 处的导数存在,且为 f'(x0),则导数为 f'(x) = lim(h->0) [f(x0 + h) - f(x0)] / h。

-导数的性质:(1)和差的导数法则,(2)常数倍数的导数法则,(3)乘积的导数法则,(4)商的导数法则,(5)复合函数的导数法则。

2.常见函数的导数公式:- 幂函数的导数:d(x^n)/dx = nx^(n-1)。

- 指数函数的导数:d(e^x)/dx = e^x。

- 对数函数的导数:d(ln(x))/dx = 1/x。

- 三角函数的导数:(1) d(sin(x))/dx = cos(x),(2)d(cos(x))/dx = -sin(x),(3) d(tan(x))/dx = sec^2(x)。

3.微分和积分的基本公式:- 微分:dy = f'(x) dx。

- 积分基本定理:若 F'(x) = f(x),则∫f(x) dx = F(x) + C,其中 C 是常数。

-积分的性质:(1)定积分,(2)不定积分,(3)函数的积分求导,(4)分部积分法。

4.常见函数的积分公式:- 幂函数的积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n ≠ -1- 指数函数的积分:∫e^x dx = e^x + C。

- 对数函数的积分:∫(1/x) dx = ln,x, + C。

- 三角函数的积分:(1) ∫sin(x) dx = -cos(x) + C,(2) ∫cos(x) dx = sin(x) + C,(3) ∫tan(x) dx = -ln,cos(x), + C。

5.微分方程的公式:- 一阶线性常微分方程的通解:dy/dx + P(x) y = Q(x),通解为 y= e^(-∫P(x)dx) (∫Q(x) e^(∫P(x)dx) dx + C)。

(完整版)微积分公式大全

(完整版)微积分公式大全

(完整版)微积分公式大全1. 极限极限是微积分的基本概念之一,用于描述函数在某一点处的趋近情况。

常见的极限公式包括:- $\lim\limits_{x \to a} f(x) = L$:函数 $f(x)$ 在点 $a$ 处的极限为 $L$。

- $\lim\limits_{x \to \infty} f(x) = L$:函数 $f(x)$ 在正无穷远处的极限为 $L$。

- $\lim\limits_{x \to a^+} f(x) = L$:函数 $f(x)$ 在点 $a$ 的右侧极限为 $L$。

- $\lim\limits_{x \to a^-} f(x) = L$:函数 $f(x)$ 在点 $a$ 的左侧极限为 $L$。

2. 导数导数用于描述函数在某一点处的斜率,常见的导数公式有:- $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) +\frac{d}{dx}g(x)$:和的导数等于各个函数导数之和。

- $\frac{d}{dx}(k \cdot f(x)) = k \cdot \frac{d}{dx}f(x)$:常数倍的函数导数等于常数与函数导数的乘积。

- $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$:乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。

- $\frac{d}{dx}(f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}$:复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。

3. 积分积分是导数的逆运算,用于计算曲线与坐标轴之间的面积或曲线的长度。

常见的积分公式有:- $\int f(x) dx$:函数 $f(x)$ 的不定积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分基本公式16个
1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...
3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bf
n}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt
7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

8. 梯度:梯度是用于描述函数变化方向的矢量,可以用公式表示为:\nabla f = \left\{\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots , \frac{\partial f}{\partial x_n}\right\} 。

9、求积公式(积分):∫f(x)dx=F(x)+C
说明:求积公式是微积分中最常用的公式,可表示形如∫f(x)dx的积分问题。

其中,f(x)dx表示求积的函数,F(x)表示积分的结果,C表示常数项,取决于积分的边界条件。

10、牛顿-拉夫逊定理(微分):d/dx[f(x)g(x)]=[f'(x)g(x)+f(x)g'(x)]
说明:牛顿-拉夫逊定理是微分中最基础的公式,它可以用来求出形如d/dx[f(x)g(x)]的微分问题。

其中,f(x)和g(x)表示待求的函数,f'(x)和g'(x)表示其的导数。

11、傅里叶级数展开(积分):f(x)=∑[a_n*cosnx+b_n*sinnx]
说明:傅里叶级数展开是微积分中常用的积分方法。

它可以用来求解某些不等式分析问题。

其中,a_n和b_n分别表示函数f(x)的傅里叶系数,cosnx和sinnx分别表示n次余弦函数和n次正弦函数。

12、公式变形公式(微分):y=f(x),dy/dx=f'(x)
说明:此为微积分中微分的基本形式,它可以用来求出某个函数的导数。

其中,y表示函数f(x)的函数值,dy/dx表示函数的导数,f'(x)表示函数的一阶导数。

13、泰勒公式(积分):f(x)=a_0+a_1x+a_2x^2+…+a_nx^n+…
说明:泰勒公式是微积分中的基本公式,它可以用来求解某个函数的积分问题。

其中,f(x)表示求积的函数,a_i表示函数的指数系数,x^i表示x的i次方。

14、几何积分公式(积分):∫f(x)dx=Area[f(x)]
说明:几何积分公式是微积分中常用的一种求积方法,它可以用来求解某些极限问题。

其中,f(x)表示求积的函数,Area[f(x)]表示函数f(x)的图形所占的面积。

15、埃森哲微分公式(微分):d/dx[(x^2+a^2)^n]=2n(x^2+a^2)^(n-1)
说明:埃森哲微分公式用于求解某些特殊形式的复合微分问题。

其中,x^2+a^2表示一个二次幂函数,2n表示函数的次数,(x^2+a^2)^(n-1)表示函数的导数。

16、贝塔定理(微分):d/dx[lnf(x)]=f'(x)/f(x)
说明:贝塔定理用于求解某些特殊形式的复合微分问题。

其中,lnf(x)表示对函数f(x)取对数,f'(x)表示函数的一阶导数,f(x)表示函数的值。

相关文档
最新文档