MRI设备基本组成认知和操作
mri原理通俗易懂
mri原理通俗易懂摘要:1.MRI 的基本原理2.MRI 的构造和组成部分3.MRI 的图像采集和重建过程4.MRI 的优点和应用领域正文:磁共振成像(Magnetic Resonance Imaging,简称MRI)是一种利用磁场和射频脉冲对人体进行非侵入性成像的技术。
MRI 原理通俗易懂,它主要基于原子核的磁共振现象。
下面我们将详细介绍MRI 的基本原理、构造和组成部分,以及MRI 的图像采集和重建过程。
MRI 的基本原理是原子核磁共振。
原子核具有磁矩,当磁场作用于原子核时,原子核会产生共振信号。
MRI 利用射频脉冲激发人体内的原子核产生共振信号,然后通过计算机处理这些信号,最终生成清晰的图像。
MRI 主要由以下几个部分组成:主磁体、梯度线圈、射频线圈和控制系统。
主磁体是MRI 设备的核心部件,它产生强磁场,使人体内的原子核产生共振。
梯度线圈产生梯度磁场,用于对人体各部位进行空间定位。
射频线圈产生射频脉冲,激发原子核产生共振信号。
控制系统用于控制MRI 设备的运行和采集图像。
MRI 的图像采集和重建过程分为以下几个步骤:首先,对人体进行定位,确定成像范围;然后,通过射频脉冲激发原子核产生共振信号;接着,对信号进行采集和处理;最后,通过计算机重建成图像。
MRI 具有许多优点,如无辐射、高分辨率、多参数成像等。
这使得MRI 在许多领域都有广泛的应用,如临床医学、生物科学、材料科学等。
在临床医学中,MRI 广泛应用于脑部、脊柱、关节等疾病的诊断。
总之,MRI 原理通俗易懂,它利用磁场和射频脉冲对人体进行非侵入性成像。
MRI 设备由主磁体、梯度线圈、射频线圈和控制系统组成,其图像采集和重建过程包括定位、信号激发、信号采集处理和图像重建。
医学核磁共振成像仪器的使用和操作
常见问题及解决方法
图像质量不佳
可能原因包括扫描参数设置不当 、患者移动等。解决方法包括调 整扫描参数、重新定位并固定患
者等。
Hale Waihona Puke 仪器故障如遇仪器故障,应立即停止使用并 联系维修人员进行检查和维修。
患者不适
部分患者可能在检查过程中出现不 适,如幽闭恐惧症、过敏反应等。 应立即停止检查并采取相应救治措 施。
监控与调整
在扫描过程中,密切观察患者状态和仪器运行情况。如有 异常,立即停止扫描并采取相应措施。根据需要,适时调 整扫描参数以获得更佳图像质量。
定位与扫描
根据检查需求,选择合适的线圈和扫描序列。调整患者位 置,确保扫描区域对准线圈中心。设置扫描参数,启动扫 描程序。
图像后处理
扫描完成后,对图像进行后处理,如重建、增强、测量等 ,以满足诊断需求。
信号处理流程
接收到的核磁共振信号首先经过放大和滤波处理,去除噪声和干扰信号。然后进行模数转换,将模拟信号转换为 数字信号。接着进行傅里叶变换,将时域信号转换为频域信号。最后进行图像重建和处理,生成可供医生诊断的 图像。
医学核磁共振成像仪器种类
02
与特点
常见医学核磁共振成像仪器类型
01 闭合式核磁共振成像仪
根据患者的具体病情和检查目的,选择适合的医学核磁共振成像仪器类型。例如,对于需 要高分辨率成像的患者,应选择闭合式核磁共振成像仪。
考虑患者因素
在选择医学核磁共振成像仪器时,应充分考虑患者的年龄、体重、身体状况等因素。例如 ,对于无法耐受长时间检查的患者,应选择成像速度较快的便携式核磁共振成像仪。
结合医院实际情况
02 了解患者情况
核对患者信息,了解患者病情、病史及过敏史等 相关情况,评估患者是否适合进行核磁共振检查 。
mri的基本结构
mri的基本结构MRI的基本结构MRI(Magnetic Resonance Imaging)是一种通过利用核磁共振原理来生成高分辨率图像的医学成像技术。
它能够提供非常详细的人体内部结构图像,对于诊断疾病和研究人体解剖结构具有重要作用。
下面将介绍MRI的基本结构。
1. 主磁体系统MRI的主磁体系统是MRI设备的核心部分,它产生强大的恒定磁场。
主磁体通常采用超导磁体,可以产生高达1.5T或更高的磁场强度。
这个磁场会使人体内的水分子的原子核发生共振现象,从而产生信号。
2. 梯度线圈系统梯度线圈系统是MRI设备中的另一个重要组成部分,它能够在不同的方向上产生不同的磁场梯度。
这些梯度场可以用来定位信号来源的位置,并使得MRI图像具有空间分辨率。
3. 射频线圈系统射频线圈系统用于向人体内部发送无线电波,并接收来自人体的信号。
它包括表面线圈、内置线圈和灵敏线圈等不同类型。
射频线圈的设计和使用对于获得高质量的MRI图像至关重要。
4. 控制系统MRI设备的控制系统负责控制主磁体、梯度线圈和射频线圈的工作,以及对数据进行采集和处理。
控制系统通常由计算机和相关软件组成,可以根据医生的指示进行不同的扫描设置,并实时显示图像。
5. 数据处理和图像重建MRI采集到的数据需要经过一系列的处理和重建才能生成最终的图像。
这个过程包括噪声去除、数据滤波、峰值检测、图像配准和重建等步骤。
数据处理和图像重建的算法和方法对于获得清晰的图像具有重要影响。
6. 图像显示和分析MRI图像可以在计算机屏幕上进行显示和分析。
医生可以通过对图像进行调整和放大来观察人体内部的结构和病变情况。
同时,还可以利用图像处理软件对图像进行测量和分析,以辅助诊断和研究。
总结:MRI的基本结构包括主磁体系统、梯度线圈系统、射频线圈系统、控制系统、数据处理和图像重建、图像显示和分析等部分。
这些组件共同工作,使得MRI能够提供高质量的人体内部结构图像,为医学诊断和研究提供了重要工具。
mri的基本组成
mri的基本组成
MRI(磁共振成像)是一种非侵入性的医学成像技术,可以用来观察人体内部的结构和功能。
它由以下几个基本组成部分组成,包括主磁场、梯度线圈、射频线圈和计算机系统。
一、主磁场
主磁场是MRI系统的核心组成部分,它产生一个稳定的磁场,使得人体内的原子核(主要是氢核)可以被激发和探测。
主磁场的强度通常以特斯拉(T)为单位,常见的MRI设备主磁场强度为1.5T或
3.0T。
二、梯度线圈
梯度线圈是MRI系统中的另一个重要组成部分,它能够产生可控制的磁场梯度,用于定位和空间编码。
通过改变梯度线圈的电流强度和方向,可以获得不同的图像对比度和空间分辨率。
三、射频线圈
射频线圈是用来发射和接收无线电波信号的装置。
在MRI扫描过程中,射频线圈会向被扫描的区域发射无线电波,激发人体内的原子核共振。
同时,它也会接收被激发的信号,并将其传送到计算机系统进行处理。
四、计算机系统
计算机系统是MRI成像的关键部分,它负责控制整个系统的运行,
接收和处理射频线圈接收到的信号,并将其转化为图像。
计算机系统还可以根据需要对图像进行后处理,如图像重建、滤波和增强等。
通过这些基本组成部分的配合,MRI可以获得高对比度和高分辨率的图像,可以用于检测和诊断多种疾病,如肿瘤、心血管疾病和神经系统疾病等。
MRI的非侵入性和无辐射的特点,使其成为临床医学中常用的影像学技术之一。
总的来说,MRI的基本组成包括主磁场、梯度线圈、射频线圈和计算机系统。
这些组成部分的相互作用,使得MRI成为一种可靠、安全和有效的医学成像技术,为医生提供了重要的诊断和治疗依据,为患者的健康保驾护航。
磁共振成像设备(MRI) MRI设备之基本构造 其它组成与质保
计算机系统
(二)图像重建 1、数据处理 在重建图像之前还需对A/D 转换
所得数据进行简单的处理,包括传送驱动、数据字 酌拼接和重建前的预处理等。加入标志信息,如扫 描行和列的信息、数据的类型、生理信号门控数据、 层号等等。
2、图像重建 图像重建的本质是对数据进行高 速数学运算。由于运算量很大,多采用并行计算机 来重建图像。
• 水冷机
• 定期检查压力、水温及制冷情况
• 压缩机
• 每日 查看压缩机运作情况,检查压缩机压力情况
• 液氦显示器
• 每日查看氦面情况,防止失超
• PIQT
• 每周进行IQ水模测试,定期监测成像设备的各项技术指标及可靠性能
• 主操作台及工作站
• 保持恒定的温度和湿度 • 定期除尘 • 保持空气净化
• 检查床
• 检查驱动其上下、前后的活动马达,定期给驱动转轴添加润滑油
• 光盘驱动器
• 定时储存图像 • 定期除尘 • 防潮除湿
ቤተ መጻሕፍቲ ባይዱ
设备的保养维护
• 表面线圈的保养
• 软制线圈不可过分折叠和弯曲,不得用锐利器刺伤其表面 • 固定设制的线圈不可撞击硬物 • 对表面线圈表面的脏物应用清洁剂擦干,不得用有机溶剂擦洗
MRI设备-基本结构
计算机系统
在MRI设备中,计算机系统包括各种规模的计算机、单片机、微处 理器等,构成了MRI设备的控制网络。信号处理系统可采用高档次微 型机负责信号预处理、快速傅立叶变换和卷积反投影运算。
微机系统负责信息调度(如人机交互等)与系统控制(如控制梯度 磁场、射频脉冲)。
计算机系统
• 计算机
• 定期除尘,检查风扇运转情况,保证一定的温度、湿度和空气净化度 • 定期清理文件目录,删除计算机自动生成的错误文件,整理硬盘的碎片文件,
MRI设备的主要物理部件和使用
MRI设备的主要物理部件和使用磁体、梯度场线圈和射频线圈是MR成像设备的重要物理部件。
它们的主要技术性能参数是磁感应强度、磁场均匀度、磁场稳定性、边缘场的空间范围、梯度场的磁感应强度和线性度、射频线圈的灵敏度等。
成像系统的主要用户功能是数据采集、影像显示和影像分析等。
磁共振成像设备有以下基本组成部分:①产生磁场的磁体和磁体电源;②梯度场线圈和梯度场电源;③射频发射/接收机;④系统控制和数据处理计算机;⑤成像操作和影像分析工作台;⑥活动检查床。
这些部分之间通过控制线和数据线及接口电路联接起来组成完整的设备。
这里着重讨论对磁共振成像和影像质量有决定性作用的物理部件,介绍它们的工作原理、特性和技术指标。
这些物理部件包括产生磁场的磁体、产生梯度场的梯度场线圈、用于射频发射和信号接收的射频线圈。
另外,MR成像设备必须有为用户提供的软件程序。
用户通过操作系统的终端利用这些程序,根据需要进行影像采集、影像显示和影像分析。
一、磁体1.磁体的性能参数产生磁场的磁体是MR成像系统的核心。
磁场的主要技术指标是磁感应强度、磁场均匀度、磁场的时间稳定性和边缘场的空间范围等,它们对影像质量有重要影响。
(1)磁场磁感应强度MRI所用的磁场磁感应强度从0.02T到4T,范围相当宽。
因为生物组织中含有大量质子,而且,质子的旋磁比大,所以,即使磁感应强度很低的磁场也能实现质子磁共振成像。
但是,磁感应强度越高,组织的磁化程度越大,产生的磁共振信号越强。
在一定范围内,磁感应强度越高,影像的信噪比越大,因信噪比近似与磁感应强度成线性关系。
磁共振频谱分析和化学位移成像要求的频谱分辨率很高,只能用磁感应强度很高的系统进行。
高磁场也有不利因素,主要是在高磁场条件下,射频频率高,人体对射频能量的吸收增加,射频对人体的穿透能力减小,同时因水和脂肪之间不同的化学位移引起的伪影的影响也不可忽略。
磁共振成像用的磁体有永久磁体、常导磁体和超导磁体3种。
目前,大多数MR成像系统采用超导磁体,磁感应强度低的工作在0.3T,高的工作在2.0T,甚至4.0T或更高。
核磁共振仪使用指南
核磁共振仪使用指南核磁共振( Nuclear Magnetic Resonance, NMR) 技术是一项重要的分析手段,广泛应用于医学、生物化学、化学等领域。
本文为您提供核磁共振仪的使用指南,介绍核磁共振仪的基本原理、操作步骤、注意事项等内容,帮助您正确、高效地使用核磁共振仪。
一、核磁共振仪基本原理核磁共振仪通过测定样品中原子核在外加磁场和射频场作用下的能级差异,获取样品的分子结构和组成信息。
核磁共振仪的主要组成部分包括磁体系统、射频系统、探头系统、控制系统等。
1. 磁体系统:核磁共振仪的核心部分是磁体系统,它产生一个强大的恒定磁场,通常使用超导磁体。
在使用核磁共振仪时,要确保磁体系统的正常运行,避免磁场泄漏和磁场变化。
2. 射频系统:射频系统用于产生与样品频率匹配的射频场,激发样品中的核磁共振信号。
在使用核磁共振仪时,要根据样品的性质和实验需求选择合适的射频参数,如频率、功率等。
3. 探头系统:探头是核磁共振仪中与样品直接接触的部分,它包含送射和接收线圈。
探头的设计和选择对实验结果影响很大,要根据样品性质和实验要求进行选择和调整。
4. 控制系统:核磁共振仪的控制系统负责核磁共振实验的参数设置、数据采集和处理等功能。
在使用核磁共振仪时,要熟悉并掌握控制系统的操作方法,确保实验的准确性和可重复性。
二、核磁共振仪操作步骤1. 准备样品:选择合适的样品,并准备好样品溶液。
在样品制备过程中,要避免任何可能引起污染或改变样品性质的因素。
2. 样品装填:将样品溶液置于核磁共振仪的样品管中,并尽量保持样品的均匀分布和稳定性。
3. 参数设置:根据实验要求和样品性质,在核磁共振仪的控制系统中进行参数设置,如射频频率、扫描时间等。
4. 数据采集:启动核磁共振仪,开始数据采集。
在数据采集过程中,要仔细观察和记录实验现象,确保数据的准确性和可靠性。
5. 数据处理:使用核磁共振仪的数据处理软件对采集的数据进行处理和分析。
磁共振成像设备使用说明书
磁共振成像设备使用说明书一、概述本使用说明书旨在为用户提供磁共振成像设备的正确操作方法和注意事项,以确保设备的安全性和高效性能。
请用户在操作设备之前仔细阅读本说明书,并按照指导进行操作。
二、设备介绍1. 设备型号:磁共振成像设备(以下简称MRI设备)2. 设备外观:MRI设备为大型机器,由磁体、控制台、操纵台等组成。
3. 设备功能:MRI设备用于通过探测被测体内的磁共振信号,生成高质量的图像,以辅助医生进行诊断。
三、操作准备1. 设备环境:MRI设备应放置在室内,远离电磁干扰源。
设备周围的空间应保持干燥、洁净,并确保有良好的通风。
2. 供电要求:MRI设备应接入稳定的电源,并使用接地插头,确保电源稳定和设备安全。
3. 设备冷却:MRI设备的磁体处于超导状态,需要定期进行冷却。
请确保冷却系统正常运行,并遵循设备的冷却要求。
四、操作步骤1. 操作人员准备:操作人员应穿着适当的防护服,并佩戴无磁性物质制成的防护用具,以确保人员的安全和图像质量。
2. 患者准备:将患者放置在设备中心,遵循医疗流程,确认患者身体状况适合进行MRI扫描。
3. 设备打开:按照设备启动顺序,依次启动磁体、控制台和操纵台,并确保各部位正常工作。
4. 扫描参数设置:根据医生的指示和患者的需要,设置相应的扫描参数,如扫描区域、扫描层数、重建间隔等。
5. 执行扫描:确认扫描参数设置无误后,将患者送入设备中心,根据设备操作界面的指示,执行相应的扫描过程。
6. 图像保存和传输:扫描完成后,将图像保存至指定位置,并及时传输到工作站进行后续处理。
五、安全注意事项1. 磁性物体禁止进入:严禁将任何具有磁性的物体带入设备区域,包括钥匙、手表、手机、金属物品等。
这些物品可能对设备和人员造成严重危害。
2. 设备禁区标识:在设备周围应设置明显的禁止标识,以提醒他人注意设备的安全和操作要求。
3. 紧急情况处理:如果在操作过程中发生紧急情况,如患者出现不适、设备异常运行等,请立即停止操作,并寻求专业人员的帮助。
磁共振成像设备介绍
磁共振成像设备介绍1. 概述磁共振成像(Magnetic Resonance Imaging, MRI)是一种利用磁共振现象对人体或物体进行成像的无创检查技术。
它能够提供高对比度、高分辨率的图像,对于诊断疾病和观察生理过程具有重要价值。
磁共振成像设备是实现MRI检查的关键设备,下面将对其进行详细介绍。
2. 磁共振成像设备的组成磁共振成像设备主要由以下几个部分组成:2.1. 主磁体主磁体是磁共振成像设备的核心部件之一,它产生强大的静态磁场,用于对采集的信号进行定向和扩散。
主磁体通常采用超导磁体或永磁体。
超导磁体利用超导材料在极低温下产生极强的磁场,能够提供更稳定和均匀的磁场质量。
永磁体则是通过特殊磁材制造的,相对于超导磁体具有较低的成本和更小的体积。
2.2. 梯度线圈梯度线圈用于在磁共振成像过程中产生梯度磁场,通过改变梯度磁场的方向和强度,可以对磁共振信号进行空间编码,从而实现对物体内部结构的定位和分辨。
2.3. RF线圈RF线圈是用于向被检体中输入射频信号以及接收磁共振信号的设备。
它是磁共振成像设备的重要组成部分,能够产生高频的交变电磁场,激发被检体内部的磁共振信号。
2.4. 接收器接收器用于接收从被检体中采集到的磁共振信号,并将其转换为电信号进一步处理。
接收器通常包括信号放大器、滤波器、模数转换器等。
2.5. 控制与处理系统控制与处理系统负责操纵磁共振成像设备的各部分,并对采集到的信号进行处理和重建。
它通常由计算机和相应的软件组成,能够实现图像采集、重建和显示。
3. 磁共振成像设备的工作原理磁共振成像设备的工作原理是基于核磁共振现象。
当被检体置于强磁场中时,其中的原子核会受到磁场的影响,处于不同的能级。
通过向被检体中输入射频脉冲,可以使原子核从低能级跃迁至高能级。
当射频脉冲结束后,原子核会返回到低能级,并释放出能量。
这些能量以磁共振信号的形式被接收器采集,并由控制与处理系统转化为图像。
4. 磁共振成像设备的应用磁共振成像设备广泛应用于医学领域,主要用于以下方面:4.1. 诊断疾病磁共振成像设备能够提供高对比度和高分辨率的图像,可用于检测和诊断各种疾病,如脑卒中、肿瘤、心血管病等。
MRI系统的组成
MRI系统的组成
现代临床高场(3.0T)MRI扫描器
磁铁系统
1.静磁场:又称主磁场。
当前临床所用超导磁铁,磁场强度有0.2到7.0T(特斯
拉),常见的为1.5T和3.0T;动物实验用的小型MRI则有4.7T、7.0T与9.4T 等多种主磁场强度。
另有匀磁线圈(shim coil)协助达到磁场的高均匀度。
2.梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码。
这个系统
有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场。
射频系统
1.射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的
氢核产生NMR现象。
2.射频(RF)接收器:接收NMR信号,放大后进入图像处理系统。
计算机图像重建系统
由射频接收器送来的信号经A/D转换器,把模拟信号转换成数字信号,根据与观察层面各体素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上,按NMR的大小,用不同的灰度等级显示出欲观察层面的图像。
核磁共振波谱仪组成
核磁共振波谱仪组成核磁共振(NMR)是化学、生物学和医学等领域常用的一种分析手段。
对于NMR技术的实现,核磁共振波谱仪是关键设备之一。
下面将介绍核磁共振波谱仪的组成。
1.主磁场系统主磁场是核磁共振波谱仪的核心组成部分,主要由大型超导磁体、氦制冷系统和磁场调节系统组成。
超导磁体是核磁共振波谱仪的关键部件,能产生稳定且强大的磁场。
氦制冷系统则用于维持磁体的低温状态,以实现超导磁体的超导状态。
磁场调节系统用于使超导磁体的磁场满足实验要求。
2.无线电波系统无线电波系统是核磁共振波谱仪的驱动部分,主要由射频发生器、功率放大器、天线和探头等组成。
射频发生器发出高频无线电波,功率放大器将其放大后,通过天线和探头输入到样品中。
这些设备的设计和选择决定了波谱质量的好坏。
3.数字控制系统数字控制系统则是核磁共振波谱仪的智能部分,既包括波形数字化系统,又包括调制、解调和数字信号处理系统等。
数字控制系统的作用是将样品产生的信号转换为数字信号,并对其进行处理和优化,以得到高质量的谱图结果。
4.样品输送和控制系统样品输送和控制系统是核磁共振波谱仪中的样品进出口,主要由自动取样器、磁管和气缸等组成。
自动取样器能够自动将样品放入磁管中,磁管和气缸则起到固定和控制样品位置的作用。
这些设备的性能将影响到样品进出的速度和稳定性。
5.计算机系统计算机系统是核磁共振波谱仪中最重要的组成部分,既包括硬件,又包括软件。
计算机的作用是对数字信号进行处理、分析、控制和储存,以实现波谱生成和数据管理等功能。
计算机系统的算法和结构对波谱分析和数据处理有着决定性的影响。
综上所述,核磁共振波谱仪是由主磁场系统、无线电波系统、数字控制系统、样品输送和控制系统以及计算机系统等五大部分组成的。
每一部分都有其独特的功能和特点,共同发挥着协同作用,实现了核磁共振技术的应用和发展。
磁共振成像技术的操作指南
磁共振成像技术的操作指南磁共振成像(Magnetic Resonance Imaging,MRI)是一种非侵入性的医学影像学技术,通过利用核磁共振现象得以获得高质量的人体内部结构图像。
在医学诊断和研究中,MRI已经成为非常重要的工具之一。
然而,由于其操作复杂性,对于操作者来说,理解和掌握MRI的操作指南是至关重要的。
1.准备工作在开始使用MRI之前,需要进行一系列的准备工作。
首先,确认设备的状态是否正常,如电源是否接通,系统是否运行正常等。
然后,检查患者身体上是否有任何可能对磁场产生干扰的物品,如金属物品、纽扣、手机等,这些物品都需要被移除或离开磁场之外。
同时,还需要向患者充分解释MRI的相关安全事项,确保患者理解和配合。
2.定位和选择扫描区域在确定MRI扫描区域之前,需要根据临床需要和医生的要求对患者进行详细的问诊和体检。
根据需要,选择合适的扫描序列和参数。
在定位扫描区域时,可以使用解剖标志物或导向线等辅助工具,确保所选取的扫描区域与患者特定的解剖结构相一致。
3.患者准备和安抚在进行MRI之前,需要确保患者身体舒适,并消除不必要的疑虑和焦虑。
可以事先告知患者MRI的整个过程,包括可能的噪音、可能需要保持特定的体位以及需要保持静止等。
还可以提供音乐或耳塞等舒适化措施,以帮助患者在扫描过程中放松和安抚情绪。
4.设置扫描参数在开始扫描之前,需要根据医生的要求和实际需要设置扫描参数。
这些参数包括序列类型、扫描时间、分辨率、最大平面数量、切片宽度等。
在设置参数时,需要根据所需成像部位的大小和解剖结构的要求进行合理调整,以获得清晰且准确的图像。
5.安全操作和监控在使用MRI过程中,需要保持高度的安全意识。
首先,要确保操作者和患者遵循磁场区域的限制,以防止受到不必要的风险和伤害。
其次,要确保设备的正常运行,并在扫描过程中持续监控患者的状况。
如果发现任何异常情况,操作者应立即采取适当的措施,并向医生报告。
6.图像质量评估在完成MRI扫描后,操作者需要对获得的图像进行质量评估。
核磁共振机操作规程
高平市武承谋骨伤专科医院永安分院核磁共振机操作规程1。
定义核磁共振成像(MRI)是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。
碰共振成像是利用原子核在磁场内共振所产生的信号经重建成像的一种成像技术,它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。
2。
工作原理被检患者躺在位于磁场均匀区域的患者床上,并放置好接收线圈。
操作者通过计算机控制台向光纤谱仪发出产生序列脉冲的指令,光纤谱仪产生射频脉冲信号和梯度脉冲信号后分别被射频功率放大器和梯度功率放大器放大。
经梯度功率放大器送往梯度线圈的梯度信号在X、Y、Z三个坐标上产生梯度场,这个梯度场叠加在磁体产生的基场上,从而实现对成像空间的三维空间编码。
而经射频功率放大器送往射频发射线圈的射频脉冲信号施加到被检患者的被检部位,被检部位的被选层的质子被激励使其产生共振。
施加射频脉冲的时间很短,当突然停止施加射频脉冲,被激励的质子开始释放能量(驰豫),接收线圈可以检测到磁共振信号并送往前置放大器,进行信号放大,然后光纤谱仪进行数据的采集并将采集的数据送往计算机控制台的主机进行原始数据处理,图像的重构及显示,最后将磁共振图像送往系统的输出设备(激光照相机、打印机),进行硬拷贝输出。
3.适用范围该产品采用非侵入性而且无电离辐射的核磁共振方法获取患者的生理信息和临床信息供医生使用。
该系统用于生成人体不同部位横断面、冠状面、矢状面、斜横断面影像,显示四肢(乳房组织、腋窝和乳房附近的胸壁)的内部结构。
MRI由不同的扫描序列可形成各种图像,如T1加权像、T2加权像、质子密度像等,还有水成像、水抑制成像、脂肪抑制、弥散成像、波谱成像、功能成像等,CT只能辨别有密度差的组织,对软组织分辨力不高,而MRI对软组织有较好的分辨力,如肌肉、脂肪、软骨、筋膜等。
所以CT与MRI是截然不同的检查方法。
核磁共振构造
核磁共振构造1 简介核磁共振成像(Magnetic Resonance Imaging,MRI)是一种以核磁共振现象为基础的成像技术。
该技术利用人体组织中的原子核在外磁场和射频脉冲作用下发生共振的特性进行成像。
相比于传统的X线成像技术,MRI具有无辐射、无副作用、立体图像和高分辨率等优点,因此广泛应用于医学领域。
本文将介绍MRI的构造。
2 准直系统MRI系统的准直系统主要由磁铁组成。
MRI中常用的是超导体磁铁,其内部结构是包裹在液氦中的超导体线圈组成。
超导体在液氦温度下失超后,可以产生极强的磁场。
MRI的准直系统中通常有多个相互作用的磁体,每个磁体都有特定的几何形状和磁场强度,并共同构成高强度且均匀的主磁场。
主磁场的强度是MRI系统的一个重要参数,通常在1.5T到3T之间。
在MRI扫描过程中,患者会被放置在主磁场中。
3 梯度线圈系统MRI系统的梯度线圈主要用于定位和激励患者体内不同位置的原子核,从而进行成像。
梯度线圈包括X、Y和Z三个方向的线圈三层。
每一层内又有多个线圈,这些线圈通电时可以产生不同的磁场梯度。
MRI中梯度线圈的线圈数目和大小,线圈之间的距离等等都被精心设计,这些都是MRI成像品质的重要因素。
MRI中每一层的梯度线圈都可以单独激励,从而产生X、Y和Z方向的梯度磁场。
这些磁场梯度可以用来定位和激励特定位置的原子核,还可以用于消除组织中的磁场畸变。
4 射频系统MRI射频系统主要用于激励患者体内的原子核产生共振,从而进行信号采集和成像。
射频线圈是一种特殊的电磁场线圈,在MRI系统中主要有两种类型:表面线圈和体积线圈。
表面线圈放置在身体表面,可以产生较强的磁场。
不同的表面线圈适用于不同的成像区域。
体积线圈放置在患者的腔内,适用于头、胸、腹等部位的成像。
体积线圈有时也被用于全身扫描。
射频系统中的线圈和主磁场的均匀程度密切相关,过强的射频线圈会导致磁场畸变,影响成像质量。
5 控制系统MRI的控制系统主要用于调节MRI中的各种参数和单独控制各个线圈。
MRI原理及设备概要
MRI原理及设备概要MRI全称为磁共振成像(Magnetic Resonance Imaging),是一种利用磁共振现象进行图像扫描的医学影像学技术。
MRI的原理是基于原子核自旋进动的现象,通过对患者身体内的原子核进行激发和检测,利用这些信号重建图像,从而实现对身体组织和器官内部结构的观察和诊断。
MRI设备是由磁体、梯度线圈、射频线圈和计算机系统组成的。
磁体是整个设备的核心部分,它产生强大的静态磁场,使患者的原子核自旋发生预cession现象,从而产生信号。
梯度线圈则用于加在主磁场上的梯度场,其作用是使得扫描范围内各个空间位置的原子核能够产生不同的共振频率,从而能够获取到更全面的图像信息。
射频线圈则用来向患者身体内发射并接收RF信号,以激发原子核的共振发射信号和接收信号进行后续的图像重建。
计算机系统用来控制整个设备的操作过程,对图像进行处理和重建。
MRI扫描的过程主要包括以下几个步骤:患者躺在扫描床上,进入主磁场后,通过调整梯度线圈的功率和方向,使得原子核自旋能够以不同角度进动。
然后,射频线圈向患者身体内发射一定频率的脉冲,使得原子核自旋由不平衡状态进入平衡状态。
在此过程中,原子核会发出一定的RF 信号。
射频线圈同时也会接收到由患者身体发出的信号。
接收到的信号通过梯度线圈和射频线圈传输给计算机系统进行信号处理和图像重建。
MRI成像可用于对人体多个区域的结构和功能进行观察和诊断,如头颅、胸部、腹部、骨骼、关节等。
相比于其他医学成像技术,MRI具有以下优点:对软组织分辨率高,可以清晰显示组织结构;无辐射,对患者没有伤害;可以得到多平面的图像,便于医生进行三维重建;可以进行动态观察,了解器官和组织的功能状态。
然而,MRI也存在一些限制和局限性。
首先,MRI扫描时间较长,通常需要几分钟至几十分钟不等。
其次,由于设备的高成本和复杂性,MRI 设备不易推广普及,导致部分地区的医疗资源不足。
此外,MRI对于患有心脏起搏器或心脏瓣膜置换的患者不适用,对患有金属植入物的患者也存在一定的风险。
磁共振成像仪的基本硬件介绍
磁共振成像仪的基本硬件介绍医用MRI仪通常由主磁体、梯度线圈、射频线圈、计算机系统及其他辅助设备等五部分构成。
主磁体主磁体是MRI仪最基本的构件,是产生磁场的装置。
根据磁场产生的方式可将主磁体分为永磁型和电磁型。
永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式MRI仪采用永磁型主磁体。
电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将电磁型主磁体分为常导磁体和超导磁体。
常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场。
目前中高场强的MRI仪均采用超导磁体。
主磁体最重要的技术指标包括场强、梯度切换率、磁场均匀度及主磁体的长度。
主磁场的场强可采用高斯(Gauss,G)或特斯拉(Tesla,T)来表示,特斯拉是目前磁场强度的法定单位。
距离5安培电流通过的直导线25px处检测到的磁场强度被定义为1高斯。
特斯拉与高斯的换算关系为:1 T = 10,000G。
在过去的30年中,临床应用型MRI仪场强已由0.2 T以下提高到3.0 T以上,目前一般把0.5 T以下的MRI仪称为低场机,1.5 T到3.0T之间的称为高场机。
高场强MRI仪的主要优势表现为:(1)主磁场场强高提高质子的磁化率,增加图像的信噪比;(2)在保证信噪比的前提下,可缩短MRI信号采集时间;(3)增加化学位移使磁共振频谱(magnetic resonance spectroscopy,MRS)对代谢产物的分辨力得到提高;(4)增加化学位移使脂肪饱和技术更加容易实现;(5)磁敏感效应增强,从而增加血氧饱和度依赖(BOLD)效应,使脑功能成像的信号变化更为明显。
当然MRI仪场强增高也带来以下问题:(1)设备生产成本增加,价格提高。
MRI扫描仪的基本硬件构成
氢原子核总是绕着自身的轴旋转 --自旋 ( Spin )
自旋与核磁
•地球自转产生磁场 •原子核总是不停地按一定频率绕着自身的 轴发生自旋 ( Spin ) •原子核的质子带正电荷,其自旋产生的磁 场称为核磁,因而以前把磁共振成像称为 核磁共振成像(NMRI)。
在主磁场中质子的磁化矢量方向是绝 对同向平行或逆向平行吗???
MRI扫描仪的基本 硬件构成
一般的MRI仪由以下几部分组成
主磁体 梯度线圈 脉冲线圈 计算机系统 其他辅助设备
1、主磁体
分类 磁场强度 磁场均匀度
•MRI按磁场产生方式分类
主 磁 体
永磁
常导
电磁 超导
0.35T 永磁磁体
1.5T 超导磁体
•按磁体的外形可分为
•开放式磁体 •封闭式磁体 •特殊外形磁体
梯度线圈性能的 提高 磁共振 成像速度加快 没有梯度磁场的 进步就没有快速、 超快速成像技术
3、脉冲线圈
脉冲线圈的作用 如同无线电波的天线
激发人体产生共振(广 播电台的发射天线) 采集MR信号(收音机 的天线)
•脉冲线圈的分类
•按作用分两类 –激发并采集MRI信号(体线圈) –仅采集MRI信号,激发采用体线 圈进行(绝大多数表面线圈)
OpenMark 3000
•MR按主磁场的场强分类
–MRI图像信噪比与主磁场场强成正比
–低场: 小于0.5T –中场:0.5T-1.0T
–高场: 1.0T-2.0T(1.0T、1.5T、2.0T)
–超高场强:大于2.0T(3.0T、4.7T、7T)
2、梯度线圈
作用:
空间定位 产生信号 其他作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MRI设备基本组成认知和操作
MRI设备由主磁体系统、梯度系统、射频系统、计算机系统等组成,为确保MRI设备的正常运行,还需有磁屏蔽、射频屏蔽、超导及低温等其它辅助设备。
一、主磁体系统
主磁体系统(又称静磁场系统),是磁共振成像装置的核心部件,也是磁共振成像系统最重要、制造和运行成本最高的部件。
主磁体的作用是产生一个均匀的、稳定的静态磁场,使处于磁场中的人体内氢原子核被磁化而形成磁化强度矢量,并以拉莫尔频率沿磁场方向进行自旋(进动)。
(一)主磁体的性能指标
1.磁场强度
2.磁场均匀性
3.磁场稳定度
4.有效孔径
5.磁场的安全性
(二)主磁体的种类与特点
1.永磁体
2.超导磁体
(三)匀场
主磁场的均匀性是MR的重要指标,无论何种磁体由于受设计和制造工艺限制,在其制造过程中都不可能使整个有效空间内的磁场完全均匀一致。
另外,磁体周围环境中的铁磁性物体(如钢梁等)也会进一步降低磁场的均匀性。
因此,磁体安装完毕后还要在现场对磁场进行物理调整,称为匀场。
静磁场是靠各种匀场补偿线圈和铁磁材料,经多次补偿、测量、修正而逐渐逼近理想均匀磁场。
由于精度要求极高而且校准工作极其繁琐,大多是在计算机辅助下,采取多次测量、多次计算、多次修正才能达到1250pxDSV(球体直径)5ppm的均匀度。
常用的匀场方法有有源匀场和无源匀场两种。
1.有源匀场
2.无源匀场
二、梯度磁场系统
梯度磁场系统是为MR提供满足线性度要求、可快速开关的梯度磁场。
(一)梯度磁场的作用
在磁共振成像时,必须要在成像区域内的静磁场上,动态地迭加三个相互正交的线性梯度磁场,如图6-12所示,使受检体在不同位置的磁场值有线性的梯度差异,实现成像体素的选层和空间位置编码的功能。
三个梯度场的任何一个均可用以完成这三项作用之一,但联合使用梯度场可获得任意轴面的图像。
此外,在梯度回波和其他一些快速成像序列中,梯度磁场的翻
转还起着射频激发后自旋系统的相位重聚,产生梯度回波信号的作用;在成像系统没有独立的匀场线圈的磁体系统的情况下,梯度线圈可兼用于对磁场的非均匀性校正,因此,梯度系统也是MRI设备的核心系统。
(二)梯度磁场的主要性能指标
梯度磁场系统产生的梯度磁场(简称梯度场),其性能优劣直接影响扫描速度、影像的几何保真度及空间分辨力等。
表征其性能的指标主要有:有效容积、梯度线性、梯度强度、梯度爬升时间、梯度切换率等。
1.有效容积
2.梯度线性
3.梯度强度
4.梯度爬升时间
5.梯度切换率
(三)梯度系统的组成
梯度系统由梯度线圈(gradient coil)、梯度控制器(gradient control unit,GCU)、数模转换器(digital to analogue converter,DAC)、梯度功率放大器(gradient power amplifier,GPA)和梯度冷却系统等部分组成。
1.梯度线圈
2.梯度控制器
3.数模转换器
4.梯度放大器
5.梯度冷却系统
6.涡流的影响和补偿
(四)双梯度系统
三、射频系统
射频系统包括射频脉冲发射系统和射频信号接收系统两部分。
其作用为发射能产生各种翻转角的射频波,还要接收磁共振信号并进行放大等处理,最后得到数字化原始数据,送给计算机进行图像重建。
(一)射频脉冲
(二)射频线圈
1.射频线圈的功能
2.射频线圈的种类
3.射频线圈的主要指标
(三)射频脉冲的产生单元。