接触角和粗糙度的关系

合集下载

橡胶表面粗糙度分析

橡胶表面粗糙度分析

橡胶表面粗糙度分析橡胶表面粗糙度分析橡胶表面的粗糙度是指其表面的不平坦程度,它对橡胶材料的性能和应用有着重要的影响。

下面将从步骤思考的角度,分析橡胶表面粗糙度的影响。

第一步:定义粗糙度的指标为了量化橡胶表面的粗糙度,我们需要定义相应的指标。

常见的指标包括平均粗糙度、根均方粗糙度和最大峰谷高度等。

平均粗糙度是表面高度的平均值,根均方粗糙度则反映了表面高度的离散程度,最大峰谷高度则表示了表面上最高的峰和最低的谷之间的差距。

第二步:影响粗糙度的因素橡胶表面的粗糙度受多种因素的影响。

首先,橡胶材料的原始质量和加工工艺对粗糙度有直接影响。

原材料的质量差异会导致橡胶表面的不平坦程度不同,而加工工艺中的摩擦、磨损等因素也会对橡胶表面造成一定的磨损和变形。

其次,环境因素也会对橡胶表面粗糙度产生影响。

例如,湿度和温度的变化会导致橡胶表面的膨胀和收缩,从而改变其粗糙度。

第三步:粗糙度对性能的影响橡胶表面的粗糙度对其性能有直接的影响。

首先,粗糙度会影响橡胶与其他物质的接触和摩擦性能。

表面更加粗糙的橡胶会增加与其他物质的接触面积,从而增加摩擦力和附着力。

其次,粗糙度也会影响橡胶的密封性能。

表面粗糙的橡胶会导致密封件之间的间隙增大,从而降低了密封效果。

此外,粗糙度还会影响橡胶的表面润湿性,即橡胶表面与液体之间的接触性能。

表面更加粗糙的橡胶会使液体在表面上的接触角增大,从而降低了其润湿性。

第四步:粗糙度的控制与改进为了控制和改进橡胶表面的粗糙度,我们可以从以下几个方面进行考虑。

首先,选择合适的原材料和加工工艺,确保橡胶的质量和加工过程的控制。

其次,可以通过采用涂覆、研磨和抛光等表面处理技术来改善橡胶表面的粗糙度。

这些技术可以去除表面的不平坦部分,使橡胶表面更加平滑。

此外,还可以通过调节环境因素,如温度和湿度等,来控制橡胶表面的粗糙度。

综上所述,橡胶表面的粗糙度对橡胶材料的性能和应用有着重要的影响。

通过定义适当的粗糙度指标,分析影响粗糙度的因素,研究粗糙度对性能的影响以及控制和改进粗糙度的方法,可以更好地理解和应用橡胶材料。

表面粗糙度及其影响因素

表面粗糙度及其影响因素

表面粗糙度及其影响因素一、切削加工中影响表面粗糙度的因素影响表面粗糙度的因素主要有几何因素和物理因素。

1.几何因素:式中 f ——进给量。

Kr ——主偏角。

Kr’——副偏角考虑刀尖圆弧角:式中 f ——进给量。

r ——刀尖圆弧半径。

如图11-8、9所示,用刀尖圆弧半径r=0的车刀纵车外圆时,每完成一单位进给量f后,留在已加工表面上的残留面积,它的高度Rmax即为理论粗糙度的轮廓最大高度Ry。

图11- 8 图11- 9图11- 10 加工后表面实际轮廓和理论轮廓切削加工后表面粗糙度的实际轮廓形状,一般都与纯几何因素所形成的理论轮廓有较大的差别,如图11-10。

这是由于切削加工中有塑性变形发生的缘故。

生产中,若使用的机床精度高和材料的切削加工性好,选用合理的刀具几何形状、切削用量和在刀具刃磨质量高、工艺系统刚性足够情况下,加工后表面实际粗糙度接近理论粗糙度,这样减小表面粗糙度数值、提高加工表面质量的措施,主要是减小残留面积的高度Ry。

2.物理因素多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。

形成它们的原因有积屑瘤、鳞刺、振动、摩擦、切削刃不平整、切屑划伤等。

3.积屑瘤的影响积屑瘤的生成、长大和脱落将严重影响工件表面粗糙度。

同时,由于部分积屑瘤碎屑嵌在工件表面上,在工件表面上形成硬质点。

见图11-11。

图11- 11 图11- 12鳞刺的影响鳞刺的出现,使已加工表面更为粗糙不平。

鳞刺的形成分为:抹拭阶段:前一鳞刺已经形成,新鳞刺还未出现;而切屑沿着前刀面流出,切屑以刚切离的新鲜表面抹拭刀——屑摩擦面,将摩擦面上有润滑作用的吸附膜逐渐拭净,以致摩擦系数逐渐增大,并使刀具和切屑实际接触面积增大,为这两相摩擦材料的冷焊创造条件,如图11-12(a)。

导裂阶段:由于在第一阶段里,切屑将前刀面上的摩擦面抹拭干净,而前刀面与切屑之间又有巨大的压力作用着,于是切屑与刀具就发生冷焊现象,切屑便停留在前刀面上,暂时不再沿前刀面流出。

单层石墨烯的水接触角

单层石墨烯的水接触角

单层石墨烯的水接触角1.引言1.1 概述概述:石墨烯是一种由碳原子构成的二维晶体结构,具有出色的导电性、热导性和机械强度。

由于其独特的结构和性质,石墨烯在众多领域引起了广泛的研究兴趣,其中包括在界面科学和表面改性领域的应用。

水接触角是评价固体表面亲水性或疏水性的重要指标之一。

而单层石墨烯的水接触角是指水滴在单层石墨烯表面的接触角度。

研究单层石墨烯的水接触角,对于深入理解其表面性质以及在各种应用中的潜在应用具有重要意义。

本文将综述单层石墨烯的水接触角的研究现状,并探讨影响水接触角的关键因素。

同时,还将展望未来研究的方向和单层石墨烯在该领域的应用前景。

通过对单层石墨烯的结构特点和水接触角的定义进行介绍,可以更好地理解和评估单层石墨烯在水相界面上的行为,为进一步的研究和应用提供理论基础。

接下来,我们将详细介绍单层石墨烯的结构特点和水接触角的定义及其影响因素。

1.2文章结构文章结构部分的内容可以参考以下的写法:1.2 文章结构本文将按照以下结构进行讨论和分析单层石墨烯的水接触角研究:首先,在引言部分,我们将对整篇文章进行一个概述,介绍单层石墨烯的水接触角在当前科研领域中的重要性和研究现状。

接下来,在正文部分,我们将首先介绍单层石墨烯的结构特点,包括其由碳原子构成的特殊结构和独特的电子性质。

我们将详细讨论这些结构特点如何影响单层石墨烯在水接触角实验中的表现。

然后,我们将深入理解水接触角的定义和影响因素。

我们将解释水接触角的测量原理,并探讨影响单层石墨烯水接触角的因素,例如表面能、表面化学性质和外界温度等。

之后,在结论部分,我们将回顾单层石墨烯水接触角的研究现状,总结已有的研究成果和发展趋势。

同时,我们将讨论未来研究的方向和单层石墨烯水接触角在材料科学、纳米技术和生物医学等领域的潜在应用前景。

通过以上结构,本文将全面而系统地呈现单层石墨烯水接触角的研究现状和未来方向。

我们相信,通过对单层石墨烯的水接触角的深入探讨,我们能够在材料科学和工程领域中取得更好的应用和突破。

煤体表面粗糙度对接触角和表面能的影响

煤体表面粗糙度对接触角和表面能的影响

03
Zhou, M., & Yang, X. (2018). Entact angle and surface energy of solid materials. Journal of Physics D: Applied Physics, 51(38), 385301.
04
实验及结果分析
实验样品制备及表面粗糙度测量
样品制备
选取不同种类的煤体,经过破碎、磨削 等步骤,制备出具有不同表面粗糙度的 煤样。
VS
表面粗糙度测量
采用轮廓仪测量煤样的表面粗糙度,得出 Ra值(轮廓算术平均偏差),用于表征 煤体表面的微观形貌。
接触角和表面能测量实验
接触角测量
将制备好的煤样放置在光学显微镜下,通过滴定法测量不同液体(如水、甲醇等)在煤样表面的接触角。
05
结论与展望
研究结论
表面粗糙度对接触角和表面能具有显 著影响。随着表面粗糙度的增加,接 触角呈现先减小后增大的趋势,而表 面能则呈现先增大后减小的趋势。
这一发现对于理解煤体表面的润湿性 及其在工程应用中的性能具有重要意 义,并为优化煤体表面的润湿性提供 了指导。
研究不足与展望
尽管本研究取得了一些有价值的 结论,但仍存在一些不足之处。 首先,实验样本的数量有限,可 能影响结果的普遍性。未来研究 可以增加样本数量,以提高研究 的可靠性和普适性。
表面粗糙度对接触角的影响机制
微观不平度
增加液滴与固体表面的接触面积,使接触角减小,有利于液体在固体表面上的 铺展。
宏观不平度
形成沟壑和突起,阻碍液滴在固体表面上的铺展,使接触角增大。
03
表面粗糙度对表面能的影响
表面能的定义及测量方法
表面能定义

接触角与表面粗糙度换算

接触角与表面粗糙度换算

120 120
Unit nm Contact angle Length nm
θm L
Unit 90 ° 300000 nm
1 2.679E-08 37320540
1 3E-05 (近似计算,θm = 90°时,r=1,n = 0)
单位长度L B情况
2. Caculation 2.1a Hydrophobic Surfaces θ > 90° (Critical Surface Roughness)(θ > 90°) Input Contact angle θ 2.1b Hydrophobic Surfaces (r & rc ) Air Pocket & Cassie's effect If r > rc Input Contact angle θ 120 ° Solid Fraction fs 30%
55 ° 30%
0.4827586 61.134274 °
0.258819067 0.452933367 63.06795903 °
0.57357645 87% 29.2995717 °
2.3 r, n and Ra Input x Ra Calculation sin θm cos θm tan θm Output r n
Unit 120 °
Wavelength λ
150
Unit nm
Non Air Pocket & Wencel's effect If r < rc Input Contact angle θ 120 ° Roughness r 1.75
Output Height( Ra) a 71.619737 Unit nm Critical Roughness rc

材料表面的接触角研究

材料表面的接触角研究

材料表面的接触角研究摘要针对稳定的表观接触角的局部量特征,在三相接触线处引入三相作用能获得新的接触角关系,并基于获得的一组公式处理了粗糙表面的浸润问题。

阐述了固液接触时间、固体表面粗糙度及液体体积对接触角的影响,通过分析,对各因素对接触角影响作出合理的解释。

给出了一个描述粗糙表面浸润性的一般模型,讨论了润湿现象对印品质量的影响。

接触角随粗糙度增大趋于恒定等问题给总结出了新的机理解释,阐述了以往模型如Wenzel模型、Cassie模型等均不能在统一框架下解释接触角实验现象的不足。

讨论了接触角的计算方法中的切线法、圆拟合法、椭圆拟合法、量角法、量高法、多项式拟合法、Young-Laplace拟合法等的优缺点。

并分析了典型算法的原理、特点和适用范围。

针对不同的承印材料,通过对接触角的测量,得到接触角大小与承印物材料的关系,以满足印刷行业的需要。

关键词:接触角;粗糙度;润湿;滞后现象;承印材料摘要 (I)1 绪论 (1)1.1 课题研究背景 (1)1.1.1 材料表面的润湿性 (2)1.1.2 表面微结构导致的特殊润湿性表面 (4)1.2 国内外研究现状及趋势 (5)1.2.1 接触角的测量方法 (6)1.2.2 影响接触角测量的因素 (8)1.2.2.1 接触时间对接触角测量的影响 (8)1.2.2.2 表面粗糙对接触角测量影响 (9)1.2.2.3 液体体积对接触角测量影响 (9)1.3 本课题研究的目的和意义 (10)1.4 本文的主要工作及内容安排 (11)2 水滴在材料表面的接触角研究 (12)2.1 接触角理论基本描述 (12)2.1.1 影响接触角大小的因素 (13)2.1.2 接触角的计算法探讨 (13)2.2 动、静态接触角 (15)2.2.1 理想表面的静态接触角 (15)2.2.2 非理想表面的静态接触角 (16)2.2.2.1 Wenzel模型 (16)2.2.2.2 Cassie模型 (17)2.2.3 考虑接触线附近三相作用的接触角公式 (17)2.3 接触角滞后的局部量特征 (18)3 接触角滞后现象 (19)3.1 接触角滞后的定义 (19)3.2 接触角滞后的形成原因 (20)3.3 接触角滞后的影响因素 (20)3.4 接触角滞后的测量方法及其优缺点 (21)3.4.1 加减液滴体积法 (21)3.4.2 倾斜板法 (22)3.4.3 吊片法 (22)结论 (24)参考文献 (25)1 绪论随着人类科学技术生活水平的快速发展,在印刷工艺中对承印材料的表面性能的要求也逐渐提高了。

接触角滞后值 和摩擦系数

接触角滞后值 和摩擦系数

接触角滞后值和摩擦系数1. 引言1.1 什么是接触角滞后值接触角滞后值是指液滴在固体表面上扩展或收缩时所表现出的一种特性。

当液滴在固体表面上移动时,液滴的前沿和后沿之间存在一定程度的滞后现象,即前沿的移动速度会比后沿的移动速度快,导致液滴形成一个略微倾斜的角度。

这种现象被称为接触角滞后值。

接触角滞后值的大小取决于液滴和固体表面之间的相互作用力以及表面的粗糙程度。

通常情况下,当液滴与固体表面之间的相互作用力增大时,接触角滞后值也会随之增加。

而当表面粗糙度增加时,液滴在表面上移动时的摩擦力也会增加,导致接触角滞后值增大。

研究接触角滞后值可以帮助我们更好地理解液滴在固体表面上的行为,从而优化液体传输系统的设计以及表面润湿性的调节。

在工程领域中,接触角滞后值的研究也具有重要意义,可以为润滑油润滑、表面涂层设计等领域提供理论支持和实践指导。

1.2 什么是摩擦系数摩擦系数是描述两个接触表面之间摩擦性质的物理量。

它是一个无量纲的数值,表示了物体在相互接触时受到的摩擦力大小与其受到的压力大小之比。

摩擦系数通常用希腊字母μ表示。

在干燥表面的情况下,摩擦系数通常会随着表面粗糙度增加而增加。

而在润滑油润滑的情况下,摩擦系数通常会降低。

摩擦系数是物体在相互接触时所受到的阻力的重要指标,对于工程设计和实际应用具有重要意义。

通过对摩擦系数的测量和分析,可以更好地理解物体之间的运动和相互作用规律,为减少能量损耗、提高机械效率等方面提供有力的支持。

研究摩擦系数的影响因素以及如何有效地调控摩擦系数具有重要的理论和实践意义。

【接着可以展开讨论影响摩擦系数的因素等内容】。

2. 正文2.1 影响接触角滞后值的因素影响接触角滞后值的因素有很多,其中最主要的包括表面粗糙度、表面润湿性、接触液体性质、接触时间和接触力等因素。

表面粗糙度会直接影响接触角滞后值,粗糙表面的接触角滞后值通常会比光滑表面更大。

这是因为粗糙表面会导致接触点的形变增多,从而增加了接触面积,使得液滴在表面上停留的时间延长,最终影响了接触角滞后值的测定。

影响表面粗糙度的因素

影响表面粗糙度的因素

一.影响表面粗糙度的因素:(1)工件刚性差,加工表面粗糙度增大。

(2)刀具前角o γ为小值时,塑性变形增大,表面粗糙度也将增大。

过小的后角o α将增大摩擦,表面粗糙度也将增大。

刃倾角s λ为负,加工表面的表面粗糙度增大。

刀具材料软和刃磨质量差,刀具磨损,加工表面粗糙度增大。

(3)切削用量的影响1)切削塑性材料时,切削速度v 在一定的速度范围内(20~80m/min )易产生积屑瘤和鳞刺。

2)进给量f 大,加大了表面粗糙度值,或f 过小会增加刀具与工件表面的挤压次数,使塑性变形增大,反而加大了表面粗糙度值。

3)背吃刀量p α过小或大 ,在精密加工中加大了表面粗糙度值。

二.有锥度 : 车刀明显磨损,车刀松动,车刀架松动,尾座轴线与主轴轴线偏移三.圆度超差,圆柱度超差:主轴径向跳动大,刀具移动方向与主轴不平行,车刀磨损由于刀杆刚性差,产生“让刀”而使内孔成为锥孔,这时需降低切削用量重新镗孔。

镗孔刀磨损严重时,也会产生锥孔,这时需重磨车刀后再进行镗孔。

四.表面不光洁,有明显波纹或表面粗糙,有切痕,拉毛现象:①进给量过大;②铣削进给时,中途停顿,产生“深啃”;③铣刀安装不好,跳动过大,使铣削不平稳;④铣刀不锋利、已磨损五.平面不平整,出现凹下和凸起:①机床精度差或调整不当,②端铣时主轴与进给方向不垂直;③圆柱铣刀圆柱度不好六.槽的宽度尺寸不对:①键槽铣刀装夹不好,与主轴的同轴度差②铣刀已磨损③刀轴弯曲,铣刀摆差大七.槽底与工件轴线不平行:①工件装夹位置不准确,工件轴心线与工作台面不平行② 铣刀装夹不牢或铣削用量过大时,使铣刀被铣削力拉下八.键槽对称性不好:对刀不仔细,使偏差过大九.封闭槽的长度尺寸不对:①工作台自动进给关闭不及时②纵向工作台移动距离不对十.磨外圆断面不圆:①中心孔不圆,孔内有异物,两中心孔轴线不一致,顶尖与中心孔锥角不一致,顶尖未顶紧等;②用卡盘装夹工件时,头架主轴径向跳动太大;③砂轮主轴与轴承间间隙过大;④磨前工件断面不圆,而且工件刚性又差;⑤工件不平衡时,离心力作用,使较重的一边磨去多;⑥工件热处理后还存在部分内应力,磨削后内应力重新平衡而产生变形十一。

接触角与粘度-概述说明以及解释

接触角与粘度-概述说明以及解释

接触角与粘度-概述说明以及解释1.引言1.1 概述接触角与粘度是物理学中两个重要的概念,它们在液体界面行为和流体力学领域有着广泛的应用。

接触角描述了液体与固体表面接触时的几何角度,而粘度则是液体的流动阻力。

液体与固体接触的角度称为接触角。

它是指液体在与固体表面接触时,与固体表面所形成的夹角。

接触角的大小可以反映液体的润湿性,即液体与固体之间的相互作用力大小。

当接触角接近于0度时,液体完全能够润湿固体表面,因为液体与固体表面之间的相互作用力较强。

而当接触角接近于180度时,液体难以润湿固体表面,因为液体与固体表面之间的相互作用力较弱。

粘度是液体的一个重要物理性质,它描述了液体流动的阻力大小。

粘度越大,液体流动的阻力就越大,流动性能就越差。

粘度的大小取决于液体分子之间的相互作用力。

当液体分子间的相互作用力较强时,粘度就会增大;相反,当液体分子间的相互作用力较弱时,粘度就会减小。

接触角与粘度之间存在一定的关系。

液体的接触角与其粘度之间存在一种内在联系,即接触角的大小会受到粘度的影响。

一般来说,粘度较大的液体更难与固体表面接触并润湿。

这是因为液体颗粒之间相互作用力较强,使得液体分子对固体表面的吸附和扩散能力降低,从而导致接触角的增大。

通过研究接触角与粘度的关系,可以更好地理解液体在界面上的行为,并为一些液体的应用提供理论基础。

例如,在表面润湿和液滴形态控制方面,我们可以通过调控液体的粘度来改变接触角,进而实现特定的应用要求。

此外,在涂层技术、液滴传输和液体微滴的生成等领域,对接触角和粘度的深入研究也有助于发掘新的应用前景。

综上所述,接触角与粘度是两个相互关联的重要概念。

它们在液体与固体之间相互作用和流体力学研究中具有广泛的应用价值。

通过深入研究接触角与粘度的关系,可以为相关领域的研究和应用提供更多的理论支持和指导。

文章结构部分的内容如下:1.2 文章结构本文将分为三个主要部分。

首先,在引言部分,我们将对接触角和粘度进行概述,并介绍文章的目的。

粗糙度参数详解

粗糙度参数详解

一般,韧性越好,塑性变形越大粗糙度越大
设备的刚度、精度越好则粗糙度越好
粗糙度的影响有哪些1?
1) 表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越
小,压强越大,磨损就越快。
如直接穿迷彩
如丝般温润
2) 表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越 易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将 微观凸峰挤平,减小了实际有效过盈,降低了联结强度。表面用不去除 材料方法获得
铸,锻,冲压, 粉末冶金等
粗糙度在图纸中标注符号-2
除开横线和圈圈,还有其他的要件需要标注
标注符号-加工纹理
标注符号-16%法则和标注方法
在零件图上,表面粗糙度轮廓符号周围一般只标注幅度参数Ra或Rz和 允许值(单位为μm),而构成表面粗糙度轮廓代号。但在采用幅度参数Ra 时,不需标注该参数的符号,而只标注其允许值。
粗糙度在图纸中标注符号
Ra 1
lr
Z(x) dx
高度参数
lr 0
(Ra) 0.4
0. 1
C
铣(最后一道工序)
0.7/Rsm0.050 宽度参数
RSm 1
m
Xsi
粗糙度参数教程
参考标准:ISO1302-1992 GB3503-1983 JIS B0601-2001 JIS B0632-2001 JIS B0633-2001
EQ 石飞
——2011-03-21
粗糙度的直观印象
在机械学中,粗糙度指加工表面上具有的较小间 距和峰谷所组成的微观几何形状特性。
粗糙度是什么引起的?-1
表面粗糙度轮廓幅度参数允许值的给定分下列几种情况: ①给定上限值 这时,同一评定长度范围内幅度参数所有的实测值中, 大于上限值的个数少于总数的16%,则认为合格。 ②给定上限值和下限值 这时,同一评定长度范围内幅度参数所有的 实测值中,大于上限值的个数少于总数的16%,且小于下限值的个数少 于总数的16%,则认为合格。 ③给定最大值 这时,在最大值后面增加标注一个“max”的标记, 整个被测表面上幅度参数所有的实测值皆不大于允许值,则认为合格。 ④给定最大值和最小值 这时,在最大值后面增加标注一个“max” 的标记,在最小值后面增加标注一个“min”的标记,整个被测表面上 幅度参数所有的实测值皆在最大与最小允许值范围内,才认为合格。

表面粗糙度与水接触角

表面粗糙度与水接触角

Published:November 01,2011/LangmuirFabrication of Surfaces with Extremely High Contact Angle Hysteresis from Polyelectrolyte MultilayerLiming Wang,Jingjing Wei,and Zhaohui Su*State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,andGraduate School of Chinese Academy of Sciences,Chinese Academy of Sciences,Changchun,Jilin 130022,P.R.ChinabSupporting Information ’INTRODUCTIONWettability plays a central and fundamental role in numerous practical applications,such as cleaning,painting,coating,drying,and adhesion.1,2Contact angle analysis is thus valuable in char-acterizing surfaces both because of its convenience and its high sensitivity to details of interfacial structure at the angstrom scale.For an “ideal ”surface that is flat,inert,and chemically homoge-neous,an equilibrium liquid contact angle can be uniquely de fined by Young ’s equation.3The real surfaces are neither perfectly flat nor chemically homogeneous,and contact angles observed di ffer from the Young ’s angle under the e ffect of free energy barriers introduced by roughness and/or chemical heterogeneity.As a result,observed static contact angles fall between two extreme values:the advancing contact angle (θA )and receding contact angle (θR ).4θA and θR together are characteristic of the surface chemistry and topography,and the di fference between them is referred to as contact angle hysteresis (Δθ=θA ÀθR ).Contact angle hysteresis plays a decisive role in the motion of liquid droplets on solid surfaces.5À7The relationship between contact angle hysteresis and surface hydrophobicity was reported by Furmidge 8and reveals the minimum tilt angle (θslide )at which a liquid droplet will spontaneously slide down upon the e ffect of its own gravity overcoming the surface tension force holding it onto the surface,as shown by the equationmg sin θslide ¼kw γlv ðcos θR Àcos θA Þwhere k is a constant,g is the acceleration of the gravity,m and w are the mass and contact diameter of the droplet,and γlv is the surface tension of the liquid.The equation suggests that contact angle hysteresis is highly relevant to surface adhesion and friction,and the surface becomes more adhesive to a liquid droplet as the contact angle hysteresis ually,a liquid droplet on a surface with low contact angle hysteresis can move easily under even little perturbation,while surfaces with high contact angle hysteresis are very adhesive to liquid droplets.Contact angle hysteresis mainly results from topographic roughness 7,9À11and chemical heterogeneity.4,12À14Extrand 11,15and McCarthy,16À20in particular,have demonstrated that events occurring at the three-phase contact line during advancing and receding of the liquid droplet are crucial to contact angle hysteresis,such as the formation of microcapillary bridges during dewetting as the contact line recedes.10,14À18When a liquid droplet wets a rough hydrophobic surface,one of two states of wetting is typically present:the homogeneous wetting (Wenzel)or the composite wetting (Cassie)state.In the Wenzel state,the liquid fully penetrates into surface asperities,which pins the contact line of the liquid droplet and this pinning leads to high contact angle hysteresis as the contact line is continuous and stable.Thus,the contact angle and contact angle hysteresis on a rough hydro-phobic surface increase with surface roughness.On the other hand,when the wetting is in the Cassie mode,air remains trapped in the cavities of the rough surface;the liquid droplet sits partially on air when deposited on the surface,and the contact angles would follow the Cassie equation.19In this case,the three-phase contact line is discontinuous and unstable,which thus causes a low contact angle hysteresis,and the contact angle tends to increase with surface roughness while the hysteresis decreases.7,20À22Received:October 8,2011Revised:October 31,2011ABSTRACT:High contact angle hysteresis on polyelectrolyte multilayers (PEMs)ion-paired with hydrophobic per fluorooctanoate anions is reported.Both the bilayer number of PEMs and the ionic strength of deposition solutions have signi ficant in fluence on contact angle hysteresis:higher ionic strength and greater bilayer number cause increased contact angle hysteresis values.The hysteresis values of ∼100°were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis.Surface roughness can be used to further tune the contact angle hysteresis on the PEMs.A surface with extremely high contact angle hysteresis of 156°was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres.It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate.The same substrate hydrophobized by chemical vapor deposition of 1H ,1H ,2H ,2H -per fluorooctyltriethoxysilane exhibits high advancing contact angle and lowhysteresis.Forflat but chemically heterogeneous surfaces,high contact angle hysteresis mainly stems from the fact that the receding line is pinned by high surface energy components,while the advan-cing line is pinned by low surface energy components.13,23How sparse and dense defects affect hysteresis has been modeled and analyzed theoretically.24,25Superhydrophobic surfaces have attracted tremendous inter-est in the past decade.11,21,26À32Usually,the term superhydro-phobic indicates surfaces that display very high water contact angle,which often exhibit low contact angle hysteresis as well and on which a water droplet can roll offeasily,exhibiting antiadhe-sion behavior.However,McCarthy and co-workers also discov-ered a different kind of surface that exhibits water contact angle hysteresis as high as161°.7Recently,more attention has been paid to similar surfaces that exhibit both high water contact angle and high adhesion to water droplets.33À39For example,inspired by high adhesive force of gecko’s feet and rose petals,Jiang and co-workers reported several methods to fabricate different kinds of superhydrophobic surfaces with high adhesive force33À35and further demonstrated their application in no-loss transfer of liquid droplets.40Balu et al.reported a sticky superhydrophobic surface with a contact angle hysteresis of79°by coating cellulose paper with a thinfluorocarbonfilm.37Sheng et al.demonstrated that when smearing hydrophobic molecules onto an extended Teflonfilm,the surface showed aθA of about140°and a contact angle hysteresis greater than60°.41Other groups have reported that condensation on superhydrophobic surfaces can lead to a dramatic increase in contact angle hysteresis to greater than100°, which results from severely limiting droplet mobility due to pinning of the contact line between surface asperities as the wetting is in Wenzel state.5,27,42Despite this progress in fabrica-tion of sticky superhydrophobic surfaces,a systematic study of the effects of chemical heterogeneity and topographic roughness on contact angle hysteresis is still highly desirable.Recently,we demonstrated that the surface of a typical polyelectrolyte multilayer(PEM)can easily be hydrophobized by ion exchange chemistry;43,44theflat surfaces thus obtained exhibit high contact angle hysteresis due to hydrophilic defects inherent in the multilayers.23The protocol can be applied to rough substrates without significantly altering surface topology.45 In the present study,we systematically investigate the relation-ship between contact angle hysteresis and chemical defects and surface topographic features for PEMs and compare them with wetting characteristics of surfaces with identical topologies but that were hydrophobized by a chemical vapor deposition(CVD) method and thus are almost free of hydrophilic defects.We reportflat and rough surfaces with high contact angle hysteresis and show that the presence of surface defects is the predominant factor leading to high contact angle hysteresis.’EXPERIMENTAL SECTIONMaterials.Poly(diallydimethylammonium chloride)(PDDA,M w= 200000À350000),poly(sodium4-styrenesulfonate)(PSS,M w= 70000),1H,1H,2H,2H-perfluorooctyltriethoxysilane(POTS),per-fluorooctanoic acid(CF3(CF2)6COOH),silicon tetrachloride(SiCl4), and aqueous sodium silicate were all purchased from Sigma-Aldrich. Sodium chloride and sodium hydroxide(99.5+%)were purchased from Sinopharm Chemical Reagent Co.,Ltd.,and used as received.Sodium perfluorooctanoate(PFO)(0.10M)was prepared by reacting0.010mol of the corresponding acid with NaOH in water,and the volume of the solution was increased to100.0mL.An alcohol suspension of silica submicrometer spheres with a concentration of about2.0wt%contain-ing∼90%silica spheres of about600nm and∼10%silica spheres of about220nm was kindly provided by Prof.Junqi Sun of Jilin University. N-silicon(100)wafers were purchased from Wafer Works Corp. (Shanghai,China).Water(18.2MΩcm)was purified with a Millipore Simplicity system and used for all the experiments.Substrate Treatment.Silicon wafers were cleaned in a hot piranha solution(H2SO4/H2O2,7:3mixture)at80°C for30min,then washed sequentially with copious amounts of acetone,ethanol,and water,and dried with a N2flow.Caution:piranha solution reacts violently with organic materials and should be handled with great care.Preparation of the Nanostructured Substrate.A clean silicon wafer was first immersed into a PDDA aqueous solution(1.0mg/mL)for 15min,followed by rinsing with water for1min and drying with N2flow, and then the substrate was immersed into an aqueous solution of sodium silicate(100mM,pH11.5)for10min,rinsed with water for1min,and dried with N2.This cycle was repeated to yield a(PDDA/sodium silicate)6 film with nanostructure on the Si substrate.46,47Preparation of the Microstructured Substrate.The micro-structured substrate was fabricated by deposition of submicrometer scale silica spheres onto a silicon wafer according to a previous report.46An alcoholic silica suspension was first sonicated for10min to uniformly disperse the silica spheres.A clean silicon wafer was immersed into the suspension for10s at room temperature and then withdrawn from the suspension at a rate of∼1.5mm/s.After the alcoholic solvent sufficiently volatilized in a few seconds,silica spheres were successfully deposited onto the substrate surface.The deposition process was repeated for three times to produce a rough surface.In order to make the surface structure more robust,a cross-linking reaction was carried out to stabilize the silica spheres.Specifically,a silica-sphere-coated substrate was dipped into a toluene solution of SiCl4(1wt%)and triethylamine(0.6wt%)for 30min and then washed with toluene several times,hydrolyzed in water, and dried with a flow of nitrogen.PEM Fabrication and Counterion Exchange.PEMs were assembled at room temperature by alternate dipping of a substrate in PDDA(1.0mg/mL)and PSS(1.0mg/mL)aqueous solutions for15min each with water rinsing and N2drying in between until a desired number of layers was obtained.NaCl of various concentrations was maintained in the polyelectrolyte solutions.All PEMs were capped with a PDDA outermost layer,and the ClÀcounterion in the PEMs was exchanged by immersing the PEMs in an aqueous PFO solution(0.10M)for1min,followed by rinsing with water and drying with N2.In this work,the contact angles and contact angle hysteresis were always measured after the PEM surfaces were hydrophobized by counterion exchange with PFO anions.Chemical Modification of the Substrate.POTS was used to modify substrate surfaces by the chemical vapor deposition(CVD) method.A sealed vessel containing the substrate and several drops of POTS was heated in an oven at about120°C for3h to enable the reaction between the OH groups on the substrate surfaces and the POTS and then maintained at about150°C for1.5h to remove the unreacted POTS molecules.Characterization.Microstructures of the nanoscale asperities and the microstructured surface coated by submicroscale silica spheres were observed on a field emission scanning electron microscope(FESEM, Micro FEI Philips XL-30-ESEM-FEG)operating at20kV.Topography and roughness of the PEMs were assessed with a tapping mode atomic force microscope(AFM,SPA-300HV,with a SPI3800N Probe Station, Seiko Instruments Inc.).Probes with a resonant frequency of60À150kHz and a spring constant of3N/m were used.Root-mean-square(rms) roughness was calculated as follows:rms¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1N∑Ni¼1ðz iÀz avÞ2swhere z i is the z value of a specific pixel,z av is the average value of the z values in the scan area,and N is the number of pixels in the same area.Water contact angles were measured using a Kr €u ss DSA10-MK2drop shape analyzer at room temperature using water as the probe fluid (4μL).Each contact angle value reported was an average of at least five independent measurements.’RESULTS AND DISCUSSIONBetween the two factors which primarily contribute to surface contact angle hysteresis,roughness is believed to have a greater in fluence on apparent contact angles and thus contact angle hyster-esis compared to chemical defects (heterogeneities).10Accordingly,the e ffect of roughness or topographic features on contact angles has attracted persistent attention,9,10,20,26À29,34À37,48whereas the studies of chemical defects on surface wettability are rare.4,12À14Surfaces of PEMs assembled by the layer-by-layer (LbL)tech-nique are known to be heterogeneous due to interpenetration of constituent layers and desorption of assembled molecules.Recently,in a preliminary study we reported a method to reveal and quantify surface heterogeneities (surface defects)in PEMs and demonstrated that contact angle hysteresis may be correlated to area fraction of the defects.23Thus,PEMs are suitable targets for studying the e ffect of defects on wettability.All PEMs used in this work were assembled from PSS and PDDA with a PDDA-capped layer and then hydrophobized with PFO anion via counterion exchange.43À45The surfaces of these PEMs are mostly hydrophobic PFO units,with small fractions of areas where PFO units are absent,hydrophilic defects.23Because ionic strength in polyelectrolyte solutions 49,50and number of bilayers depo-sited 50À52are crucial to the PEM buildup and properties,we first probed the e ffects of these two factors on the contact angle hysteresis.Figure 1displays contact angles and hysteresis for the PEMs deposited on flat substrates from solutions containing 0.1M NaCl with number of bilayers n ranging from 0to 8.While the receding contact angle remained low at about 20°,both the advancing contact angle and the hysteresis rose with n rapidly and reached plateau values of ∼120°and ∼100°,respectively.The surfaces of these PEMs were flat and featureless with rms roughness values of ∼1nm (Supporting Information).There-fore,the increases of both advancing contact angle and hysteresis with n result from gradual decrease of area fraction of hydrophilicdefects on the hydrophobized PEMs as demonstrated pre-viously 23and not from surface roughness increases.Speci fically,hydrophilic defect domains on PEMs show a strong a ffinity to chemisorbed water surrounding them,which pin the three-phase contact line of the receding water droplet and result in extremely low receding contact angles;advancing contact angle is more sensitive than receding contact angle to the fraction of hydro-philic defects,which decreases with the increase of n of the PEMs.23The results are also in accord with the findings for a liquid droplet on a flat but chemically heterogeneous surface based on the Cassie model.53In addition,contact angle data for PEMs assembled at salt free and 1.0M NaCl exhibited similar trends,but plateaus were reached at lower n for higher salt condition (Supporting Information).This demonstrates that salt can signi ficantly decrease the amount of surface defects in PEMs,which is consistent with the fact that higher salt concentrations in deposition solutions lead to thicker and more coherent films.44,54,55By analogy,we can expect that for a hydrophilic surface bearing hydrophobic defects contact angle hysteresis would also vary as a function of the defect fraction but in a reversed manner;i.e.,more hydrophobic defects in a hydrophilic surface would elevate the hysteresis.On the basis of the above results,we can conclude that for these PEMs contact angle hysteresis is dominated by surface defects,and surface roughness contributes partially only when it is high.For subsequent experiments,PEMs assembled at 1.0M NaCl with n =3,denoted PEM-3,were used.CVD is a widely used classic method to prepare homogeneous hydrophobic surfaces.11,46The small molecules in the vapor phase can readily react with the substrate to form a uniform coverage on the surface.The wetting behavior of a flat silicon wafer that had been hydrophobized with POTS molecules by the CVD method was studied.The surface remains smooth with a rms value of ∼1.0nm after POTS deposition.The static and advancing contact angles on the flat POTS surface are ∼110°and ∼119°,respectively,similar to that for PEM-3.However,the receding contact angle is as high as ∼99°,which is prominently di fferent from the low receding contact angles on the PEMs (Table 1).As a result,the flat POTS surface exhibits a contact angle hysteresis value of 20°,much lower than that for the flatPEMs.Figure 1.Advancing and receding contact angles and contact angle hysteresis of PDDA(PSS/PDDA)n with PFO counterion assembled on flat substrate at 0.1M NaCl,as functions of the number of bilayers,n .Table 1.Wettability of the Surfaces of PEMs and POTS Deposited on Di fferentSubstratesThese results further demonstrate that the presence of defect domains on the PEM surface is responsible for the high contact angle hysteresis.Since surface topography plays an important role in wetting of liquid droplets on solid substrates,substrate roughness was introduced to further tune the wetting behavior of both.We prepared a nanostructured substrate covered with nanoscale asperities for PEM and POTS deposition and explored the e ffect of the topographic features on the contact angle hysteresis on both the PEM and POTS surfaces.It has been reported that LbL assembly of polyamines and sodium silicate can lead to surface asperities with the size of several tens of nanometers by mani-pulating the number of deposition cycles.47PDDA and sodium silicate were used here to prepare the nanopapillae on flat Si substrates.After deposition of six bilayers,asperities with size of 20À50nm were formed and randomly distributed on the sub-strate,as revealed by SEM and AFM measurements (Figure 2).Then a PEM-3film was deposited onto the substrate.PEM-3exhibits a high contact angle hysteresis on a flat substrate,as shown in the previous section,and has a rather small thickness of ∼27nm (Supporting Information)so that the topography of the structured substrate should be preserved.One may expect that this surface would exhibit a higher advancing contact angle and contact angle hysteresis compared to the PEM-3on a flat substrate as the substrate roughness has signi ficantly increased.22,34To our surprise,no apparent change in water contact angles stemming from the surface nanopapillae was observed.The advancing and receding contact angles are still around 116°and 20°,respectively (Table 1).This indicates that nanoscale asperities do not change the wetting behavior of the PEM surface.On the other hand,the same nanostructured substrate coated with POTS via CVD is more hydrophobic than the POTS surface on a flat substrate.The static contact angle can be as high as ∼119°,and the advancing/receding contact angles are ∼127°and ∼90°,respectively,presenting a contact angle hysteresis value of 37°,which is 17°higher than the counterpart for the flat substrate (Table 1).These results suggest that the hydrophilic defect domains at the three-phase contact line on thePEMFigure 2.SEM image of the nanoscale asperities on the silicon substrate (a).AFM height image and 3D pro file showing the nanoscale topographic features on the substrates (b,c).Figure 3.SEM micrographs of (a)silica-sphere-coated substrate after PEM-3deposition (inset shows a water droplet pinned to the surface turned upside down)and (b)silica spheres deposited on the substrate.(c)is a magni fication of (a),showing that the spheres are cross-linked,and (d)is the side view of (a).surface diminish the influence of the nanoscale asperities on the movements of water droplets,which is probably because the sizes of asperities and the chemical defects are of the same order of magnitude.To further examine the effects of surface topography on the contact angle hysteresis of the PEM surface,a much rougher substrate was prepared by coating aflat silicon wafer with submicrometer-scaled silica spheres.46A PEM-3was then de-posited onto this substrate.Figure3illustrates the SEM images of the microstructured substrate after PEM-3deposition.It can be clearly seen that several layers of silica spheres are built on the substrate(Figure3a,b),the bottom layer has a large coverage, and there are still many micrometer-scaled unoccupied regionsrandomly distributed on the substrate.The cross-linking reaction (Experimental Section)after deposition of the silica sphere is important to prevent the silica spheres from being removed from the substrate by setting up links among the spheres and the substrate,which can be clearly seen in Figure3c.Figure3d is the side view of the rough surface structures.Unlike the hexagonal packing of the spheres in the bottom layer(Figure3c),particles in top layers are sparsely distributed over the bottom layers, which further promotes surface roughness.The PEM-3coated on this substrate shows sticky superhydrophobic behavior:the advancing contact angle is as high as156°,while the receding contact angle is∼0°,and the static water contact angle∼152°(Table1).The great difference between the advancing and receding contact angles indicates an extremely high contact angle hysteresis value of greater than150°.High contact angle hyster-esis values usually mean strong adhesive forces of the surface to the liquid droplets;in fact,a water droplet remains pinned to the surface even when the substrate is turned upside down,as shown in Figure3a(inset).It is clear that this is an adhesive super-hydrophobic surface.33In contrast,the POTS deposited on the microstructured substrate exhibits high static/advancing/receding contact angles of156°,160°,and150°,respectively(Table1).The small con-tact angle hysteresis of10°is much lower compared to the PEM-3surface on the same substrate.Consequently,unlike the adhesive PEM surface,the rough POTS surface is antiadhesive against water droplets;water on this surface rolls offeasily when it is slightly tilted.The discontinuity of the contact line of the water droplets on the rough POTS surface due to the existence of air bubbles beneath the droplet accounts for the low contact angle hysteresis value,and the droplet is in the low adhesive Cassie state(Figure4,left).The striking difference in contact angle hysteresis between these two sets of surfaces,formed by deposition of PEM and POTS via LbL and CVD,respectively,on substrates of same topographies,indicates that surface defects can greatly impact wetting properties.The defect domains randomly distributed on the PEM surface strongly associate with water molecules as discussed above,which results in the penetration of the water droplet between the surface asperities on the microstructured substrate.In this case,the substrate/water contact area at the three-phase contact line greatly increases and so does the length of the contact line.Consequently,the pinning of the water droplet by the substrate sharply increases at the contact line because the contact line must negotiate higher energy barriers between metastable states,5which eventually leads to extremely low receding contact angles and thus extremely high contact angle pared to theflat or nanostructured sub-strates,the surface features on the silica-sphere-coated surface largely enhance both the static and advancing contact angles while greatly reduce the receding contact angle.Since it is generally believed that an advancing liquid preferentially samples hydrophobic components while a receding liquid preferentially samples hydrophilic components,13these results show that the surface roughness enhances both hydrophobicity of hydrophobic regions which have a great influence on the static and advancing contact angles and hydrophilicity of the hydrophilic defect regions which mainly affect the receding contact angle on the same surface.The high values of contact angle hysteresis (especially the extremely low receding contact angle)indicate that the wetting is in the Wenzel state(Figure4,right).We further deposited the nanopapillae onto the silica-sphere-coated surface to prepare a hierarchical surface with higher roughness and then assembled the PEM-3onto this substrate;however, no increase of the contact angle hysteresis was observed com-pared to the rough silica-sphere-coated surface(Supporting Information).Although surface defects are always existent with PEMs,the PEM surfaces do not always exhibit high contact angle hysteresis. Topographic roughness of the substrate is a decisive factor for contact angle hysteresis for these PEM surfaces with defects. When the PEM was deposited on a rough substrate coated with microscale forestlike gold clusters,the contact angle hysteresis on the surface was largely diminished,and a self-cleaning surface can be obtained.45A reasonable explanation is that the extremely large surface roughness decreases the possibility for defects on a PEM surface to contact with water droplets.Therefore,combin-ing hydrophobized PEMs with moderate rough surface features is an effective way to take full advantage of the hydrophilic surface defects of the PEMs toward surfaces with high contact angle hysteresis.’SUMMARYIn this paper,we have studied the effects of surface defects and roughness on contact angle hysteresis and demonstrated surfaces with high contact angle hysteresis values on hydrophobic PEM surfaces in the presence of hydrophilic pared to POTS surface formed via a CVD method,which is uniform and hydrophobic,a PEM surface hydrophobized with PFO counter-ion exhibits similar static and advancing contact angle but has numerous hydrophilic defects.The PEM surfaces exhibit much larger contact angle hysteresis compared to the POTS surfaces on substrates of same topographies,indicating that hydrophilic defects are crucial to high contact angle hysteresis.The effects of roughness on contact angle hysteresis for surfaces with defects are more complicated.Onflat substrates with low roughness,the Figure4.Schematic illustrations of a water droplet on the microstruc-tured substrate coated with POTS(left)and the PEM(right).The hydrophilic defect regions on the PEM surface could lead to collapse of the liquid droplet into the surface asperities,which explains the transi-tion from the low adhesive Cassie state(left)to the high adhesive Wenzel state(right).PEM surface exhibits large contact angle hysteresis(as high as 100°),and similar wetting behavior is found on nanostructured substrates with asperities of about20À50nm size.However,on microstructured substrates the PEM surface exhibits sticky superhydrophobic behavior with an extremely high contact angle hysteresis of156°.Obviously,the high contact angle hysteresis of the PEM surfaces is due to pinning of the contact line of the receding liquid by the hydrophilic defects,the effects of which are enhanced on the microstructured substrate where the hydro-philic defects can cause penetration of the water droplet between the surface asperities on the rough substrate,resulting in extre-mely high values of the contact angle hysteresis.This work provides fundamental insights into the contact angle hysteresis phenomenon as well as a convenient method for fabrication of sticky superhydrophobic surfaces,surfaces with high contact angle hysteresis.’ASSOCIATED CONTENTb Supporting Information.More contact angle and rms roughness data for PEMs deposited onflat substrates,thickness measurements of PEM-3,and SEM images of hierarchical surface of nanoscale asperities on the silica-sphere-coated substrate.This material is available free of charge via the Internet at http://pubs. .’AUTHOR INFORMATIONCorresponding Author*Tel(+86)431-85262854;Fax(+86)431-85262126;e-mail zhsu@ .’ACKNOWLEDGMENTThis work is supported by the National Natural Science Foundation of China(21174145).Z.S.thanks the NSFC Fund for Creative Research Groups(50921062)for support.’REFERENCES(1)Mittal,K.L.Contact Angle,Wettability and Adhesion;VSP: Utrecht,1993.(2)Chen,X.X.;Gao,J.;Song,B.;Smet,M.;Zhang,ngmuir 2010,26,104.(3)Young,T.Philos.Trans.R.Soc.London1805,95,65.(4)Johnson,R.E.;Dettre,R.H.J.Phys.Chem.1964,68,1744.(5)Wier,K.A.;McCarthy,ngmuir2006,22,2433.(6)Kawasaki,K.J.J.Colloid Sci.1960,15,402.(7)Chen,W.;Fadeev,A.Y.;Hsieh,M.C.;Oner,D.;Youngblood,J.; McCarthy,ngmuir1999,15,3395.(8)Furmidge,C.G.L.J.Colloid Sci.1962,17,309.(9)Bartell,F.E.;Shepard,J.W.J.Phys.Chem.1953,57,211.(10)Extrand,ngmuir2002,18,7991.(11)Oner,D.;McCarthy,ngmuir2000,16,7777.(12)Neumann,A.W.;Good,R.J.J.Colloid Interface Sci.1972, 38,341.(13)Priest,C.;Sedev,R.;Ralston,J.Phys.Rev.Lett.2007,99.(14)Extrand,ngmuir2003,19,3793.(15)Gao,L.C.;McCarthy,ngmuir2006,22,6234.(16)Gao,L.C.;McCarthy,ngmuir2007,23,3762.(17)Krumpfer,J.W.;McCarthy,T.J.Faraday Discuss.2010, 146,103.(18)Krumpfer,J.W.;Bian,P.;Zheng,P.W.;Gao,L.C.;McCarthy, ngmuir2011,27,2166.(19)Cassie,A.B.D.;Baxter,S.Trans.Faraday Soc.1944,40,0546.(20)Johnson,R.E.;Dettre,R.H.Adv.Chem.Ser.1963,43,112.(21)Zhang,X.;Shi,F.;Yu,X.;Liu,H.;Fu,Y.;Wang,Z.Q.;Jiang,L.; Li,X.Y.J.Am.Chem.Soc.2004,126,3064.(22)Yeh,K.Y.;Chen,L.J.;Chang,ngmuir2008,24,245.(23)Wang,L.M.;Wang,L.;Su,Z.H.Soft Matter2011,7,4851.(24)de Gennes,P.G.;Brochard-Wyart,F.;Qu e r e,D.Capillarity and Wetting Phenomena;Springer:Berlin,2003;pp76À79.(25)Joanny,J.F.;de Gennes,P.G.J.Chem.Phys.1984,81,552.(26)Onda,T.;Shibuichi,S.;Satoh,N.;Tsujii,ngmuir1996, 12,2125.(27)Lafuma,A.;Qu e r e,D.Nature Mater.2003,2,457.(28)Jisr,R.M.;Rmaile,H.H.;Schlenoff,J.B.Angew.Chem.,Int.Ed. 2005,44,782.(29)Bravo,J.;Zhai,L.;Wu,Z.Z.;Cohen,R.E.;Rubner,M.F. Langmuir2007,23,7293.(30)Yu,X.;Wang,Z.Q.;Jiang,Y.G.;Shi,F.;Zhang,X.Adv.Mater. 2005,17,1289.(31)Yu,X.;Wang,Z.Q.;Jiang,Y.G.;Zhang,ngmuir2006, 22,4483.(32)Shi,Y.L.;Feng,X.J.;Yang,W.;Wang,Y.S.Chin.J.Appl.Chem. 2011,28,402.(33)Cheng,Z.J.;Feng,L.;Jiang,L.Adv.Funct.Mater.2008, 18,3219.(34)Feng,L.;Zhang,Y.A.;Xi,J.M.;Zhu,Y.;Wang,N.;Xia,F.; Jiang,ngmuir2008,24,4114.(35)Lai,Y.K.;Gao,X.F.;Zhuang,H.F.;Huang,J.Y.;Lin,C.J.; Jiang,L.Adv.Mater.2009,21,3799.(36)Liu,M.;Zheng,Y.;Zhai,J.;Jiang,L.Acc.Chem.Res.2009, 43,368.(37)Balu,B.;Breedveld,V.;Hess,ngmuir2008,24,4785.(38)Lai,Y.K.;Lin,C.J.;Huang,J.Y.;Zhuang,H.F.;Sun,L.; Nguyen,ngmuir2008,24,3867.(39)Liu,X.;Ye,Q.;Yu,B.;Liang,Y.;Liu,W.;Zhou,ngmuir 2010,26,12377.(40)Hong,X.;Gao,X.F.;Jiang,L.J.Am.Chem.Soc.2007,129,1478.(41)Chang,F.M.;Hong,S.J.;Sheng,Y.J.;Tsao,H.K.Appl.Phys. Lett.2009,95,.(42)Qu e r e,D.;Lafuma,A.;Bico,J.Nanotechnology2003,14,1109.(43)Wang,L.M.;Lin,Y.;Peng,B.;Su,mun. 2008,5972.(44)Wang,L.M.;Lin,Y.;Su,Z.H.Soft Matter2009,5,2072.(45)Wang,L.M.;Peng,B.;Su,ngmuir2010,26,12203.(46)Zhang,L.B.;Chen,H.;Sun,J.Q.;Shen,J.C.Chem.Mater. 2007,19,948.(47)He,J.H.;Fujikawa,S.;Kunitake,T.;Nakao,A.Chem.Mater. 2003,15,3308.(48)Bico,J.;Marzolin,C.;Qu e r e,D.Europhys.Lett.1999,47,220.(49)Ferreira,M.;Rubner,M.F.Macromolecules1995,28,7107.(50)McAloney,R.A.;Sinyor,M.;Dudnik,V.;Goh,ngmuir 2001,17,6655.(51)Schlenoff,J.B.;Dubas,S.T.Macromolecules2001,34,592.(52)Porcel,C.;Lavalle,P.;Ball,V.;Decher,G.;Senger,B.;Voegel, J.C.;Schaaf,ngmuir2006,22,4376.(53)Bain,C.D.;Evall,J.;Whitesides,G.M.J.Am.Chem.Soc.1989, 111,7155.(54)Dubas,S.T.;Schlenoff,J.B.Macromolecules1999,32,8153.(55)Wang,Y.;Stedronsky,E.;Regen,S.L.J.Am.Chem.Soc.2008, 130,16510.。

水滴在疏水电介质表面上形成的接触角

水滴在疏水电介质表面上形成的接触角

水滴在疏水电介质表面上形成的接触角水滴在疏水电介质表面上形成的接触角是一个有趣而重要的现象。

接触角是指水滴与固体表面之间的夹角,它可以告诉我们水滴在固体表面上的润湿性和粘附性。

在疏水电介质表面上,水滴通常呈现出高接触角,这意味着水滴与表面之间存在较大的接触角度。

为了更好地理解水滴在疏水电介质表面上形成的接触角,我们需要先了解一些基本概念。

首先,疏水性是指固体表面对水的抗湿性能。

当固体表面具有较高的疏水性时,水滴无法完全展开并与表面接触,形成一个较大的接触角。

其次,电介质是指具有绝缘性质的物质,它对电流的传导能力较差。

在疏水电介质表面上,水滴的形成和接触角的大小受到多种因素的影响。

首先,表面的粗糙度会影响水滴的接触角。

当表面较为光滑时,水滴更容易在表面上滑动,形成较小的接触角。

相反,当表面较为粗糙时,水滴无法充分接触到表面,形成较大的接触角。

其次,表面的化学性质也会对接触角产生影响。

疏水性较强的表面会使水滴更难与之接触,形成较大的接触角。

水滴的大小和形状也会对接触角产生影响。

较小的水滴更容易在表面上形成较大的接触角,而较大的水滴则更容易展开并形成较小的接触角。

研究水滴在疏水电介质表面上形成的接触角对于理解液体在固体表面上的行为具有重要意义。

这不仅有助于我们设计更好的润湿材料和液体传输系统,还有助于理解自然界中的一些现象,如植物叶片上的水珠和昆虫翅膀上的露珠。

水滴在疏水电介质表面上形成的接触角是一个复杂而有趣的现象。

它受到多种因素的影响,包括表面的粗糙度、化学性质以及水滴的大小和形状。

研究这一现象对于我们理解液体在固体表面上的行为以及应用于材料科学和工程领域具有重要意义。

煤体表面粗糙度对接触角和表面能的影响

煤体表面粗糙度对接触角和表面能的影响

03
然而,当粗糙度过高时,煤体表面形成过多的凸起和凹陷结构,使得表面能增 长速率减缓。这是因为过高的粗糙度可能导致表面积增加,但同时凸起部分与 凹陷部分之间的相互作用减弱,因此表面能的增加变得不明显。
06
结论与展望
主要结论和成果
01
接触角影响
研究发现,煤体表面的粗糙度会显著影响接触角的大小。随着表面粗糙
表面能的结果,可以合理调整煤体表面的粗糙度,以改善润湿性能,满
足特定应用需求。
研究的局限与不足
样本数量限制
由于实验条件和时间的限制,本研究仅选取 了有限数量的煤体样本进行实验,这可能导 致结果的偶然性和偏差。
单一因素影响
本研究仅关注了煤体表面粗糙度对接触角和 表面能的影响,未考虑其他因素(如温度、 湿度等)的潜在影响。
THANKS
感谢观看
5. 总结研究成果,提 出对煤体应用和加工 的指导建议。
4. 结合理论分析,揭 示粗糙度影响接触角 和表面能的物理机制 。
02
煤体表面粗糙度的表征
表面粗糙度的定义和测量方法
定义
表面粗糙度是用来描述固体表面微观不平整程度的参数。
测量方法
通常使用触针式轮廓仪、原子力显微镜(AFM)或扫描电子显微镜(SEM)等 仪器进行测量。这些测量方法能够提供不同尺度下的表面粗糙度信息。
意义
通过对煤体表面粗糙度的研究,可以深入了解其表面性质的变化规律,为煤体的有效开发和高效利用提供理论指 导和技术支持。
研究目的和问题
研究目的
本研究旨在探究煤体表面粗糙度对接触角和表面能的影响规 律,揭示其物理机制,为煤体的应用提供理论依据。
研究问题
在不同粗糙度的煤体表面,接触角和表面能如何变化?其变 化规律与粗糙度的关系如何?这些变化的物理机制是什么?

金属加工表面粗糙度知识大解读

金属加工表面粗糙度知识大解读

金属加工表面粗糙度知识大解读1、粗糙度的概念零件经过加工后,由于刀具、积屑瘤和鳞刺等给工件表面造成或大或小的波峰与波谷。

这些峰谷的高低程度很小,通常只有放大才能看见。

这种微观几何形状特征,称为表面粗糙度。

2、粗糙度的评定参数以RaRzRy三种代号加数字来表示,机械图纸中都会有相应的表面质量要求,一般是工件表面粗糙度Ra<0.8um的表面时称作:镜面。

轮廓算术平均偏差Ra:在取样长度L内轮廓偏距绝对值的算术平均值微观不平度十点高度Rz:在取样长度l内5个最大的轮廓峰高的平均值与 5个最大的轮廓谷深的平均值之和轮廓最大高度Ry:在取样长度L内轮廓峰顶线与轮廓谷底线之间的距离3、粗糙度的测量和标注用电子仪器或光学仪器测量出Ra、Rz和Ry的数值即可定量评定表面粗糙度。

在实际生产中,经常凭人的视觉和触感并用样块与被加工表面相比较来鉴定其粗糙度。

标注方法:在零件图上用符号标注加工表面的特征。

为基本符号,单独使用这一符号是没有意义的,加注参数值时表示表面可用任何方法获得。

4、各种机械加工工艺获得粗糙度等级关于表面粗糙度的数值和表面特征、获得方法、应用举例请参见下表5、表面粗糙度对机械零件使用性能的影响表面粗糙度对零件质量有很大的影响,主要集中在对零件的耐磨性、配合性质、抗疲劳强度、工件精度及抗腐蚀性上。

5.1、对摩擦和磨损的影响。

表面粗糙度对零件磨损的影响,主要体现在峰顶与峰顶上,两个零件相互接触,实际上是部分峰顶的接触,接触处压强很高,能使材料产生塑形流动。

表面越粗糙,磨损越严重。

5 .2 对配合性质的影响。

两构件配合,无非两种形式,过盈配合和间隙配合。

对于过盈配合,由于在装配时,表面的峰顶被挤平,致使过盈量减小,降低了构件的连接强度;对于间隙配合,随着峰顶不断被磨平,其间隙程度会变大。

因此,表面粗糙度影响配合性质的稳定性。

5 .3 对抗疲劳强度的影响。

零件表面越粗糙,凹痕越深,波谷的曲率半径也越小,对应力集中越敏感。

三相接触角定义-概述说明以及解释

三相接触角定义-概述说明以及解释

三相接触角定义-概述说明以及解释1.引言1.1 概述概述在电力系统中,三相接触角是一个重要的概念,它描述了三相交流电的相位差,是电力系统运行中的关键参数之一。

三相接触角的大小直接影响着电网的稳定性和运行质量,因此对其进行准确的控制和监测具有重要意义。

本文将从三相接触角的概念、影响因素和应用领域进行探讨,旨在深入了解这一重要的电力系统参数,为电力系统的安全稳定运行提供理论支持和指导。

1.2 文章结构文章结构部分包含了整篇文章的框架和组织方式,有助于读者更好地理解文章内容。

本文的文章结构主要包括引言、正文和结论三个部分。

引言部分主要介绍了文章的背景和重要性,以及文章的主要内容和结构安排。

在引言部分,我们将简要概括了三相接触角的定义和重要性,并提出了本文的目的和意义。

正文部分是本文主体部分,主要围绕三相接触角的概念、影响因素和应用领域展开讨论。

在2.1节中,我们将详细阐述了三相接触角的定义和意义,以便读者对该概念有更清晰的认识。

在2.2节中,我们将分析影响三相接触角的因素,探讨其影响机制和调控方法。

最后在2.3节中,我们将介绍了应用三相接触角的领域,展示其在工程和科学领域的重要性和应用前景。

结论部分将对整篇文章进行总结,强调三相接触角在实际应用中的重要性,并探讨未来研究的方向和展望。

我们将通过本文的研究内容和结论部分,为读者提供对三相接触角的深入理解和启发。

1.3 目的本文旨在深入探讨三相接触角的定义及其重要性,介绍其在工程和科学领域中的应用。

通过对三相接触角的概念、影响因素和应用领域进行全面分析,旨在帮助读者更好地理解这一概念,并认识到其在实际工程中的重要性。

同时,也希望激发读者对于三相接触角的未来研究方向的思考,促进相关领域的学术交流与发展。

通过本文的阐述,读者将能够更好地把握三相接触角的核心概念,拓展其在不同领域的应用,并为相关研究提供参考和指导。

2.正文2.1 三相接触角的概念:三相接触角是指在一个系统中,三种不同相的物质在接触处形成的角度。

表面粗糙度对铝合金材料接触热阻的影响

表面粗糙度对铝合金材料接触热阻的影响

表面粗糙度对铝合金材料接触热阻
的影响
表面粗糙度是指表面上的微小凹凸等不平的程度,它是影响物体表面的物理性质和外观的一个重要因素。

对于铝合金材料,表面粗糙度也会影响其接触热阻。

首先,表面粗糙度会影响铝合金材料的表面状态,从而影响表面接触性能。

粗糙的表面在接触时,表面缝隙变大,就会导致接触面积减小,这样会使接触阻力增加,从而导致接触热阻增大。

相反,如果表面光滑,则表面缝隙小,接触面积大,接触阻力低,接触热阻也会降低。

其次,表面粗糙度会影响表面微结构,从而影响接触热阻。

粗糙的表面微结构不规则,表面气泡易于形成,表面空气层会阻碍热量的传递,从而导致接触热阻增大。

相比之下,光滑的表面微结构规则,表面气泡不易形成,表面空气层也不会阻碍热量的传递,从而能够降低接触热阻。

此外,表面粗糙度会影响表面润湿性,从而影响接触热阻。

粗糙的表面水分不能被完全吸收,表面润湿性差,接触面积小,接触阻力大,导致接触热阻增大。

相反,光
滑的表面水分能够被完全吸收,表面润湿性好,接触面积大,接触阻力小,从而能够有效降低接触热阻。

总之,表面粗糙度对铝合金材料接触热阻有着重要的影响。

粗糙的表面会影响表面接触性能,影响表面微结构,影响表面润湿性,从而导致接触热阻增大;而光滑的表面可以有效改善上述问题,从而降低接触热阻。

因此,在制作铝合金材料时,应当注意表面粗糙度的控制,确保其表面光滑,从而提高接触热阻的效果。

接触角的定义

接触角的定义

接触角-正文在固、液、气三相交界处,自固-液界面经过液体内部到气-液界面之间的夹角称为接触角,通常以θ表示(见图)。

将一滴液体,放在一均匀平滑的固体表面上,一种情况是液体完全展开覆盖固体表面,另一种情况是液滴与固体表面形成一定角度停留于表面上。

液体在固体表面上的接触角与固-气界面自由能γSG、固-液界面自由能γSL及液体的表面张力γLG之间的关系,服从杨氏润湿方程:γSG-γSL=γLG cosθ此方程可看作在固、液、气三相交界处,三个界面张力之间平衡的结果。

接触角的大小,可以反映液体对固体表面的润湿情况,接触角愈小,润湿得愈好。

通过测定接触角和液体的表面张力,利用杨氏润湿方程,可以得到粘附功、粘附张力、铺展系数的值,并能对各种润湿过程能否自动进行作出判断(见铺展)。

接触角的测定方法大体分为三类:①角度测量法,观测液滴或气泡在固体表面上的外形,并在固、液、气三相交点处作切线,用量角器直接量角度;②长度测量法,通过对在固体表面上液滴的高度、宽度等的测量,计算出接触角,如液滴最大高度法、吊片法等;③重量法,利用吊片法测定液体表面张力的原理,可以测定液体对固体(吊片)的接触角。

在测量接触角时,若在固-液界面扩展后测量,此接触角称前进角,通常以θA表示;若在固-液界面缩小后测量,此接触角为后退角,用θR表示。

通常前进角与后退角的数值不等,两者之差值(θA-θR)叫做接触角滞后。

造成接触角滞后现象的主要原因是液体或固体表面被污染,固体表面的粗糙不平和不均匀性,以及某些高聚物表面上大分子链段的流动性。

表面的不平不仅影响接触角滞后,而且还影响接触角数值。

粗糙度对接触角的影响可用温策尔方程表示:γ=cosθ′/cosθ式中γ为粗糙因子,是表面粗糙化后的真实表面积与表观表面积之比。

θ′为在粗糙化表面上的接触角。

θ为在平滑表面上的接触角。

当θ<90°时,表面愈粗糙,θ′值愈小;而当θ>90°时,表面粗糙化使θ′变大。

饮料瓶表面粗糙度对其冷凝水结成速率以及疏水性能的影响

饮料瓶表面粗糙度对其冷凝水结成速率以及疏水性能的影响

饮料瓶表面粗糙度对其冷凝水结成速率以及疏水性能的影响摘要:本研究通过对PP材质的塑料瓶制备不同的表面粗糙度,研究其对瓶体表面冷凝水结成速率及疏水性能的影响,为解决冰镇饮料瓶表面冷凝水大量覆盖的问题提供了思路。

1 背景介绍在低温环境中,空气中的水蒸气容易达到饱和和过饱和,并且在固体表面形成液膜。

这种液膜会导致固体表面光滑,增加了产品应用风险。

当水瓶被从冰箱拿出并放置在室温状态后,瓶子表面会快速形成冷凝液膜,这种液膜则会导致触电,脱落及卫生问题。

因此,如何减少瓶体表面冷凝水的产生并使其快速疏离是一个值得重视的问题。

目前饮料瓶的主要成分为聚对苯二甲酸乙,聚乙烯以及聚丙烯等高分子材料,其中聚丙烯(PP)是典型的疏水材料。

根据Cassie公式,我们可以得到疏水表面粗糙度和疏水程度之间的关系。

本研究通过使用相同目数砂纸打磨不同时间的方式,不同程度上提高了不同塑料瓶的表面粗糙度。

并且通过瓶子表面冷凝水的收集量判断了表面粗糙度和冷凝水结成速率及疏水性能之间的关系。

2 实验部分2.1 原材料PP材质塑料瓶,80目砂纸,800目砂纸2.2设备摄像机(oppo reno 3),冰箱,温湿度计,接触角测量仪2.3实验方法第一部分:首先,挑出三个塑料瓶,分别对其进行不同时间的打磨。

塑料瓶1不进行打磨,塑料瓶2进行均匀的2.5分钟打磨,塑料瓶3进行均匀的5分钟打磨。

随后将三个塑料瓶放入冰箱并冷冻两小时。

之后将其放置在室温环境。

等待半小时后,对瓶体表面进行拍摄,随后将瓶子在砂纸表面滚动一圈,通过表面水珠密集程度及砂纸积水量以观察冷凝水的结成速度。

第二部分:将瓶子里的水倒出,剪下瓶身表面塑料,测量其接触角,从而判断其疏水性能。

图1a为塑料瓶的俯视图,图1b为塑料瓶的侧视图3 结果讨论3.1 打磨时间和接触角之间的关系通过砂纸打磨瓶子的时间不同来制造不同粗糙度表面,而不同的表面粗糙度则会导致接触角的不同。

图2a为塑料瓶1的接触角,图2b为塑料瓶2的接触角,图2c为塑料瓶3的接触角由此可见,塑料瓶的表面越粗糙,其接触角则越大,从而越疏水。

镍基合金的表观接触角

镍基合金的表观接触角

镍基合金的表观接触角镍基合金是一种广泛应用于工业领域的重要材料,它具有很多优异的性能,其中之一就是其表观接触角。

表观接触角是指液滴与固体表面接触的角度,它不仅仅是一个物理现象,更是一个可以反映材料性质的重要参数。

在镍基合金中,表观接触角的大小与材料表面的润湿性密切相关。

润湿性是指液体在固体表面上的展开程度,液滴在固体表面上的形态与润湿性密切相关。

如果液滴在固体表面上展开得很好,形成较大的接触角,我们就说该材料具有较好的润湿性;相反,如果液滴无法在固体表面上展开,形成较小的接触角,我们就说该材料具有较差的润湿性。

镍基合金的表观接触角受多种因素影响,首先是表面粗糙度。

表面粗糙度越大,液滴在固体表面上的接触面积就越小,形成的接触角也会变大。

其次是表面能。

表面能是指固体表面吸引液体的能力,表面能越大,液滴在固体表面上的展开程度就越好,形成的接触角也会变小。

镍基合金的化学成分也会对表观接触角产生重要影响。

不同的合金元素会改变材料的表面能以及表面的化学性质,从而影响液滴在其表面上的润湿性。

例如,添加一些元素可以使镍基合金表面形成氧化膜,从而增加其润湿性。

在应用中,我们可以通过调整镍基合金的表面处理方式、合金元素的选择以及合金组织的控制等方法来改变其表观接触角。

这样可以使镍基合金在各种工业领域中发挥更好的作用。

例如,在航空航天领域中,镍基合金的润湿性直接影响着其与液体燃料的接触,进而影响着燃料的燃烧效率和安全性。

总结起来,镍基合金的表观接触角是一个重要的参数,它反映了材料的润湿性和表面性质。

通过调整表面处理方式、选择合金元素以及控制合金组织,我们可以改变镍基合金的表观接触角,从而提高其在工业应用中的性能。

对于人类而言,这意味着更高效、更安全的工业生产,为社会发展带来更大的福祉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接触角和粗糙度的关系
接触角是一个衡量材料表面亲水性或疏水性的重要参数,通常用来评价材料在不同液体中的润湿性。

而粗糙度则是指物体表面粗细程度的表征。

这两者之间有密切的关系。

一般情况下,表面粗糙度越大,接触角就越小。

这是因为表面粗糙度大可以导致材料表面的微小孔隙增多,形成更大的有效表面积,从而增加与液体接触的表面积,提高液体与材料表面之间的相互作用力,使液体易于渗透到材料内部,从而降低接触角。

另一方面,如果材料表面非常光滑,则接触角可能会很大,因为液体接触材料表面的面积非常小,相互作用力很弱。

因此,接触角与表面粗糙度是有直接关系的,这也是为什么在不同材料的界面上观察到接触角的变化。

相关文档
最新文档