高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题
弹簧问题专项复习及练习题(含详细解答)
高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
高考物理弹簧模型知识点
2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
高考物理 常见弹簧类问题分析
常见弹簧类问题分析高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。
一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射参考过程中(重物与弹簧脱离之前)重物的运动情况是( ) 答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
动量之弹簧类问题
教师姓名唐斌学生姓名填写时间年级高三学科物理上课时间阶段基础()提高(√)强化()课时计划第()次课共()次课教学过程动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x0。
一物体从钢板正上方距离为3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。
今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。
图3==2,例4. 在光滑水平面内,有A、B两个质量相等的木块,mm k gA B中间用轻质弹簧相连。
现对B施一水平恒力F,如图4所示,经过一段时间,A、B的速度等于5m/s时恰好一起做匀加速直线运动,此过程恒力做功为100J,当A、B恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A的最小速度。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
高考必会专题之弹簧问题
高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
高中物理弹簧问题分类全解析
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
2019-2020年高三物理一轮专题复习弹簧问题
2019-2020年高三物理一轮专题复习弹簧问题知识导图轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视。
2016年 第11题 18分 考查弹簧做功与弹性势能问题2014年 第6题 8分 考查弹簧的瞬时性问题模型2013年 第11题 18分 考查弹簧的临界问题及做功问题2011年 第6题 8分 考查弹力的计算及瞬时性问题1. 通过本节课的学习,让学生加深弹簧问题的几个考点,学会每个考点对应的解题方法。
2. 让学生认识到弹簧问题的共性:不能突变;弹簧问题一定要找到几个临界点。
3. 提升学生综合分析物理问题能力,学会用动量能量的观点解决物理问题。
题型分类及方法点拨类型一 弹簧的伸长量和弹力的计算方法点拨:这类题一般以单一问题出现,涉及到的知识点是胡克定律:F=kx . 解题的主要关键是找弹簧原长位置。
例题1: 如图所示,劲度系数为 k 2 的轻质弹簧竖直固定在桌面上,上端连一质量为 m 的物块,另一劲度系数为 k 1 的弹簧的上端 A 缓慢向上提,当提到下端弹簧的弹力大小恰好等于23mg 时,求 A 点上提的高度。
精华提炼:1212木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( )A.m 1g k 1B.m 2g k 1C.m 1g k 2D.m 2g k 2练习2. 一个长度为 L 的轻弹簧,将其上端固定,下端挂一个质量为 m 的小球时,弹簧的总长度变为 2L 。
现将两个这样的弹簧按如图所示方式连接,A 、 B 两小球的质量均为 m ,则两小球平衡时,B 小球距悬点 O 的距离为(不考虑小球的大小) ( )A. 3LB. 4LC. 5LD. 6L类型二 瞬时性问题 方法点拨:这类问题主要考查弹簧弹力不能发生突变这一特性。
弹簧类问题的分类
弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k△x来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
典型例题:一.突变问题如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑.系统静止时,弹簧与细线均平行于斜面,下列说法中正确的是( )A. 在细线被烧断的瞬间,两个小球的加速度均沿斜面向下,大小均为gsinθB. 在细线被烧断的瞬间,A球的瞬时加速度沿斜面向下,大小为2gsinθC. 在细线被烧断后的一小段时间内(弹簧仍拉伸),A球的加速度大于B球的加速度D. 在细线被烧断后的一小段时间内(弹簧仍拉伸),A球的加速度等于B球的加速度2.如图所示,质量为M的盒子,放在水平面上,盒的上面挂一轻弹簧,弹簧下端挂有质量为m的小球P,P与盒底面用细线相连,细线拉力为F,今将细线剪断,则细线剪断瞬间()A.地面支持力减小了F B.地面支持力增加了FC.P的加速度为F/m D.P处于失重状态二.涉及物体间分离条件的物体之间分离的临界条件是:物体之间的压力为零。
物体之间分离之前具有相同的速度、加速度。
3. A,B两个木块叠放在竖直轻弹簧上,如图所示,已知m A=m B=1 kg,轻弹簧的劲度系数为100 N/m。
若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2 m/s2的加速度竖直向上做匀加速运动,取g=10 m/s2,求:(1)使木块A竖直向上做匀加速运动的过程中,力F的最大值是多少?(2)若木块A竖直向上做匀加速运动,直到A,B分离的过程中,弹簧的弹性势能减小了1.28J,在这个过程中,力F对木块做的功是多少?4. 如图所示,一劲度系数k=800N/m的轻弹簧的两端各焊接着两个质量均为m=12kg的物体A、B,A、B和轻弹簧静止竖立在水平地面上.现加一竖直向上的力F在上面的物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2.求:(1)此过程中所加外力F的最大值和最小值.(2)此过程中外力F所做的功.5.如图所示,在倾角为θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A.B,它们的质量均为为m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态。
高中物理弹簧问题考点总结
25
25x0
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
4、弹力做功与动量能量的综合问题: 弹力是变力,求弹力的冲量和弹力做功时,不能直接
用冲量和功的定义式,一般用动量定理和动能定理。 如果弹簧被作为系统内的一个物体时,弹簧的弹力对
系统内物体不做功,不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联
BCD
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
谢谢观看!
二轮物理 第二部分 核心素养提升
返回导航页
物理弹簧模型
二轮物理 第二部分 核心素养提升
返回导航页
弹簧是一个理想模型,涉及它的知识点有:胡克定 律、弹力做功与弹性势能的变化
F kx W弹EP初-EP末
二轮物理 第二部分 核心素养提升
返回导航页
问题类型有:弹簧的瞬时问题、平衡问题、非平衡问题、弹 力做功与动量能量的综合问题
二轮物理 第二部分 核心素养提升
(2019·安徽省淮北市二模)如图甲所示,水平地面上轻弹簧左端固定, 右端通过滑块压缩 0.4 m 锁定,t=0 时解除锁定释放滑块。计算机通过滑块上的 速度传感器描绘出滑块的速度图象如图乙所示。其中 Oab 段为曲线,bc 段为直 线,倾斜直线 Od 是 t=0 时的速度图线的切线,已知滑块质量 m=2.0 kg,取 g =10 m/s2,则下列说法正确的是( C )
封闭气体的体积减小h+x0
(1)求系统静止时,封闭气体的压强 p1 及弹簧的压缩量 x0 。2*105Pa、5cm
200
(2)若缓慢降低缸内气体温度,为使弹簧恰好恢复原长,则缸内气体的温度需降低至多少?
高考物理弹簧类系列问题-高考必备-经典中的经典
专题解说 二.知识概要与方法
(二)弹簧问题的处理办法
1.弹簧的弹力是一种由形变而决定大小和方向的力.当 题目中出现弹簧时,要注意弹力的大小与方向时刻要 与当时的形变相对应.在题目中一般应从弹簧的形变分 析入手,先确定弹簧原长位置,现长位置,找出形变 量x与物体空间位置变化的几何关系,分析形变所对 应的弹力大小、方向,以此来分析计算物体运动状态 的可能变化.
引起的力、加速度、速度、功能和合外力等其它 物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、
能量联系,一般以综合题出现。有机地将动量守 恒、机械能守恒、功能关系和能量转化结合在一 起。分析解决这类问题时,要细致分析弹簧的动 态过程,利用动能定理和功能关系等知识解题。
上有两个用轻质弹簧相连接的物块A、B,它们的质量分
别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。系 统处一静止状态,现开始用一恒力F沿斜面方向拉物块A
使之向上运动,求物块B刚要离开C时物块A的加速度a和
从开始到此时物块A的位移d,重力加速度为g。
A
解:令x1表示未加F时弹簧的压缩量,
由胡克定律和牛顿定律可知
专题聚焦 例1.(2001年上海)如图(A)所示,一
质量为m的物体系于长度分别为l1、l2的两根细线上,l1的 一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直, 物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速 度. (1)下面是某同学对该题的一种解法: 解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物 体在三力作用下保持平衡:
二.知识概要与方法
(一)弹簧类问题的分类
1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变
高考弹簧问题专题详解
高考弹簧问题专题详解高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
高考弹簧类问题大汇总
第一部分弹簧类典型问题一 弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
2、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度: h v g=22 ⑥ 解①~⑥式可得h x =02。
高中物理 弹簧问题
高中物理弹簧问题弹簧问题是物理学中常见的问题之一。
轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。
无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。
在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。
在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。
在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。
除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。
在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。
在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。
对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。
在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。
高考物理 弹簧类问题求解策略
甲 乙弹簧类问题求解策略在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。
弹簧总是与其它物体直接或间接联系在一起,因弹簧与其“关联物”之间总存在着力、运动状态、动量或机械能方面的联系,因此弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一。
下面分三个方面进行剖析。
一、弹簧与平衡问题求解策略:此类问题主要涉及弹簧的形变量和弹力大小,分析时一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,画出图形,然后利用胡克定律结合平衡条件求解。
例一、如图所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________。
解析:本题中有两个关键性词语应予重视:“轻质”弹簧——即不计弹簧质量;“缓慢地”竖直上提——即系统动能无变化,且上提过程中系统受合力始终为零。
根据题意画图如右所示。
上提前弹簧k 1被压缩1x ∆,弹簧k 2被压缩2x ∆,于是有:2212111)(;k g m m x k g m x +=∆=∆上提后,弹簧k 2刚脱离地面,已恢复原长,不产生弹力,则此时m 2仅受到上面弹簧的拉力和重力,于是上面的弹簧k 1是拉伸的,其形变量为:121k g m x ='∆由上面的计算可得:物块2的重力势能增加了2p E ∆为:22212222)(k g m m m x g m E p +=∆=∆ 物块1的重力势能增加了2212111211111)(()(g k k m m m x x x g m E p ++='∆+∆+∆=∆ 二、弹簧与运动问题此类问题主要分为三类:第一类是关于将要运动的瞬间弹簧弹力是否突变的问题,第二类是关于在弹簧弹力和其它力共同作用下的匀速或变速运动问题,第三类是在弹簧作用下的简谐运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
(cos53°=0.6) 求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F ,在撤去拉力F 的瞬间,A 的加速度为a /,a /与a 之间比为多少?解:(1)先取A +B 和弹簧整体为研究对象,弹簧弹力为内力,杆对A 、B 支持力与加速度方向垂直,在沿F 方向应用牛顿第二定律F =(m A +m B )a ① 再取B 为研究对象F 弹cos53°=m B a ② ①②联立求解得,F 弹=25N由几何关系得,弹簧的伸长量⊿x =l (1/sin53°-1)=0.25m 所以弹簧的劲度系数k =100N/m(2)撤去F 力瞬间,弹簧弹力不变,A 的加速度a /= F 弹cos53°/m A 所以a /:a =3∶1。
4、如右图,质量为的物体A 放在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑的水平面上做简谐振动,振动过程中A 、B之间无相对运动,设弹簧的劲度系数为,当弹簧离开平衡位置的位移为x 时,A 、B 间静摩擦力的大小等于( ) A .0 B.kx C.mkx/M D.mkx/M+m 5、如右图示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m 的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径。
弹簧的劲度系数为k ,物体在距转轴R 处恰好能随圆盘一起转动而无相对滑动。
现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需条件是什么?6、如右图所示,一个铁球从竖立在地面上的轻弹簧正上方某处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中,弹簧均为弹性形变, 那么当弹簧的压缩量最大时( ) A . 球所受合力最大,但不一定大于重力值 B . 球的加速度最大,且一定大于重力加速度 C . 球的加速度最大,有可能小于重力加速度 D . 球所受弹力最大,但不一定大于重力值7、如图1-4-8所示,离心机的光滑水平杆上穿着两个小球A 、B ,质量分别为2m 和m ,两球用劲度系数为k 的轻弹簧相连,弹簧的自然长度为l .当两球随着离心机以角速度ω转动时,两球都能够相对于杆静止而又不碰两壁.求A 、B 的旋转半径rA 和rB .8、(2001全国)惯性制导已广泛应用与弹道式导弹工程中,这个系统的重要元件之一是加速度计。
加速度计构造原理的示意图如图所示:沿导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别与劲度系数均为k 的弹簧相连;两弹簧的另一端与固定壁相连。
滑块原来静止,弹簧处于自然长度。
滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导。
设某时间内导弹沿水平方向运动,指针向左偏离O点的距离为s ,则这段时间内导弹的加速度( ) A .方向向左,大小为ks/m B.方向向右,大小为ks/mC.方向向左,大小为2ks/m D.方向向右,大小为2ks/m9、用一根轻质弹簧悬吊一物体A ,弹簧伸长了L ,现该弹簧一端固定在墙上,另一端系一三棱体,先将弹簧压缩,4L然后将物体A 从三棱体的斜面上由静止释放,则当A 下滑过程中三棱体保持静止。
若水平地面光滑,三棱体斜面与水平地面成30°角,如图所示。
求: (1)物块A 的下滑加速度a ;(2)物块A 与斜面之间的动摩擦因数μ。
解:(1)当弹簧竖直悬挂物体时:KL=mg ①在A 从三棱体上下滑时,对A 和三棱体组成的系统,在水平方向上。
应用牛顿规律: 30cos 4ma LK =⋅②由①、②可得g g a 6330cos 4==(2)对物块A :ma mg mg =-30cos 30sin μ ③223ϖm k kl r A -=30cos 30tan g a-=μ244.0313=-=第二篇:相互接触的物体间可能存在弹力相互作用。
对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
现今对于弹簧连接的物体的分离是高考的热点,也是学生理解的难点,下面就弹簧连接的物理列几个典型例子加以说明。
例1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-=。
例2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m txa == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.例3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
(2)此过程中外力F 所做的功。
解:(1)A 原来静止时:kx 1=mg ①当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ②当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=221at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N图8图图7(2)在力F 作用的0.4s 内,初末状态的弹性势能相等,由功能关系得: W F =mg (x 1+x 2)+=2)(21at m 49.5J 第三篇:利用间谐振动的对称性:1、如图5所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木块A 放在木块B 上,两木块质量均为m ,在木块A 上施有竖直向下的力F ,整个装置处于静止状态. (1)突然将力F 撤去,若运动中A 、B 不分离,则A 、B 共同运动到最高点时,B 对A 的弹力有多大?(2)要使A 、B 不分离,力F 应满足什么条件?【点拨解疑】 力F 撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最高点与最低点的对称性来求解,会简单的多.(1)最高点与最低点有相同大小的回复力,只有方向相反,这里回复力是合外力.在最低点,即原来平衡的系统在撤去力F 的瞬间,A 受到的合外力应为F /2,方向竖直向上;当到达最高点时,A 受到的合外力也为F /2,但方向向下,考虑到重力的存在,所以B 对A 的弹力为2F mg -. (2)力F 越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称性.最高点时,A 、B 间虽接触但无弹力,A 只受重力,故此时恢复力向下,大小位mg .那么,在最低点时,即刚撤去力F 时,A 受的回复力也应等于m g ,但根据前一小题的分析,此时回复力为F /2,这就是说F /2=mg .则F =2mg .因此,使A 、B 不分离的条件是F ≤2mg .2、一弹簧振子作简谐振动,周期为T ( )A .若t 时刻和t+Δt 时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍B .若t 时刻和t+Δt 时刻振子运动速度的大小相等,方向相反,则Δt 一定等于T/2的整数倍C .若Δt=T ,则在t 时刻和t+Δt 时刻振子运动的加速度一定相等D .若Δt=T/2,则在t 时刻和t+Δt 时刻弹簧的长度一定相等3、两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,如图14所示.为了使撤去F 后m 1跳起时能带起m 2,则所加压力F 应多大?解:2m 恰好离开地面的临界条件是弹簧比原长再伸长2x ,且g m kx 22=和1m 速度为零.(1) 应用简谐振动的对称性求解:2m 不离开地面,1m 做简谐振动,则振幅:0221x x x x A +=-=k gm k g m x x X 1202122+=+= 加压力F 时 11kxg m F =+ g )(2111m m g m kx F +=-= (2)应用动能定理求解:对撤去力F 至2m 恰好离开地面全过程作用由动能定理得:02020)(2211211=+-+++-x kx x kx x x g m 022)(2221211=-++-x k x k x x g m ①加压力F 时 11kx g m F =+② 由①②解得:g m m F )(21+=g m m F )(21+>(对称法)4、如图所示,将质量为g m A 100=的平台A 连结在劲度系数m N k /200=的弹簧上端,弹簧下端固定在地上,形成竖直方向的弹簧振子,在A 的上方放置A B m m =的物块B ,使A 、B 一起上下振动,弹簧原子为5cm.A 的厚度可忽略不计,g 取10./2s m 求:(1)当系统做小振幅简谐振动时,A 的平衡位置离地面C 多高? (2)当振幅为0.5cm 时,B 对A 的最大压力有多大?(3)为使B 在振动中始终与A 接触,振幅不能超过多大? 解:(1)振幅很小时,A 、B 间不会分离,将A 和B 整体作为振子,当它们处于平衡位置时,根据平衡条件得g m m kx B A )(0+=得形变量cm m m k g m m x B A 101.020010)1.01.0()(0==⨯+=+=平衡位置距地面高度cm cm x l h 4)15(00=-=-=(2)当A 、B 运动到最低点,有向上的最大加速度,此时A 、B 间相互作用力最大,设振幅为A 最大加速度220/5/1.01.0005.0200)()(s m s m m m kA m m g m m x A k a B A B A B A m =⨯⨯=+=++-+=取B 为研究对象,有m B B a m g m N =-得A 、B 间相互作用力N N a g m a m g m N m B m B B 5.1)510(1.0)(=+⨯=+=+= 由牛顿第三定律知,B 对A 的最大压力大小为N N N 5.1=='(1分)(3)为使B 在振动中始终与A 接触,在最高点时相互作用力应满足:0≥N取B 为研究对象,a m N g m B B =-,当N=0时,B 振动的加速度达到最大值,且最大值2/10s m g a m=='(方向竖直向下) 因g a a mB mA ='=',表明A 、B 仅受重力作用,此刻弹簧的弹力为零,弹簧处于原长cm x A 10==' 振幅不能大于1cm5、如图2—12所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A 连接在一起,下端固定在地面上,盒子A 内腔为正方体,一直径略小于此正方体边长的金属圆球恰好能放在盒内,已知弹簧的劲度系数为k=4OON/m ,盒子A 与金属球B 的质量均为2kg ,将盒子A 向上提高,使弹簧从自由长度伸长1Ocm ,由静止释放,不计阻力,盒子A 和金属球B 一起做竖直方向的简谐振动,g 取2/10s m ,已知弹簧处在弹性限度内,对于同弹簧,其弹性势能只决定于形变的大小,试求: (1)盒子A 做简谐振动的振幅;(2)盒子A 运动到最高点时,盒子A 对金属小球B 的作用力方向;(3)金属小球B 的最大速度。